NAPA RIVER WEST HATT TO 1ST STREET FLOODWALL

NAPA RIVER/NAPA CREEK FLOOD PROTECTION PROJECT NAPA, CALIFORNIA NLD SYSTEM ID NO. 5305000050 SEGMENT ID NO. 5304000050

PERIODIC INSPECTION REPORT NO. 2 SEPTEMBER 2020

US Army Corps of Engineers ® San Francisco District

FOR OFFICIAL USE ONLY

THIS PAGE INTENTIONALLY LEFT BLANK

QUALITY CONTROL CERTIFICATION

COMPLETION OF OUALITY CONTROL ACTIVITIES

The Walla Walla District has completed the Periodic Inspection Report No. 2 for Napa River Hatt Building to 1st Street Floodwall, Napa, California. Notice is hereby given that the DQC Review has been conducted in accordance with District policy. During this review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified.

John Conway, PG. Levee Safety Program Manager San Francisco District

Susan Kelly, P.E. Levee Safety Officer Engineering & Technical Services San Francisco District

Table of Contents

4.2.1 Concrete Structures	18
4.2.2 Floodwall Joint	
4.2.3 Subdrainage Structures	
4.3 HYDROLOGIC/HYDRAULIC	
4.3.1 Design Capacity	
4.3.2 Hydraulic Analysis	
4.4 SURVEY DATUM	
4.5 DESIGN CRITERIAL REVIEW CONCLUSIONS	
PART 5 - INSPECTION FINDINGS AND EVALUATIONS	
5.1 INSPECTION SUMMARY	
5.2 GENERAL ITEMS FOR ALL FLOOD DAMAGE REDUCT	
SEGMENTS/SYSTEMS	
5.2.1 Operation and Maintenance Manuals	
5.2.2 Emergency Supplies and Equipment	
5.2.3 Flood Preparedness and Training	
5.3 CONCRETE FLOODWALL.	
5.3.1 Non-Compliant Vegetation Growth	
5.3.2 Encroachments.	
5.3.3 Closure Structures	
5.3.4 Concrete Surfaces	
5.3.5 Tilting, Sliding or Settlement of Concrete Structures	
5.3.6 Foundation of Concrete Structures	
5.3.7 Monolith Joints	
5.3.8 Underseepage Relief Wells/ Toe Drainage Systems	
5.3.9 Seepage	
5.4 INTERIOR DRAINAGE SYSTEM	25
5.4.1 Vegetation and Obstructions	
5.4.2 Encroachments	
5.4.3 Concrete Surfaces	
5.4.4 Tilting, Sliding or Settlement of Concrete and Sheet Pile Structures	26
5.4.5 Foundation of Concrete Structures	26
5.4.6 Monolith Joints	26
5.4.7 Culverts/ Discharge Pipes	26
5.4.8 Flap Gates/ Flap Valves/ Pinch Valves	26
PART 6 - CONCLUSIONS AND RECOMMENDATIONS	27
7.1 RECOMMENDATIONS	27
7.1.1 General Items for All Flood Damage Reduction Segments/Systems	27
7.1.2 Concrete Floodwall	
7.1.3 Interior Drainage System	27
7.2 RATING	
7.3 FUTURE PERIODIC INSPECTION	27

Tables

Table 3-1: NCFCWCD Points of Contact	6
Table 4-1: Results of Slope Stability Analysis	
Table 4-2: Minimum Reinforcing Concrete Cover	
Table 5-1: List of Key Inspection Staff	23
Table 5-2: PI Rated Summary	

Figures

Figure 1-1: Location Map of the Napa River Left Tulocay to Imola Levee System	
Figure 3-1: Napa Levee Safety System Map	7
Figure 3-2: Typical Cross-Section (Type C Modified) of the Floodwall	10
Figure 4-1: Lap Splice Lengths	19

Appendixes

- Appendix A Pertinent Plates and Drawings
- Appendix B Flood Damage Reduction Segment/System Inspection Report
- Appendix C 2005 Hatt2First GDDR
- Appendix D 2005 Hatt Bldg to First St DDR Supplemental
- Appendix E Napa River H&H MRFs
- Appendix F DQC and Independent Technical Review

ACRONYMS AND ABBREVIATIONS

А	Acceptable
ASTM	American Society for Testing and Materials
cfs	cubic feet per second
CGS	California Geological Survey
DDR	Design Documentation Report
EM	Engineering Manual
ER	Engineering Regulation
ETL	Engineering Technical Letter
FEMA	Federal Emergency Management Agency
FWHA	Federal Highway Administration
FESWMS	Finite-Element Surface-Water Modeling System
FIRM	Flood Insurance Rate Map
FOUO	For Official Use Only
ft	foot or feet
gpm	gallons per minute
GPS	Global Positioning System
H:V	Horizontal:Vertical
in.	inch or inches
ITR	Independent Technical Review
lb	Pounds
LIS	Levee Inspection System
LSO	Levee Safety Officer
М	Minimally Acceptable
MLLW	Mean Lower Low Water
MSL	Mean Sea Level
n	Coefficient of Roughness
NA	Not Applicable
NAVD88	North American Vertical Datum of 1988
NCFCWCD	Napa County Flood Control and Water Conservation District

FOR OFFICIAL USE ONLY

NGS	National Geodetic Survey
NSD	Napa Sanitation District
NLD	National Levee Database
NWW	Walla Walla District
O&M	Operations & Maintenance
Project	Napa River/Napa Creek Flood Protection Project
pcf	pounds per cubic foot
PGA	Peak Ground Acceleration
PI	Periodic Inspection
PL	Public Law
psf	pounds per square foot
psi	pounds per square inch
ROW	Right-Of-Way
SGDM	Supplemental General Design Memorandum
SPN	San Francisco District
U	Unacceptable
USACE	United States Army Corps of Engineers
USGS	United States Geological Survey

PART 1 - EXECUTIVE SUMMARY

This Executive Summary provides the scope and purpose of the periodic inspection (PI), an overview of the Napa River West, Hatt to 1st Street Floodwall System, a summary of the major findings of the PI, and the overall levee system rating.

1.1 Scope and Purpose of Periodic Inspection

The purpose of the Napa River West, Hatt to 1st Street Floodwall System PI is to identify deficiencies that pose hazards to human life or property, and to determine design adequacy relative to present day criteria. The inspection is intended to identify the issues in order to facilitate future studies and associated repairs, as appropriate.

This assessment of the general condition of the Napa River West, Hatt to 1st Street Floodwall System is only based on available data and visual inspections. Detailed investigation and analysis involving hydrologic design, topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of this PI.

1.2 System Summary

The Napa River/Napa Creek Flood Protection Project is a federally authorized, multiphase urban project that was designed to provide 100-year level of flood protection and also referred to as the 1% annual chance of exceedance (ACE) flood event to the city of Napa, California. Herein, this overall flood protection project will be simply be referred to as the "Project". The Project spans almost 7 miles of the Napa River from Trancas Street to the Highway 29 crossing. The Napa River, right bank system (System 0050) extends from First Street to Imola Avenue along the right bank of the Napa River, a distance of about 1.38 miles. The Napa River West, Hatt Building to First Street floodwall segment (Hatt to 1st Street Floodwall) extends from the Hatt Building to First Street, a distance of about 0.34 miles. The remainder of the system downstream from the Hatt Building has yet to be designed or constructed. This report covers only the Napa River West, Hatt Building to First Street Floodwall segment of the flood protection project.

The entire flood protection project is within the city of Napa, California. This flood protection system protects the city of Napa from the Napa River. The floodwall segment from the Napa River West, Hatt Building to First Street, is identified hereinafter as "Hatt to 1st Street Floodwall" or simply as the "Floodwall". A general location map is shown in Figure 1-1.

The local sponsor is the Napa County Flood Control and Water Conservation District (NCFCWCD). The U.S. Army Corps of Engineers (USACE) Sacramento District recently transferred Hatt to 1st Street to NCFCWCD for long-term operation and maintenance. A final inspection or PI is required for the transfer of all levee/floodwall segments.

The Project was authorized by the Flood Control Act of 1965 (Public Law 89-298). Recreation features were included as an allied purpose in the authorizing document, House Document 222, 89th Congress, 1st Session, and are also an authorized purpose for the Project. The recreational elements within the Hatt to 1st Street Floodwall include 2700 feet of promenade, Veterans Park and marshplain terrace covered with stone protection.

1.3 Summary of Major Deficiencies

There were no major deficiencies that were observed by the inspection team or issues rated as "unacceptable" for this PI.

1.4 Overall Rating

The overall rating of the Hatt to 1st Street Floodwall Segment is "acceptable" based on USACE Levee Safety Program rating criteria and the results of this periodic inspection. The Floodwall appears to have the ability to continue safe operation as a flood reduction system and function as authorized. See Appendix B, Flood Damage Reduction Segment/System Inspection Report, and Part 5 of this report for more information.

Figure 1-1: Location Map of the Napa River Hatt to 1st Street Floodwall System

PART 2 - INSPECTION TEAM AND DATE OF INSPECTION

The following section contains a summary of general information pertaining to the inspection team and conditions during the PI of the Hatt to 1st Street Floodwall System. The information presented below was obtained through readily available data sources and is accurate and complete to the best of our knowledge at the time of preparation of this report.

2.1 Inspection Team

The inspection team consisted of one representative from NCFCWCD and three representatives from USACE. Mr. Jeremy Sarrow represented NCFCWCD and is their designated lead point of contact for the Project. Mr. John Conway represented USACE San Francisco District and is the Levee Safety Program Manager. Mr. Michael Franssen, USACE Walla Walla District served as the inspection team lead, and has a background in Civil Engineering. Mr. Nathan DeLannoy, USACE Walla Walla District, served as the inspection recorder and has a background as a Civil Engineering Technician.

2.2 Date of Inspection

The PI was conducted on 22 July 2020

2.3 Weather During Inspection

The weather on the day of the PI was partly cloudy, with light winds and temperatures in the mid to high 70's (degrees Fahrenheit).

2.4 River Gauge or Elevation Readings During Inspection

The closest stream gage to the Hatt to 1st Street Floodwall System is USGS stream gage 11458000 the recorded gage height was approximately 1.97 feet (ft) during the PI, which results in no apparent discharge on the Napa River.

PART 3 - SYSTEN BACKGROUND INFORMATION

The following section contains detailed information pertaining to the Hatt to 1st Street Floodwall relating to design and expected project performance. Additional information, including as-built drawings, is in the appendices of this inspection report.

3.1 **Project Description**

The Hatt Building to 1st Street Floodwall is about 0.34 miles long, located in downtown Napa and consists of floodwalls and associated features. The surrounding area is heavily developed with business, local government offices, and housing units. Access to the segment floodwalls is by walkways from Brown, Fifth, and Third Streets and Veteran's Park. Major roadways that cross the floodwall alignment are Third Street and First Street.

3.1.1 Project Type

The Project is a federally authorized urban flood protection project. The Project will be locally operated and maintained after transfer to the local sponsor.

3.1.2 Authority

Construction of the local flood protection measures along the Napa River from Edgerly Island to Trancas Street was authorized by the Flood Control Act of 1965 (Public Law 89-298). Recreation features were included as an allied purpose in the authorizing document, House Document 222, 89th Congress, 1st Session, and are also an authorized purpose for the Project. Napa Creek was added to the Project authorization by the Flood Control Act of 1976 (Public Law 94-587).

3.1.3 Cost

The Operations, Maintenance, Repair, Replacement and Rehabilitation Manual for the Napa River / *Napa Creek Flood Protection Project* (USACE 2018) indicates that the Construction cost of the CT 2West Hatt Building to 1st Street, floodwall segment was \$35,872,136.. Herein, the manual will simply be referred to as the "OMRR&R Manual".

3.1.4 Completion Date

Construction of the CT 2West Hatt Building to 1st Street, floodwall segment was accomplished under Contract No. W91238-05-C-0020 by R&L Brosamer, Inc. of Alamo, California during the period from 2005 to 2008.

3.1.5 Public Sponsor

NCFCWCD is the public sponsor and will operate and maintain the Hatt to 1st Street Floodwall. The point-of-contacts for NCFCWCD are referenced in Table 3-1.

Name	Address	Phone	Email
Jeremy Sarrow (Primary Point of Contact)	804 First Street Napa, California 94559-2623	(707) 259-8204	Jeremy.Sarrow@CountyofNapa.org
Andrew Butler	804 First Street Napa, California 94559-2623	(707) 259-8671	Andrew.Butler@CountyofNapa.org
Richard Thomasser	804 First Street Napa, California 94559-2623	(707) 259-0407	Richard.Thomasser@CountyofNapa.org

 Table 3-1: NCFCWCD Points of Contact

3.1.6 Location

The Napa River/Napa Creek Flood Protection Project is located in Napa County, California, with the majority of the project work occurring within the city of Napa. The limits of the Project start at the State Highway 29 bridge over the Napa River and extends approximately 6.9 miles upriver (north) to Trancas Street. The Project also includes approximately two-thirds of a mile of Napa Creek starting at its confluence with the Napa River and extending upstream to Jefferson Street. This flood protection project protects the City of Napa against flooding from the Napa River and Napa Creek. This Periodic Inspection report only covers the CT 2West Hatt Building to First Street, floodwall segment of the flood protection project, which is located on the left (west) bank of the Napa River in downtown Napa. This segment is 0.34 miles long and consists of floodwalls and associated drainage, irrigation, walkways, and ramp/stair facilities. The Hatt to First Street Floodwall System (System 50) part of the Project is shown in Figure 3-1 below.

3.1.7 Potential Consequences

The Supplemental General Design Memorandum (USACE 1998) identified average annual flood damages of \$27,704,000 for the "largest floodplain" (1430 to 500-year) and \$163,834,000 for the "medium floodplain (65 to 50-year), in October 1997 dollars, for the Project. Herein, the Supplemental General Design Memorandum will simply be referred to as the "SGDM". Average annual flood damages specific to the Hatt to 1st Street Floodwall system are not given in the SGDM.

NAPA RIVER HATT TO 1 $^{\rm ST}$ STREET FLOODWALL SYSTEM PERIODIC INSPECTION REPORT NO 2

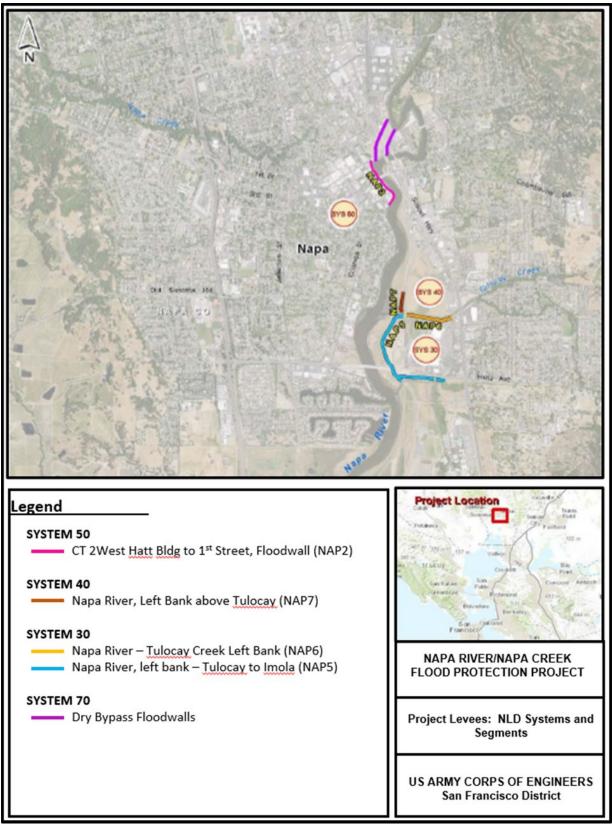


Figure 3-1: Napa Levee Safety System Map

3.1.8 Investigations Prior to Construction

USACE, SACRAMENTO DISTRICT (OCTOBER 1998). Napa River/Napa Creek Flood Protection Project, Supplemental General Design Memorandum (SGDM). This document presents feasibility-level plans for the entire Napa River/Napa Creek Flood Protection Project and serves as the project authorization document. The Geotechnical Appendix includes a detailed discussion of regional geology and seismic sources, soil boring logs and laboratory test data as of the document publication date, a general description of foundation conditions, preliminary values of unit weight and shear strength, slope stability, preliminary floodwall design, and a preliminary evaluation of liquefaction potential.

U.S. Army Corps of Engineers (USACE), Sacramento District (May 2005) Napa River/Napa Creek Flood Protection Project, Contract 2 West Hatt Building to 1st Street, Geotechnical Design Document Report (DDR).

The DDR is a detailed document covering only the Hatt to 1st Street Floodwall segment of the flood protection project and serves as the document of record for the geotechnical design of this segment. Included in the DDR are soil boring logs (from before and after the SGDM date), laboratory test data, a subsurface profile, a description of the soil and groundwater conditions along the floodwall alignment, floodwall foundation design details (deep and shallow), slope stability analysis, seismic analysis using a PGA of 0.5g, dewatering, the impact of construction on nearby structures, and settlement/vibration monitoring of nearby structures during construction.

The geotechnical evaluations included the following:

- Historical data collection and review.
- Field exploration program (SPT, CPT).
- Laboratory testing
- Data interpretation and site characterization.
- Shallow floodwall foundation design
- Deep floodwall foundation design
- Global slope stability of the floodwall system
- Seismic analysis
- Evaluation of construction impact on nearby structures

3.1.9 History of Remedial Measures

The Hatt to 1st Street Floodwall segment of the Napa River/Napa Creek Flood Protection Project was constructed between 2005 and 2008. The only flood events experienced since construction completion occurred in March 2011 and December 2012. No signs of distress were observed in the floodwalls during or after the events. Due to the recent construction of this segment and the lack of flood history since construction, no remedial measures have been performed on this segment.

3.2 Description of Pertinent Features

The CT 2West, Napa River, right bank system currently consists of 1 segment; CT 2West

Hatt Building to 1st Street, floodwall (or Hatt to 1st Street Floodwall). According to the SGDM, the Napa River/Napa Creek Flood Protection Project upstream of Imola Avenue protects approximately 1,308 acres of urban and industrial development. No estimate of the area protected specifically by the Hatt to 1st Street Floodwall segment is given in the SGDM. Flood protection for the Floodwall segment is provided by a combination of floodwalls, concrete walkways, concrete planter areas and a stop-log closure.

3.2.1 Cantilever Floodwall

The floodwall (inverted cantilever-wall founded on cast-in-drilled-hole (CIDH) piles) begins at the south (downstream) end of the project at the Hatt building. The concrete walkways attached to the wall have been constructed to an elevation to provide the necessary protection at key locations where floodwaters may outflank the beginning of the wall. The floodwall continues north around the Napa River Inn at the Hatt complex to 5th Street, where the primary floodwall separates into lower (I-wall) and upper (inverted cantilever-wall) walls with a pedestrian promenade behind the upper wall and a pedestrian walkway behind the lower floodwall. There is a concrete stairway over the floodwall at the terminus of 5th Street allowing pedestrians access from the upper to lower promenade. The elevation of the upper promenade has been set above the 100-year design flood elevation. Upper and Lower floodwalls continue from 5th Street to the 3rd Street Bridge. A break in the upper floodwalls between 5th and 3rd Streets provides pedestrian stairs and ramps to access the lower promenade and river docks. The top of the ramps and stairs have been constructed above the 100-year design flood elevation. The upper wall and promenade continue north to and connects with the 3rd Street abutment providing flood protection. Approaching the 3rd Street Bridge, the lower promenade passes beneath the 3rd Street Bridge and will be flooded during the 10-year event and greater. See Figure 3-2 for a typical cross section of the floodwall.

3.2.2 Veteran's Park

Just north of the 3rd Street Bridge is Veteran's Park. The lower floodwall (I-wall) is the primary line of flood protection for 10-year and lesser flow events. Veteran's Park consists of a terraced amphitheater with vehicular and pedestrian access along the south side of the amphitheater, just north of the 3rd Street Bridge. The vehicle/pedestrian ramp is constructed at a crest elevation exceeding the 100-year flow event. This ramp connects the park with Main Street to the west and the lower promenade trail to the east.

3.2.3 Concrete Seat Walls

The concrete seat walls along the upper terrace have been constructed to an elevation that exceeds the 100-year flood event. Immediately west of the amphitheater is an ADA accessible pedestrian ramp with access to Main Street and the lower promenade. This ramp does not meet the 100-year flow event and has been outfitted with a Stop Log structure to be installed during high water events to prevent floodwater from flowing onto Main Street at this location.

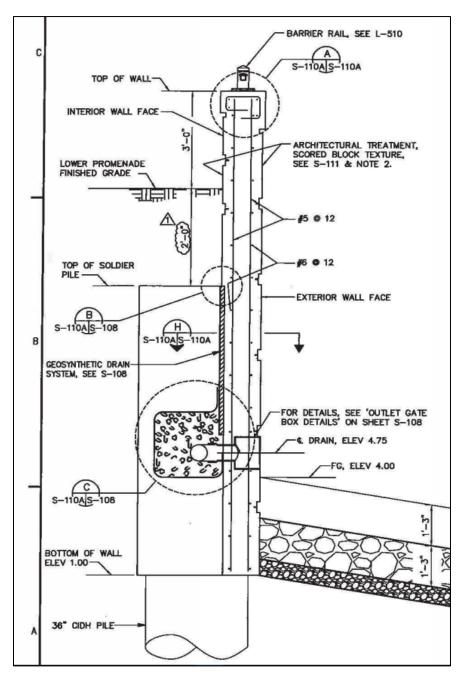


Figure 3-2: Typical Cross-Section (Type C Modified) of the Floodwall

3.3 Topography, Geology, Seismicity, and Groundwater

The topographic, geologic, and foundation conditions for the Hatt to 1st Street Floodwall System are characterized in the *SGDM*, the *USACE (2005) Geotechnical Design Document Report* and the as-built drawings (USACE 2006 and 2007). They are summarized below. The Napa Dry Bypass DDR (USACE 2011) also discusses seismic analysis and some of the information from that report is included in the following.

3.3.1 Regional Geologic Setting, Site Specific Geology, and Topography

The Project is located in the Coast Ranges Physiographic Province, which is composed of the Southern Coast Ranges and Northern Coast Ranges, extend to the Great Valley Province to the east, the Pacific Ocean to the west, the Klamath Mountains Province to the north, and Transverse Ranges in the south. The Northern Coast Ranges Physiographic Province typically trend parallel to the California coastline with north-to-south trending mountain ranges and valleys, including the Napa Valley. The Northern Coast Ranges are dominated by extensive hills with landside characteristics from the Franciscan Complex. In several areas, Franciscan rocks are overlain by volcanic cones and flows of the Quian Sabe, Sonoma, and Clear Lake volcanic fields (California Geological Survey [CGS] 2002).

The Napa Valley is a northwest-trending with the Napa River flowing south through the Napa Valley and into San Francisco Bay. The valley is bounded to the west by sedimentary rocks of the Late Jurassic/Early Cretaceous Franciscan Formation and Late Jurassic to Cretaceous Great Valley Formation. To the north and east, the valley by overlying Pliocene and early Miocene volcanic rocks (United States Geological Survey [USGS], 2006). The valley floor is covered by alluvium and older alluvium composed of sediment derived from both sides of the valley.

3.3.1.1 Seismicity

The Napa Valley is in an area containing many active fault zones. Major faults in the area are the San Andreas (capable of producing an earthquake of magnitude 8.25), Hayward (capable of producing an earthquake of magnitude 7.5), and Concord (capable of producing an earthquake of magnitude 6.5) faults. The (smaller) faults closest to the project are the Soda Creek (capable of producing an earthquake of magnitude 6.25) and West Napa (capable of producing an earthquake of magnitude 6.5) faults, located on the east and west edges of the Napa Valley respectively. A design peak ground acceleration (PGA) of 0.5g was selected for the project (USACE 1998 Paragraph 18.2.5) Soils along the Napa River in the area of the Hatt to 1st Street Floodwall segment are shown as having a high liquefaction potential on the Liquefaction Susceptibility Map, Napa, California.

According to the *Napa Dry Bypass DDR*, an estimated peak ground acceleration of 0.27g was estimated for a 100-year event (estimated magnitude 6.7) from the 2008 Probabilistic Seismic Hazard Analysis (PSHA) USGS model. This peak ground acceleration was used for the seismic evaluation of the Dry Bypass and is appropriate for the other Napa River Flood Protection Project features.

On August 24, 2014, the Main Street USGS Station N016 measured a 6.0 magnitude earthquake, 9.1 miles from the epicenter, with a peak ground acceleration of 0.61g. This monitoring station is within 1 mile of the Hatt to 1st Street Floodwall System. (Strong-Motion Center 2016).

3.3.1.2 Groundwater Conditions

The various exploratory programs performed for the Project indicate that the groundwater elevation for the Hatt to 1st Street Floodwall system varied between 14 and 20 feet below ground surface (USACE (2005) Geotechnical Design Document Report). Groundwater levels are expected to vary depending on time of year, rainfall, river stage, and irrigation/pumping activities.

3.3.2 Subsurface Investigation and Foundation Conditions

The Hatt Building to 1st Street Geotechnical Design Document report (USACE 2005) is a detailed document describing the foundation conditions and the geotechnical design of all the elements in the Floodwall segment. Included in the document are soil boring logs, laboratory test data, a subsurface profile, a description of the soil and groundwater conditions, floodwall foundation design details (deep and shallow), slope stability analysis, seismic analysis, dewatering, the impact of construction on nearby structures, and settlement/vibration monitoring of nearby structures during construction.

The soil borings within the Floodwall segment indicate a soil profile of 20-22 feet of silts, sandy clays, and clayey sands of medium plasticity, underlain by 8 to 30 feet of a dense clayey sand and gravel, underlain by 12 to 36 feet of clay and sandy clay of medium to occasionally high plasticity, underlain by 8 to 10 feet of dense clayey sand and gravel, underlain by lean clay. The upper dense clayey sand and gravel is thicker at the downstream end of the segment and the "middle" fine-grained layer is thicker at the upstream end of the segment. Clays in the Napa Valley are overconsolidated with a typical overconsolidation ratio (OCR) of 2.

3.3.3 Floodwall Design and Construction

Referencing the USACE (2005) Geotechnical Design Document Report, section 6.2.4 states the following: "MGE submitted calculations of the wall loadings, design values, and deflections in each of their submittals. The final values are in the Structural Design Calculations (100% Submittal) report (reference 6). For hydraulic structures, EM 1110-2-2502 (Reference 3) recommends the use of the coefficient of earth pressure at rest (K_0) rather than the active earth pressure coefficient (K_A) for calculating horizontal soil pressures on retaining and flood walls. This is because hydraulic structures are often critical features, and since K₀ is greater than K_A, the calculated loadings will be higher, resulting in a more conservative design. For each wall type, the station with the greatest free wall height was chosen for design. The soil and water loadings were calculated for four different cases: end-of-construction, long-term with no flood, long-term with a flood, and long-term with an earthquake and no flood. The case which produced the highest loadings was selected for structural design purposes. The small passive wedge above the bottom of the soldier pile wall was ignored in all the calculations, simulating erosion at the toe of the wall. A rapid drawdown case was not examined because rapid drawdown conditions are highly unlikely to develop in this project. The 100-year hydrograph for the Napa River indicates the river level rises and falls relatively quickly (2 days). The vertical concrete wall faces, the pavements on the upper and lower promenade, and the trench drains will reduce water infiltration into the soils behind the retaining walls. The lower wall has a drainage system consisting of a geocomposite drainage net, gravelly sand structural backfill, and a collector pipe surrounded in gravel with weep holes about 1 foot above the mean high tide water level. Any excess water that infiltrates the backfill material will drain relatively quickly."

3.3.4 Hydrologic/Hydraulic

The Napa River Basin lies in California's Central Coast Mountain Range, draining 426 square miles in Napa and Solano County. The headwaters of the basin are on the southeast slope of Mount Saint Helena. The basin is approximately 50 miles long and 10 miles wide (USACE 1998).

3.3.5 Past Project Performance

The Hatt to 1st Street Floodwall segment of the Napa River/Napa Creek Flood Protection Project was constructed between 2005 and 2008. The only flood events experienced since construction completion occurred in March 2011 and December 2012. The maximum recorded river level was 22.6 feet NGVD 29 on March 20, 2011 at the USGS stream gage11458000, located approximately 5 miles upstream of the Hatt to 1st Street Floodwall segment. This corresponds to a flow of 12,290 cubic feet per second (cfs) and a return period of just under 3 years. The recorded river stage on December 2, 2012 was 23.75 feet NGVD 29, corresponding to a flow of 10,802 cfs. The recorded river stage on December 24, 2012 was 23.83 feet NGVD 29, corresponding to a flow of 13, 509 cfs. The December 24, 2012 event corresponds to a return period of about 3 years. The largest flow recorded at this gage was 32,580 cfs in March 1995, which corresponds to a return period of about 70 years. No signs of distress were observed in the floodwalls during or after the event. Due to the recent construction of this segment and the lack of flood history since construction, no remedial measures have been performed on this segment. Flood Insurance Study

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) 06055C0516F covers the Hatt to 1st Street Floodwall System. Both FEMA FIRMs indicate that area behind the Hatt to 1st Street Floodwall System is classified in the Zone X floodplain. The Zone X floodplain is defined by FEMA as areas subject to inundation by the 0.2% annual chance (500-year) flood event. However, the map was last updated in September 2010, prior to construction of the Dry Bypass. It is anticipated that a revision to the map would indicate the area be only within Zone AE. The Zone AE floodplain is defined by FEMA as areas subjected to inundation by the 1% annual chance flood event.

3.4 Previous Periodic Inspection Findings

The previous periodic Inspection was performed in 2013 by the Sacramento District (SPK). The inspection assessed the ability of each feature and overall system to function as authorized with respect to hydraulic and geotechnical issues. The 2013 PI found the overall system to have the ability to continue safe operations as a flood reduction system.

The floodwalls associated with the segment were inspected on 20 July 2011 by a team from SPK and the San Francisco District (SPN). NCFCWCD has been performing basic maintenance of the floodwalls. The following items were noted during the inspection:

- Vegetation growth was present at several locations for most of the floodwall segment. The growth was generally on the face of the floodwall and in the vegetation free zone (VFZ). A majority of the vegetation was designed to be a part of the project and should be maintained per the OMRR&R Manual.
- Minor separation was found along the edge of a few pilasters in the lower wall and the connection between the sidewalk and back of the lower wall in the Veteran's Park Area. These separations are currently being monitored by the Sponsor and have not shown signs of continued movement.

3.5 **References**

Below is a list of references that are used in this report. Note: these do not include the USACE design references (such engineering manuals and engineering regulations) that are included at the end of Part 4 of this report.

- American Society of Testing and Materials (ASTM), 2012. D1557-12e1, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA.
- California Geologic Survey (CGS). 2002. Note 26 California Geomorphic Provinces, by the California Department of Conservation, revised December 2002.
- California Geologic Survey (CGS). 2004. Geologic Map of the Napa 7.5' Quadrangle, Napa County, California: a Database Version 1.0 By Kevin B. Clahan, David L. Wagner, George J. Saucedo, Carolyn E. Randolph-Loar, and Janet M. Sowers. Digital Database by: Carlos I.
- Gutierrez.U.S. Geological Survey (USGS). 2006. Scientific Investigations Map 2918, Geologic Map of the San Francisco Bay Region by R.W. Graymer, B.C. Moring, G.J. Saucedo, C. M. Wentworth, E.E. Brabb and K.L. Knudsen.
- Jennings, C.W., and Bryant, W.A., 2010. *Fault activity map of California: California Geological Survey, Geologic Data Map No. 6, Map Scale 1:750,000.*
- Strong Motion Center, 2016. *CESMD, Information for Strong-Motion Station, Main St, Napa, CA, USGS-NCSN Station N016*. <u>http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=NCN016&network=NCSN</u>
- U.S. Army Corps of Engineers (USACE), 1998. Napa River/Napa Creek Flood Protection Project, Final Supplemental General Design Memorandum.
- U.S. Army Corps of Engineers (USACE), Sacramento District, 2005. Napa River/Napa Creek Flood Protection Project, Contract 2 West Hatt Building to First Street, Geotechnical Design Document Report.
- U.S. Army Corps of Engineers (USACE), 2014. Napa River/Napa Creek Flood Protection Project, Napa, California – Contract 2 East Geotechnical Design Document Report.
- U.S. Army Corps of Engineers (USACE), 2011. Napa Dry Bypass Plans and Specifications for the Napa River Flood Protection Project, Napa, California 100% Design Submittal Design Documentation Report. Prepared by McMillen.
- U.S. Geological Survey (USGS), 2019. Napa River, Near Napa, California Stream Gage.

PART 4 - DESIGN CRITERIA REVIEW

Design for the features in the Contract 2 West Hatt Building to First Street portion of the Napa River/Napa Creek Flood Project began in 2004 and was complete in 2005. Geotechnical Design was performed by the US Army Corps of Engineers, Sacramento District. Structural and Civil Design was performed by MGE Engineering, Inc., of Sacramento, California. Landscape and Electrical Design was performed by The HLA Group of Sacramento, California.

The inspection team reviewed the documentation referenced in the Introduction section and evaluated the levee system's documented design criteria against current design criteria. The purpose of the evaluation is to assess the ability of each feature and overall system to function as authorized and identify potential needs to update system design. The results of the design criteria review demonstrate no concerns with the design and specifics for each feature are described in the following sections.

4.1 Geotechnical

The Geotechnical Design Document Report by the Army Corps of Engineers, Sacramento District (May 2005) provides detailed geotechnical analyses for the Hatt to 1st Street Floodwall segment. The Sacramento District performed slope stability, shallow foundation bearing capacity, CIDH pile axial capacity, and filter analyses for the design of the floodwalls at the project design flood. Seepage analysis was not conducted because the Hatt to 1st Street Floodwall floodwalls will have no differential head across them at the project design flood and will have 0-3 feet (average 2 feet) of differential head across them when the water is at the floodwall crest elevation. The upper "pervious" subsurface layer is a silty/clayey sand and gravel with 9-45 percent fines (i.e. semipervious). The project design hydrograph shows a flood duration of 4 days. Given the low differential head across the floodwalls, the short duration of flood events, the lack of a highly pervious subsurface layer, and the impermeable nature of the concrete floodwalls, seepage is not expected to be a problem with this segment. Settlement analyses was also not conducted because the clays in the Napa area are overconsolidated. The additional loadings supplied by the floodwalls are lower than the preconsolidation pressure of the clays, so settlements are expected to be less than one inch.

4.1.1 Soil Investigations

The subsurface investigation and laboratory testing program supporting the project basis of design is summarized in Part 3. The following paragraph was taken from Contract 2 West Hatt Building to 1st Street GDDR (USACE 2005), section 2.0.

At the time of the SGDM preparation, Soil Design section had the following explorations in the Hatt to 1st contract area, from south to north: 2F-90-29, 2F-30 (just south of the Napa Mill); 2F-94-14 (just north of the Napa Mill); 2F-29, CPT-94-2, and 2F-94-15 (near the Third Street bridge). For plans and specifications, more subsurface information was needed, so the following deep explorations were conducted by the Corps: 2F-03-3, 2F-03-4, 2F-04-51 (from a barge in the Napa River near the Napa Mill); 2F-03-5, 2F-03-6, 2F-03-7 (between Fifth Street and Third Street); and 2F-03-8 (in the parking lot north of Downtown Joes). Numerous shallow exploration logs at the Napa Mill, many conducted for an environmental assessment, were obtained from Raney Geotechnical. Two boring logs for the construction of the Third Street Bridge (B-3 and B-4) were obtained from AGS, Inc.

EM 1110-2-1913 states that Phase 1 spacing for borings usually varies from 200 to 1,000 ft. In Phase 2, additional locations of borings are selected based on Phase 1 results. *EM 1110-2-1913* also states that borings should be drilled to depths at least equal to the height of the proposed levee at its highest points but not less than 10 ft. The level of investigation is compliant with a Phase 2 exploration and testing parameters described in *EM 1110-2-1913*.

4.1.2 Slope Stability

The global slope stability of the dual-wall floodwall system was evaluated with the UTEXAS4 computer program using a composite section of the tallest walls combined with the weakest subsurface soil profile. The conditions evaluated were end of construction, long term with no flood, long term with the design flood, and earthquake. The rapid drawdown condition was not evaluated because rapid drawdown conditions will not develop at the floodwalls. The concrete walls will block river water infiltration into the soils behind the walls and, as stated previously, the floodwalls have low differential head, no highly pervious subsurface soil layer, and short duration flood events. The Corps of Engineers has no criteria for global stability of retaining/flood walls, so the criteria for levees and for base sliding of flood walls was used to evaluate the factors of safety. The levee slope stability factor of safety criteria is given in EM 1110-2-1913. Design and Construction of Levee, dated 30 April 2000. The base sliding factors of safety criteria are given in EM 1110-2-2502, Retaining and Flood Walls, dated 29 September 1989. The levee and base sliding criteria have not changed since the floodwalls were designed. The following table shows the slope stability factors of safety for the floodwalls. The lateral loading on the piles was evaluated by the civil/structural A/E firm using the LPILE computer program. The LPILE analysis confirmed that the piles can withstand the lateral loads without a shearing failure and without sufficient deformation to negatively impact the axial capacity of the piles.

Condition	F.S. (Calculated)	Minimum F.S. (Base Sliding)	Minimum F.S. (Flood Control Levee)
End of Construction	1.89	1.33	1.3
Long Term	2.65	1.5	None Listed
Long Term w/ Flood	4.80	1.5	1.4
Earthquake	1.22	1.1	None Listed
			(1.1 Typically Used)

Table 4-1: Results of Slope Stability Analysis

4.1.3 Seismic

ER 1110-2-1806 outlines current USACE seismic design practice. There are three levels of design earthquakes and ground motions mentioned in *ER 1110-2-1806*:

- Maximum Credible Earthquake (MCE) is the greatest earthquake that can reasonably be expected to be generated by a specific source on the basis of seismological and geological evidence. The MCE is determined by a Deterministic Seismic-Hazard Analysis (DSHA).
- Maximum Design Earthquake (MDE) is the maximum level of ground motion for which

a structure is designed or evaluated. The associated performance requirement is that the project performs without catastrophic failure, although, severe damage or economic loss may be tolerated. For critical features, the MDE is the same as the MCE. For all other features, the MDE shall be selected as a lesser earthquake than the MCE that provides economical designs meeting appropriate safety standards. *EM 1110-2-2100* describes this earthquake as generally having a 10% probability of exceedance in 100 years, or a 950-year return period.

• Operating Basis Earthquake (OBE) is an earthquake that can reasonably be expected to occur within the service life of the project, that is, with a 50% probability of exceedance within its service life of 100 years (a 144-year return period). The associated performance requirement is that the project should function with little or no damage, and without interruption of function. The OBE is determined by a PSHA.

A reevaluation of the seismic design criteria might be required if a modification to a project feature also changes the loading of the same project feature or if it would change the normal water surface elevation. If no changes occur, a reevaluation of the seismic design criteria is recommended every third PI or every 15 years, whichever comes first. The seismic design criteria in the *DDR* (USACE 2011) is within recommended timeframe shown in *ER 1110-2-1806* and seismic events (e.g. 6.0 magnitude earthquake on August 24, 2014) after construction should be evaluated during the next reevaluation phase.

4.1.4 Bearing Capacity

The bearing capacity of the shallow foundation of the upper wall (T-wall) was analyzed in accordance with EM 1110-1-1905, Bearing Capacity of Soils, dated 30 October 1992. A Factor of Safety of 3.0 was used to determine the allowable bearing capacity. EM 1110-2-1905 gives a minimum factor of safety of 2.0 for cohesionless soils and 3.0 for cohesive soils. EM 1110-2-2502, Retaining and Flood Walls, dated 29 September 1989 gives different minimum bearing capacity factors of safety for various loading conditions, but the maximum listed is 3.0. The shallow foundation bearing capacity criteria have not changed since the floodwall was designed.

4.1.5 Cast-in-Drilled-Hole (CIDH) Pile Axial Capacity

Axial capacity of the CIDH piles on which the lower wall was founded was calculated using 4 different references (EM 1110-1-1905, Bearing Capacity of Soils, dated 30 October 1992; Federal Highway Administration FHWA-IF-99-025 Drilled Shafts: Construction Procedures and Design Methods, dated August 1999; NAVFAC DM 7.2, Foundations and Earth Structures, dated September 1986; and Engineering Manual for Drilled Shafts, Virginia Polytechnic Institute and State University, August 1992.). The four calculated capacities were averaged for the design ultimate capacity. A Factor of Safety of 3.0 was used to determine the allowable axial capacity. All references used recommend a Factor of Safety of 3.0 for axial capacity when the capacity is not checked with a pile load test. The Federal Highway Administration Manual has been updated since the CIDH piles were designed, but the axial capacity factor of safety is unchanged.

4.1.6 Liquefaction

Most of the SPT N-values obtained in the sand and gravel layers are above 30, indicating the soils are extremely unlikely to liquefy during an earthquake. A few zones of lower SPT N-values do exist. A liquefaction analysis using the simplified procedure of Seed and Idriss was conducted. Results are given in Appendix 2 of the DDR. This analysis showed there is no potential for

liquefaction in the sand and gravel layers in the project area.

4.1.7 Sliding and Overturning

For the floodwalls resting on soil, an overturning factor of safety of 1.5 was maintained for all of the load cases. For the sliding analyses, a minimum FOS of 1.3 was employed for the flood cases, 1.5 was instituted for the non-flood events, and a 1.1 minimum was the standard for seismic events. The maximum allowable bearing capacity of 2 ksf was not exceeded, even though the allowable bearing capacity amplifications permitted in seismic loading conditions were excluded. All of these factors met or exceed those required from EM 1102-2-2502. Reference Structural Design Calculations Contract Number DACW05-01-D-0011 (MGE 2005).

4.2 Structural

A *Final Supplemental General Design Memorandum* dated October 1998, along with a document entitled *Soldier Pile and Sheet Pile Wall Load Conditions & Load Diagrams*, provided the structural design criteria for the Hatt Building to First Street segment of the Napa Valley Flood Control Project floodwalls. These documents appear to be project specific interpretations of *Engineering Manual (EM) 1110-2-2502, Retaining and Flood Walls*. In general, EM 1110-2-2502 instructs the designer to select applicable load cases from the following conditions: the design flood event, a typical non-flood event with water on the unprotected side of the floodwall, a seismic event and the construction event. All of these load cases are considered for the project floodwalls. For the floodwalls anchored to CIDH piles, the criterion set forth in *EM 1100-2-2100, Stability Analysis of Concrete Structures* was applied.

4.2.1 Concrete Structures

Flood protection for the Hatt to 1st Street Floodwall segment is provided by a combination of floodwalls, concrete walkways, concrete planter areas and a stop-log closure.

4.2.1.1 Concrete Strength

EM 1110-2-2007 states that concrete shall have a minimum compressive strength (f'_c) of 3,000 pounds per square in. (psi) at 28-days. Section 2 of the *DDR* (MGE 2005) shows that the concrete strength used was 4,000 psi. The concrete compressive strength meets the current design criteria.

4.2.1.2 Reinforcing Steel Strength

EM 1110-2-2104 & EM 1110-2-2007 state that reinforcing steel should be limited to ASTM A615 (Billet Steel), Grade 60. The detailed calculations in the Structural Design Calculations Contract Number DACW05-01-D-0011 (MGE 2005) show that a steel yield strength of 60,000 psi was used for the design of the reinforced concrete structures in accordance with the current requirements recommended in *EM 1110-2-2104 & EM 1110-2-2007*.

4.2.1.3 Temperature and Shrinkage Reinforcing

EM 1110-2-2104 states that the area of temperature and shrinkage reinforcement steel should be at least 0.003 times the gross cross-sectional area of the concrete, with half in each face. Generally, temperature and shrinkage reinforcement for thin sections should be no less than the equivalent of #4 bars spaced at 12 in. on center. The as built construction drawings for Hatt to 1st Street Floodwall show that sufficient reinforcement-to- concrete area proportion was provided to ensure the concrete will be well confined and to prevent excessive temperature and shrinkage cracks. The

maximum spacing observed for the #5 reinforcement bars was 12 in. and meets the required design criteria specified in the EM 1110-2-2104.

4.2.1.4 Splices for Reinforcement

Figure 4-1 below was taken from the Hatt to 1st Street Floodwall As-Built drawings and shows splice values for different bar sizes used in construction.

GENERAL STRUCTURAL NOTES

- 1. ALL EXPOSED CORNERS AND EDGES SHALL BE CHAMFERED 3/4" AND ALL REENTRANT CORNERS, EXCEPT WALL TO FLOOR UNLESS NOTED OTHERWISE. CONSTRUCTION SHALL HAVE A 3/4" FILLET UNLESS NOTED OR SHOWN OTHERWISE. 2. ALL REINFORCEMENT SPLICES UNLESS NOTED OTHERWISE SHALL BE AS FOLLOWS;

BAR SIZE	LAP SPLICE (IN.)		
4	19		
5	24		
6	29		
7	34		
8	38		
9	43		
10	48		

Figure 4-1: Lap Splice Lengths

4.2.1.5 Hooks and Bends

EM 1110-2-2104 states that all hooks and bends should follow the guidelines provided in *ACI318*. The general notes on the structural detail as-built drawing (USACE 2008 [sheet S-100]) indicates that all hook lengths are per ACI standards, which indicates that the hooks and bends meet the current requirement.

4.2.1.6 Bar Spacing

EM 1110-2-2104 states that the minimum clear distance between parallel bars should not be less than 1-1/2 times the nominal diameter of the bars nor less than 1-1/2 times the maximum size of coarse aggregate. The Maximum center-to-center spacing of both primary and secondary reinforcement shouldn't exceed 18 in. Structural details of the reinforcement bars shown on the as-built drawings (USACE 2008) indicate that all parallel bars were spaced with a minimum clearance of 6 in and a maximum of 18 in.

4.2.1.7 Minimum Reinforcement Cover

EM 1110-2-2104 and EM 1110-2-2007 state that reinforcement should be placed in such a manner that the steel will have a minimum cover of 3 in. EM 1110-2-2007 further expands for paving subjected to high-velocity flow or heavy sand scouring should be increased to provide 4 in. of clear cover. The minimum reinforcement cover utilized in the Hatt to 1st Street Floodwall structural features compared against the current minimum reinforced cover required in EM 1110-2-2104, EM 1110-2-2007 and ACI 318-08 are shown in Table 4-4.

Table 4-2. Minimum Remitrening Concrete Cover			
Requirement type	Current Design Criteria	System Documentation	
Unformed surfaces in contact with foundation.	4 in.	The floodwall footing has a 4 in. clear cover per the as-built drawings (sheet S-107). This meets the current design criteria.	
Formed and screened surfaces such as stilling basin walls, chute spillway slabs, and channel lining slabs on grade;	4 in.	N/A	
Equal or greater than 24 in. of thickness		N/A	
Greater than 12 in. and less than 24 in. of thickness	3 in.		
Equal or less than 12 in. of thickness	Per <i>ACI</i> 318, min of 2 in.	No clear cover less than 2 in. was provided on all concrete structures according to the details on the as- built drawings, consistent with the current design criteria.	

 Table 4-2: Minimum Reinforcing Concrete Cover

4.2.1.8 Minimum Thickness of Walls

EM 1110-2-2502 and *EM 1110-2-2007* state, "The top thickness of the stem for a cantilever wall or concrete walls more than 8 ft tall and for the base slab should be a minimum of 12 in. to facilitate concrete placement." Floodwalls more than 8 ft tall have a base slab thickness between 12 in. and 20 in. and are compliant with the current design criteria. All the footings are 12 in. thick or greater per the as-built drawings (USACE 2008 [sheets S-107, S-110, and S-110A]).

4.2.1.9 Seismic Design

In accordance with the requirements in *EM 1110-2-2104* and *ER 1110-2-1150*, seismic loading was considered during the design. For each wall height, the design assumed backfill to be at the final elevation with Wall 1 when the earthquake loading was applied. The detailed calculations in Structural Design Calculations (100% Submittal (MGE 2005) show that the seismic force was applied to the land side of the floodwall face.

4.2.2 Floodwall Joint

EM 1110-2-2502 states that expansion joints are needed to prevent spalling, displacement, buckling and warping and sometimes to break continuity between two monolith structures with different configurations. Per the as-built drawings (USACE 2008 [sheet S-100]), expansion joints with pre-molded joint fillers were provided between the floodwalls that have different height and depth configurations consistent with the requirements. The reinforcement bars were discontinued at the joint and polyvinyl chloride waterstops with sealants were also provided per the requirement of the *EM 1110-2-2502*. *EM 1110-2-2502* also requires that contraction joints be provided to regulate cracking and be spaced at a minimum from 20 to 30 ft apart. The contraction joints along the floodwalls were spaced at 24 ft intervals per the as-built drawings and are in accordance with the current design criteria.

4.2.3 Subdrainage Structures

Per *EM 1110-2-2502*, all inland floodwalls should be provided with a landside toe drain. The details on the structural as-built show floodwall toe drainage was provided.

4.3 Hydrologic/Hydraulic

4.3.1 Design Capacity

The Napa River/Napa Creek Flood Protection Project, which includes the Hatt to 1st Street Floodwall System, is designed to provide protection to the city of Napa for the 1% annual chance of exceedance event. The current design-flood peak discharge for projects is based on the project-specific National Economic Development plan, as specified in *ER 1105-2-100*. Section 4.5 of the Napa River/Napa Creek Flood Protection Project OMRR&R Manual contains a table showing a 1%-event discharge of 42,410 cfs for the reach of Napa River that includes the Contract 2W Floodwall.

4.3.2 Hydraulic Analysis

According to the Napa River/Napa Creek Flood Protection Project OMRR&R Manual, the amount of distance between the top of the floodwall and the design profile (design profile distance) to be provided on levees, floodwalls, and incised channels was determined based on the uncertainties inherent in the water surface profile computations. The design profile distance adheres to USACE ETL 1110-2-299, "Overtopping of Flood Control Levees and Floodwalls" for providing superiority. For the Napa Project, the design profile distance was set above the base water surface profile based on an increase in the hydraulic head loss parameters. The design profile distance assumed channel configurations, sediment deposition, and bridge debris loading.

An analysis was conducted in August 2008 to evaluate the Napa River/Napa Creek Flood Protection Project's ability to contain the 1% event based on risk and uncertainty methods, in order to meet FEMA certification requirements. The memorandum for record for this analysis stated that the top of feature profile was developed using the superiority concept after the sponsor expressed the desire to have low floodwalls and levees while still having a high performing flood control project. The top of protection profiles was set based on the superiority concept with a minimum of freeboard of 2.0 feet. (EM 1110-2-2502, "Retaining and Flood Walls," recommends freeboard default values of 2 feet on agricultural and 3 feet on urban flood walls.)

Current USACE guidance provided in ER 1105-2-101, "Risk Analysis for Flood Damage Reduction Studies" (USACE, 2006), states that all flood damage reduction studies will adopt risk analysis. The Napa River/Napa Creek Flood Protection project had a waiver from the requirement to do risk analysis at the time the SGDM (USACE, 1998) was prepared and the initial portions of the project were designed and constructed (2000 to circa 2006). That waiver was removed and the August 2008 analysis evaluated the Project's 1% event performance with risk and uncertainty taken into consideration, and concluded that based on information available at the time, floodwall and levee features built to date met minimum top of feature elevation for FEMA certification. Index Point 3, at Main Street Landing (River Station 769+00) had a 1% event conditional nonexceedance probability (CNP) of 96.1% with 2.7 feet of freeboard, while Index Point 4, upstream of the Third Street Bridge (Station 773+00), had a 1% CNP of 98.32% with 3.3 feet of freeboard. Both locations meet the National Flood Insurance Program levee system evaluation requirements for 1% annual chance exceedance flood assurance specified in EC 1110-2-6067, "USACE Process for the National Flood Insurance Program (NFIP) Levee System Evaluation." (USACE, 2010).

Appendix H, Section 4.1 of the OMRR&R Manual states that the high tide elevation within the floodwall project limits is approximately 3.77 feet NGVD29, well below all floodwall improvements, and that tidal influence is not expected to have significant impact on the performance of the floodwall improvements. The project, however, has not been evaluated for sealevel change in accordance with EC 1165-2-212, "Sea-Level Change Considerations for Civil Works Programs." (USACE, 2011)

The floodwalls have been constructed with an independent subdrain and surface drain system. The subdrain system was designed to relieve hydrostatic pressure on the landside of the floodwall, while various surfaces have been designed to allow efficient runoff collection within the surface drainage system. Detailed descriptions of the drainage facilities associated with the Contract 2W Floodwall is provided in Appendix H of the OMRR&R Manual, under Sections 8.6 and 8.7.

4.4 Survey Datum

The floodwalls were surveyed during construction for measurement and payment purposes and that survey is reflected in the as-built drawings. The NGVD 29 vertical datum was used for the design and construction of this segment. A survey to determine the conversion between NGVD29 and NAVD88 datums has not been completed as required in *ER 1110-2-8160 Policies for Referencing Project Evaluation Grades to Nationwide Vertical Datums*

4.5 Design Criterial Review Conclusions

Based on the findings of the design criteria review, each feature and the overall system appear to be able to function as originally authorized.

PART 5 - INSPECTION FINDINGS AND EVALUATIONS

The PI was conducted on 22 July 2020. Table 5-1 shows the key team members and the role each assumed during the PI. The inspection team lead was Mr. Michael Franssen.

Title	Name
Local Sponsor Representative (NCFCWCD)	Jeremy Sarrow
Civil/Team Lead (USACE Walla Walla District)	Michael Franssen, PE
Geotechnical/LSPM (USACE San Francisco District)	John Conway, PG
Civil Technician (USACE Walla Walla District)	Nathan DeLannoy

5.1 Inspection Summary

An overall summary of the PI ratings is shown in Table 5-2. Specific detailed related to acceptable, minimally acceptable, and unacceptable rated items are discussed in the subsequent sections.

5.2 General Items for All Flood Damage Reduction Segments/Systems

A summary of the rated items contained in the checklist titled "General Items for All Flood Damage Reduction Segments/Systems" is shown in Table 5-2. The following subsections provide additional detail on these items.

5.2.1 Operation and Maintenance Manuals

The operation and maintenance (O&M) manual for the Napa River / Napa Creek Flood Protection Project was made final in April 2018 by USACE Sacramento District and provided to NCFCWCD. The Hatt to 1st Street Floodwall System is a component of the Project.

5.2.2 Emergency Supplies and Equipment

NCFCWCD maintains a supply of empty sandbags, stockpile sand, chain saws, various hand tools, and other emergency supplies at the maintenance yard located on 933 Water Street in Napa, CA. The majority of sand that would be used for sands bags is stored at 770 Jackson Street in Napa, CA. Both of these locations are within 1.5 miles of the Levees. NCFCWCD has emergency contracts with general contractors when emergency services are needed. NCFCWCD informed the inspection team that the location on 933 Water Street may be bought out or leased to an external organization in the near future.

5.2.3 Flood Preparedness and Training

NCFCWCD has developed a flood emergency operation plan. Annual flood fight training program is conducted by the California Department of Water Resources at the Napa Sheriff's Department each fall. NCFCWCD has previously attended the USACE San Francisco District's Levee Owner Workshop in Sausalito, CA.

5.3 Concrete Floodwall

A summary of the rated items contained in the checklist titled "Floodwalls" is shown in Table 5-2. The following subsections provide additional detail on these items. Items listed as non-applicable (NA) in Table 5-2 are not included in the following paragraphs.

Category	Table 5-2: PI Rated Summary Rated Item	Rating ¹
General Items for All	1. Operation and Maintenance Manuals	А
Flood Damage Reduction	2. Emergency Supplies and Equipment	А
Segments/Systems	3. Flood Preparedness and Training	А
Floodwalls	1. Non-Compliant Vegetation Growth	А
	2. Encroachments	А
	3. Closure Structures (Stop Log Closures and Gates)	А
	4. Concrete Surfaces	А
	5. Tilting, Sliding or Settlement of Concrete Structures	А
	6. Foundation of Concrete Structures	А
	7. Monolith Joints	А
	8. Underseepage Relief Wells/Toe Drainage Systems	А
	9. Seepage	А
Interior Drainage System	1. Vegetation and Obstructions	М
	2. Encroachments	А
	3. Ponding Areas	NA
	4. Fencing and Gates	NA
	5. Concrete Surfaces	А
	6. Tilting, Sliding or Settlement of Concrete and Sheet Pile Structures	А
	7. Foundation of Concrete Structures	А
	8. Monolith Joints	А
	9. Culvert/Discharge Pipes	А
	10. Sluice/Slide Gates	NA
	11. Flap Gates/Flap Valves/Pinch Valves	А
	12. Trash Racks	NA
	13. Other Metallic Items	NA
	14. Riprap Revetments of Inlet/ Discharge Areas	NA
	15. Revetments other than Riprap	NA

 Table 5-2: PI Rated Summary

¹Note: Acceptable (A), Minimally Acceptable (M), Unacceptable (U), Not Applicable (NA)

5.3.1 Non-Compliant Vegetation Growth

This item was rated "acceptable". The floodwall project is maintained very well with only minor grass and small plant type vegetation noted in the riprap observed during the inspection.

5.3.2 Encroachments

This item was rated "acceptable". Access to a city dock on the river side and landscape anchors in the wall were both noted during the inspection. The anchors support ivy plants along the base of the upper wall which were installed during construction.

5.3.3 Closure Structures

This item was rated "acceptable". No action required at this time

5.3.4 Concrete Surfaces

This item was rated "acceptable". Spalling was observed on concrete floor. Minor spall has no bearing on the integrity of the floodwall.

5.3.5 Tilting, Sliding or Settlement of Concrete Structures

This item was rated "acceptable". No tilting, sliding, or settlement of the concrete floodwall was observed during the PI.

5.3.6 Foundation of Concrete Structures

This item was rated "acceptable". No foundation concerns were observed during the PI.

5.3.7 Monolith Joints

This item was rated "acceptable". Expansion and contraction joints were in good condition.

5.3.8 Underseepage Relief Wells/ Toe Drainage Systems

This item was rated "acceptable". The drain system was in good condition with no signs of corrosion, deterioration or any blockages to prevent water from landside floodwall to Napa River.

5.3.9 Seepage

This item was rated "acceptable". No seepage concerns were observed during the PI.

5.4 Interior Drainage System

A summary of the rated items contained in the checklist titled "Interior Drainage System" is shown in Table 5-2. The following subsections provide additional detail on these items. Items listed as non-applicable (NA) in Table 5-2 are not included in the following paragraphs.

5.4.1 Vegetation and Obstructions

This item was rated "minimally acceptable". Plantings that were observed on the PI were part of the original construction contract of the levee and have minimal risk the integrity of the floodwall. Grasses and small plants are present in the riprap at the toe of the floodwall. This has been removed in the past and should be monitored and controlled to prevent establishment of trees.

5.4.2 Encroachments

This item was rated "acceptable". All landside structures have been approved and pose no threat to the floodwall.

25 FOR OFFICIAL USE ONLY

5.4.3 Concrete Surfaces

This item was rated "acceptable".

5.4.4 Tilting, Sliding or Settlement of Concrete and Sheet Pile Structures

This item was rated "acceptable". No tilting, sliding or settlement of concrete floodwall was observed during PI.

5.4.5 Foundation of Concrete Structures

This item was rated "acceptable". No foundation concerns were observed during the PI.

5.4.6 Monolith Joints

This item was rated "acceptable". No monolith concerns were observed during the PI.

5.4.7 Culverts/ Discharge Pipes

This item was rated "acceptable". No culvert obstructions, breaks or cracks were observed during the PI.

5.4.8 Flap Gates/ Flap Valves/ Pinch Valves

This item was rated "acceptable". Sponsor indicates the flap gates and pinch valves are exercised twice a year. Gates all appeared to be in good order during the inspection.

PART 6 - CONCLUSIONS AND RECOMMENDATIONS

This section summarizes items that received either "minimally acceptable" or "unacceptable" ratings for each feature of the Hatt to 1st Street Floodwall System, and it includes the recommended actions for each of these items. A discussion of levee safety issues and a summary of the needs related to the design criteria review follow the inspection recommendations.

7.1 Recommendations

7.1.1 General Items for All Flood Damage Reduction Segments/Systems

All of the General Items for All Flood Damage Reduction Segments/Systems items received an "acceptable" rating.

7.1.2 Concrete Floodwall

All of the Concrete Floodwall items received an "acceptable" rating.

7.1.3 Interior Drainage System

The only item that received a minimally and/or unacceptable rating was Vegetation and Obstructions, which received a rating of "minimally acceptable". Plantings that were observed on the PI were part of the original construction contract of the levee and have minimal risk to the integrity of the floodwall. Grasses and small plants are present in the riprap at the toe of the floodwall. This has been removed in the past and should be monitored and controlled to prevent establishment of trees.

7.2 Rating

The overall rating of the Hatt to 1st Street Floodwall System is "minimally acceptable".

7.3 Future Periodic Inspection

The next PI of the Hatt to 1st Street Floodwall System should be at 5 years from the levee screening to take place in 2021.

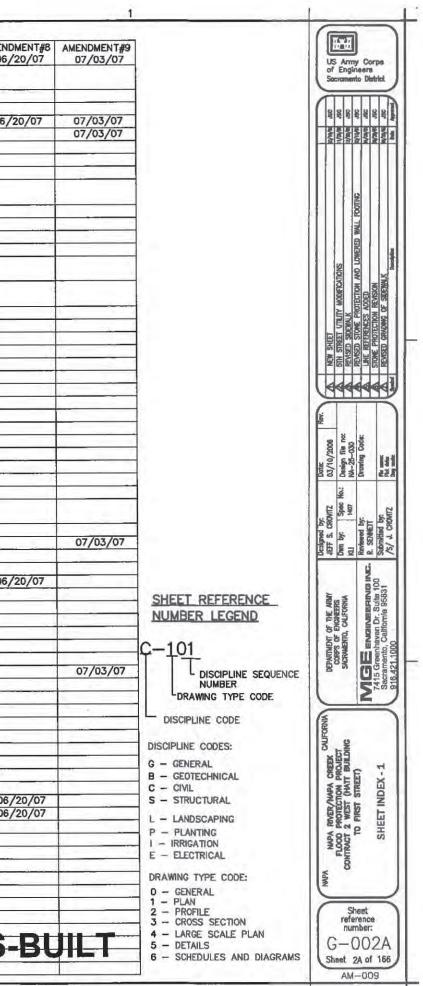
(THIS PAGE INTENTIONALLY LEFT BLANK)

Appendix A

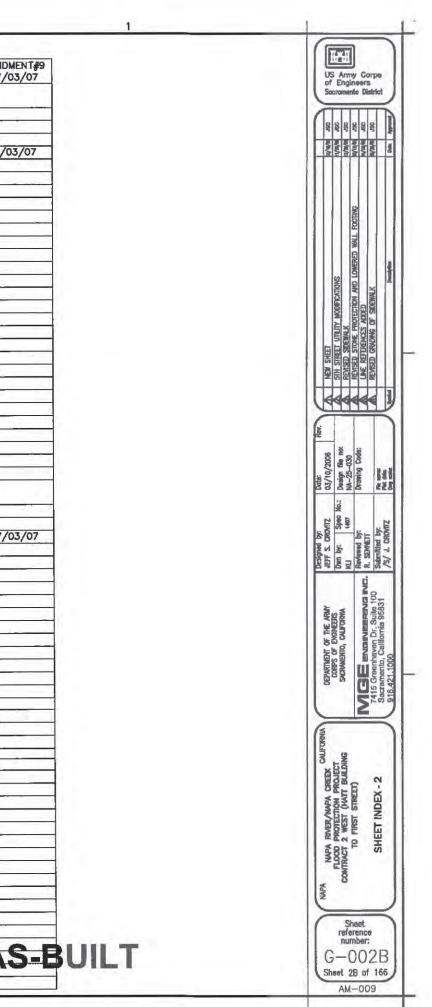
Pertinent Plates and Drawings

US Army Corps of Engineers Sacramento District

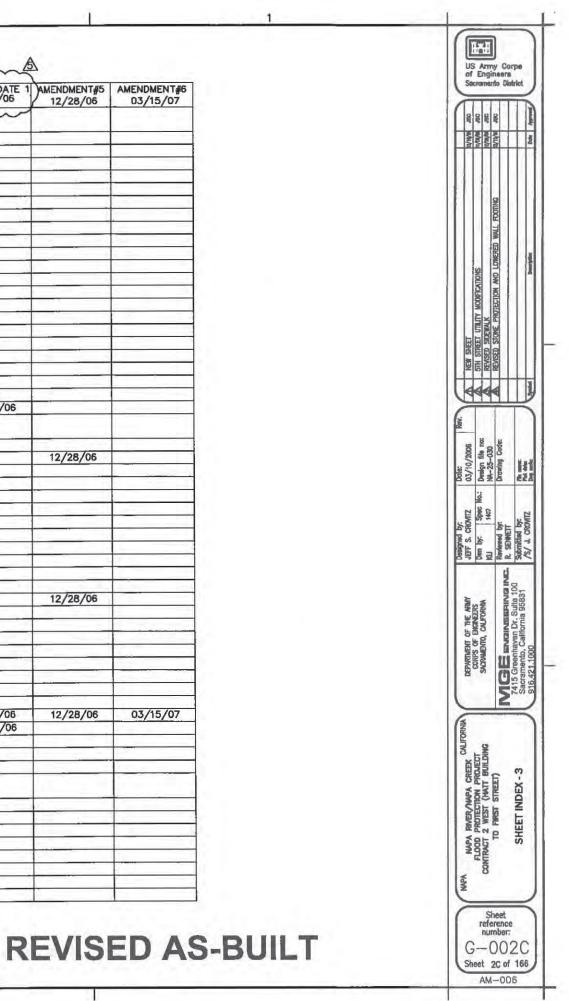
NAPA RIVER / NAPA CREEK FLOOD PROTECTION PROJECT CONTRACT 2 WEST (BETWEEN HATT BUILDING & FIRST STREET)


NAPA **CALIFORNIA**

AS-BUILT CONTRACT NO.: W91238-05-R0024

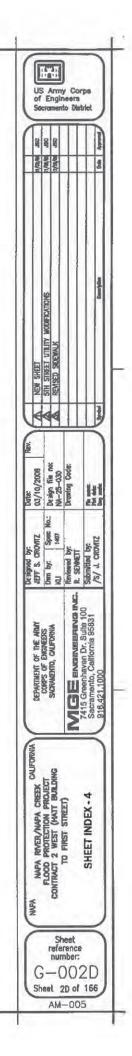

Aptroved Approved This project was designed by the Sacramento /s/ THOWAS E. TRANNER 04/27/2005 District of the U.S. Army Corps of Engineer.		Design File No: COL RONALD N. UGHT Project documents within the scope of their Na-25-030 ratio content and required by ER 1110-1-B152
Drawing Code:	Designed by Drown By JEFF S. CRONTZ KERWIN G. LI	Spec No. D. 1407 No. No.
Approved Functional Adequacy /S/ RONALD F. MULLER 04/27/2005 Chief. Civil Design Br Date:	Prepared by MGE ENGINEERING INC.	7415 Greenhaven Dr. Sulte 100 Sacramento, California 95831
NAPA RIVER/NAPA CREEK CAUFORNIA FLOOD PROTECTION PROJECT	CONTRACT 2 WEST (HATT SUILDING TO FIRST STREET)	TITLE SHEET

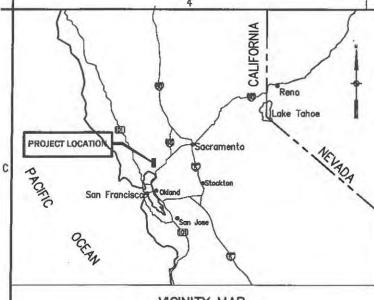
	DRAWING INDEX		and the second second				A			
REF#	TITLE	SHEET#	AMENDMENT#3	VALUE ENGINEERING	AMENDMENT#4	VE - UPDATE 1	AMENDMENT#5	AMENDMENT#6	AMENDMENT#7	
	GENERAL		05/30/06	09/06/06	11/09/06	12/22/06) 12/28/06	03/15/07	04/06/07	06/2
G-001	TITLE SHEET	-		00/00/00	1					
6-002	SHEET INDEX NOT USED	1		09/06/06				2		
G-002A	SHEET INDEX - 1	2A	05/30/06	09/06/06	11/09/06	06/19/07	12/28/06	03/15/07	04/06/07	06/2
G-002B	SHEET INDEX - 2	28	05/30/06	09/06/06	11/09/06	06/19/07	12/28/06	03/15/07	04/06/07	
G-002C	SHEET INDEX - 3	2C	05/30/06	2	11/09/06	06/19/07	12/28/06	03/15/07		
G-002D	SHEET INDEX – 4 ABBREVIATIONS	2D			11/09/06		12/20/00	() and		
G-003 G-004	ABBREVIATIONS PROJECT LOCATIONS, VICINITY MAP, SURVEY CONTROL POINTS AND SURVEY NOTES	3		IT is a set						
G-005	GENERAL NOTES	5		1						
G-006	DISPOSAL SITES AND HAUL ROUTE	6					1			-
G-007	TYPICAL PAVEMENT SECTIONS	7					10/09/05			
G-008	GEOTECHNICAL EXPLORATION BORING LOCATION PLAN	8		09/06/06			12/28/06			
B-301	UNIFIED SOIL CLASSIFICATION SYSTEM, STANDARD PENETROMETER DESCRIPTIVE DATA, LEGEND & NOTES	9								
B-302	LOG OF EXPLORATION, 2F-29 AND 2F-30	10				1				1
B-303	LOG OF EXPLORATIONS, 2F-90-29 AND CPT-94-2	11				Sec				
8-304	LOG OF EXPLORATIONS, 2F-94-14 AND 2F-94-15	12	C DE SERVI							
B-305	LOG OF EXPLORATION, 2F-03-03 AND 2F-03-04	13					12			-
B-306 B-307	LOG OF EXPLORATIONS, 2F-03-05	14		· ·····						
B-307 B-308	LOG OF EXPLORATIONS, 2F-03-06 LOG OF EXPLORATIONS, 2F-03-07	15 16					1.00	C		1
B-309	LOG OF EXPLORATIONS, 2F-03-08	17					1		1	
B-310	LOG OF EXPLORATIONS, 2F-04-51	18								1
B-311	LOG OF EXPLORATIONS, CPT-04-1	19						· · · · · · · · · · · · · · · · · · ·		-
B-312	LOG OF EXPLORATIONS, B3 AND B4 (1999)	20			1.	the state of the s				
B-313	GEOTECHNICAL PROFILE UNDER WALL NO. 1, STATIONS 0+00 TO 6+00	21		09/06/06		12/22/06				
B-314 B-315	GEOTECHNICAL PROFILE UNDER WALL NO. 1, STATIONS 6+00 TO 12+00 GEOTECHNICAL PROFILE UNDER WALL NO. 1,	22								1
0-010	STATIONS 12+00 TO 16+40.12	20		1					1	
_	CIVIL			1	1				1	
C-101	LAYOUT & PROMENADE GRADING PLAN NO. 1	24	05/30/06		11/09/06			1.5 2.5 S.C.	1.2.2.2.2	
C-101A	LAYOUT & PROMENADE GRADING PLAN NO. 1A	24A		09/06/06			12/28/06	03/15/07	1	1
C-101B	LAYOUT & PROMENADE GRADING PLAN NO. 1B	248		09/06/06						
C-102	LAYOUT & PROMENADE GRADING PLAN NO. 2	25	05/30/06	09/06/06	11/09/06			-		06/3
C-103	LAYOUT & PROMENADE GRADING PLAN NO. 3	26	05 /70 /00		11/09/06					00/
C-104 C-104A	UNDERGROUND UTILITY PLAN NO. 1 UNDERGROUND UTILITY PLAN NO. 1A	27 27A	05/30/06	09/06/06	11/03/00		12/28/06			1.000
C-1048	UNDERGROUND UTILITY PLAN NO. 18	27A 27B	1	09/06/06		02/01/07	10/20/00	1.		
C-105	UNDERGROUND UTILITY PLAN NO. 2	28	05/30/06	09/06/06						1
C-106	UNDERGROUND UTILITY PLAN NO. 3	29								
C-207	WALL & PROMENADE PROFILES NO. 1	30	05/30/06				in ins ins	07 45 107		
C-207A	WALL & PROMENADE PROFILES NO. 1A	30A		09/06/06			12/28/06	03/15/07		-
C-207B C-208	WALL & PROMENADE PROFILES NO. 1B WALL & PROMENADE PROFILES NO. 2	30B 31		09/06/06					1	
C-208	WALL & PROMENADE PROFILES NO. 2 WALL & PROMENADE PROFILES NO. 3	32			· · · · · · · · · · · · · · · · · · ·	1				
C-210	USACE / CHANNEL DEVELOPMENT MATCH LINE PROFILES	33								
C-311	TYPICAL CROSS SECTIONS NO. 1	34		09/06/06			12/28/06	03/15/07		
C-312	TYPICAL CROSS SECTIONS NO. 2	35		09/06/06		12/22/06				
C-313	TYPICAL_CROSS SECTIONS NO. 3	36		09/06/06		12/22/06				
C-314	TYPICAL CROSS SECTIONS NO. 4	37		09/06/06		02/01/07				1
C-315 C-316	TYPICAL CROSS SECTIONS NO. 5 TYPICAL CROSS SECTIONS NO. 6	<u>38</u> 39		09/06/06						06/
C-317	TYPICAL CROSS SECTIONS NO. 7	40					-		1	06/
C-318	TYPICAL SECTIONS AT VETERANS PARK	41		1 C						
C-419	DEMOLITION GENERAL PLAN AND NOTES	42		09/06/06						1
C-420	DEMOLITION PLAN NO. 1	43	05/30/06	an line line			10 /00 /00	-		
C-420A	DEMOLITION PLAN NO. 1A	43A	1997 B	09/06/06			12/28/06	-		
C-420B	DEMOLITION PLAN NO. 18 DEMOLITION PLAN NO. 2	43B 44		09/06/06		10 /00 /00	12/28/06	-	-	-
C-421 C-422	DEMOLITION PLAN NO. 2 DEMOLITION PLAN NO. 3	44		09/06/06		12/22/06				
C-423	DEMOLITION PLAN NO. 4	46		09/06/06		12/22/06	1			
C-424	DEMOLITION PLAN NO. 5	47	· · · · · ·							
C-425	DEMOLITION PLAN NO. 6	48	-			1		REVIS	SED 4	15-
C-426	DEMOLITION PLAN NO. 7	49 50	05/30/06		-					
C-427	DEMOLITION PLAN NO. 8									



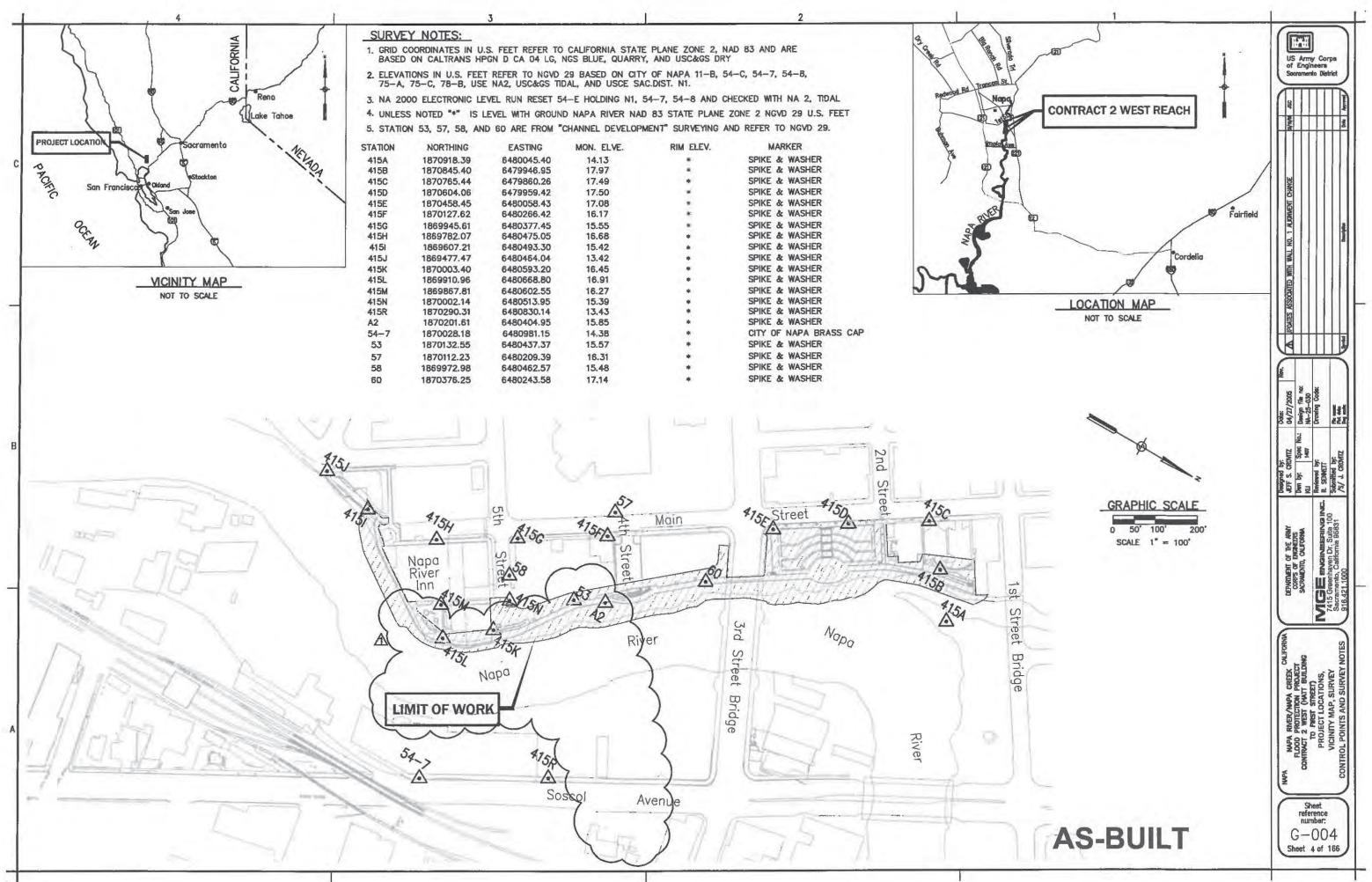
	DRAWING INDEX					A				
		1 Second	AMENDMENT#3	VALUE ENGINEERING	AMENDMENT#4	VE - UPDATE T	AMENDMENT#5	AMENDMENT#6	AMENDMENT#7	AMENDM
REF#	TITLE	SHEET#	05/30/06	09/06/06	11/09/06	12/22/06	12/28/06	03/15/07	04/06/07	07/0
	CIVIL		A second second			h				
C-428 C-429	ENLARGED LAYOUT NO. 1 ENLARGED LAYOUT NO. 2	51 52	05/30/06 05/30/06					-	04/06/07	-
C-430	ENLARGED CRADING PLAN NO. 1	53	05/30/06		11/09/06		a transmission			
C-430A		53A	1.1	09/06/06		02/01/07	12/28/06	03/15/07		07/0
C-430B C-430C		53B 53C		09/06/06		02/01/07				1
C-430D		53D		09/06/06		02/01/01		L	the second second	
C-431	ENLARGED GRADING PLAN NO. 2	54	05/30/06							
C-432 C-433	ENLARGED GRADING PLAN NO. 3 ENLARGED DIMENSION PLAN AT VETERANS PARK	55 56	05/30/06							-
C-434	CONSTRUCTION STAGING PLAN NO. 1	57	05/50/00					1		
C-435	CONSTRUCTION STAGING PLAN NO. 2	58			· · · · · · · · · · · · · · · · · · ·				1	-
C-436 C-437	CONSTRUCTION PHASING PLAN NO. 1 CONSTRUCTION PHASING PLAN NO. 2	59			-					-
C-438	EROSION CONTROL & BMP'S PLAN NO. 1	60 61	05/30/06		11/09/06			1		1
C-438A	EROSION CONTROL & BMP's PLAN NO. 1A	61A		09/06/06			12/28/06		1991 - 1991 - 1993 - 19	-
C-438B	EROSION CONTROL & BMP'S PLAN NO. 18	61B		09/06/06						1
C-439 C-540	EROSION CONTROL & BMP'S PLAN NO. 2 EROSION CONTROL & BMP'S STANDARD NOTES	62 63								1
C-541	EROSION CONTROL & BMP'S STANDARD DETAILS NO. 1	64							1	
C-542	EROSION CONTROL & BMP's STANDARD DETAILS NO. 2	65					-	1.2.2		
C-543 C-544	CONSTRUCTION DETAILS NO. 1 CONSTRUCTION DETAILS NO. 2	66 67								-
C-545	CONSTRUCTION DETAILS NO. 2	68	05/30/06							1
C-546	CONSTRUCTION DETAILS NO. 4	69	05/30/06)
C-547	TRENCH DRAIN DETAILS	70			11 /00 /00	·				-
C-648	CURVE & LINE TABLES MODIFIED CURVE & LINE TABLES (DELETED) NOT USED	71 71A			11/09/06 11/09/06			1		1
C-6488	CURVE & LINE TABLES (REVISED)	71B		09/06/06			12/28/06			1.2
1.1	STRUCTURAL								1	
S-100	GENERAL STRUCTURAL NOTES	72		09/06/06				· · · ·		
S-100	WALL NO. 1 - PLAN & ELEVATION NO. 1	73		03/00/00		Constant and of	1 The second			
S-101A	WALL NO. 1 - PLAN & ELEVATION NO. 1A	73A		09/06/06		03/22/07	12/28/06	03/15/07		07/
S-101B	WALL NO. 1 - PLAN & ELEVATION NO. 1B	73B		09/06/06		12/22/06 12/22/06				+
S-102 S-103	WALL NO. 1 - PLAN & ELEVATION NO. 2 WALL NO. 1 - PLAN & ELEVATION NO. 3	74		09/06/06		12/22/00			10.0	
S-104	WALL NO. 1 - PLAN & ELEVATION NO. 4	76		03/00/00				1		
S-105	WALL NO. 1 - PLAN & ELEVATION NO. 5	77								
S-106 S-107	WALL NO. 1 - PLAN & ELEVATION NO. 6 WALL NO. 1 - TYPE A WALL DETAILS NO. 1	78	DE /20 /00			12/22/06				-
S-107A	WALL NO. 1 - TYPE A WALL DETAILS NO. 1	79 79A	05/30/06	09/06/06		12/22/06		124		
S-107B	WALL NO. 1 - TYPE A WALL DETAILS NO. 18	798		09/06/06			La Carna a la C			
S-108	WALL NO. 1 - TYPE A WALL DETAILS NO. 2	80		09/06/06		02/01/07	12/28/06			-
S-108A S-108B	WALL NO. 1 - TYPE A WALL DETAILS NO. 2A WALL NO. 1 - TYPE A WALL DETAILS NO. 2B	80A 80B		09/06/06		12/22/06				-
S-1086	WALL NO. 1 - TYPE A WALL DETAILS NO. 2D	800		09/06/06						
S-109	WALL NO. 1 - TYPE B WALL DETAILS	81	05/30/06							
S-110 S-110A	WALL NO. 1 - TYPE C WALL DETAILS NO. 1 WALL NO. 1 - TYPE C WALL DETAILS NO. 1A	82	05/30/06							-
S-110A	WALL NO. 1 - TYPE C WALL DETAILS NO. 1A	82A 83		09/06/06					1. A. A. A. A.	1
S-112	WALL NO. 1 - TYPE D WALL DETAILS NO. 1	84	1			-				-
S-113 S-114	WALL NO. 1 - TYPE D WALL DETAILS NO. 2 WALL NO. 1 - TYPE D WALL DETAILS NO. 3	85					-			+
S-114 S-115	WALL NO. 1 - TYPE D WALL DETAILS NO. 4	86 87								1
S-116	WALL NO. 1 - MISCELLANEOUS DETAILS	88							1997 - C. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	
S-117	WALL NO. 2 - GENERAL PLAN	89		09/06/06				1		-
S-118 S-119	WALL NO. 3 - GENERAL PLAN WALL NO. 4 - GENERAL PLAN	90								-
S-119 S-120	WALL NO. 5 - GENERAL PLAN	91 92					1			1
S-121	WALL NO. 6 - PLAN AND TYPICAL SECTION	93	05/30/06							
S-121A	MISCELLANEOUS WALL DETAILS	93A	05/30/06					-		-
S-122	WALL NO. 6 - DEVELOPED ELEVATION	94	1							+
S-123 5-124	RETAINING WALL NO.'S 2 - 6 TYPICAL DETAILS RAMP/STAIR ACCESS NO. 1 - PLAN & FOUNDATION LAYOUT NOT USED	95			1.2.2		-			1
S-124A	RAMP/STAIR ACCESS NO. 1 - PLAN LAYOUT	96A						DEV	ICED	
S-1248	RAMP/STAIR ACCESS NO. 1 - FOUNDATION LAYOUT	96B						KEV	ISED	4 A
S-125 S-126	RAMP/STAIR ACCESS NO. 1 - DEVELOPED ELEVATIONS	97						1		-
	RAMP/STAIR ACCESS NO. 1 - SECTIONS AND DETAILS	98								

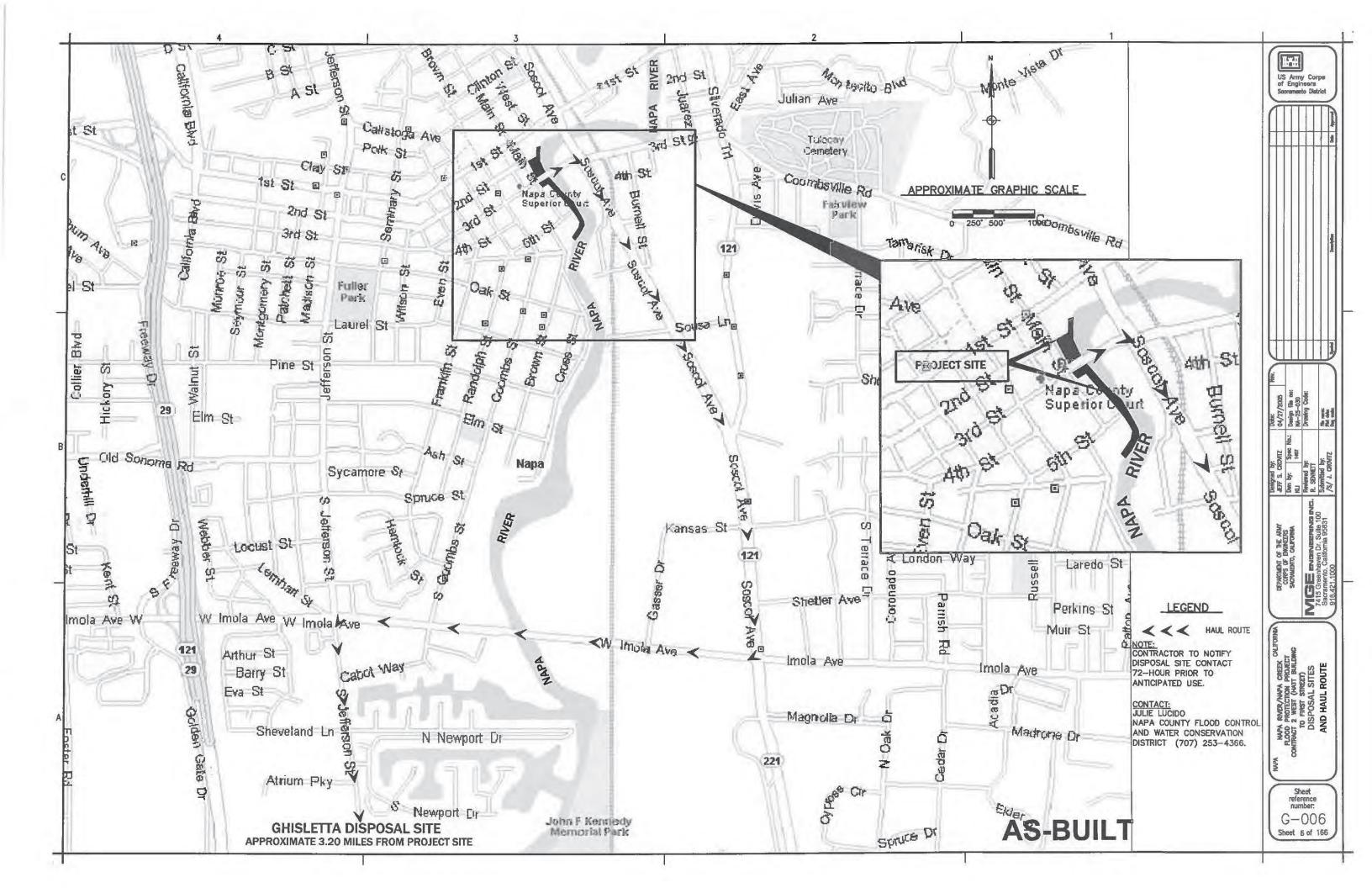
DRAWING	INDEX

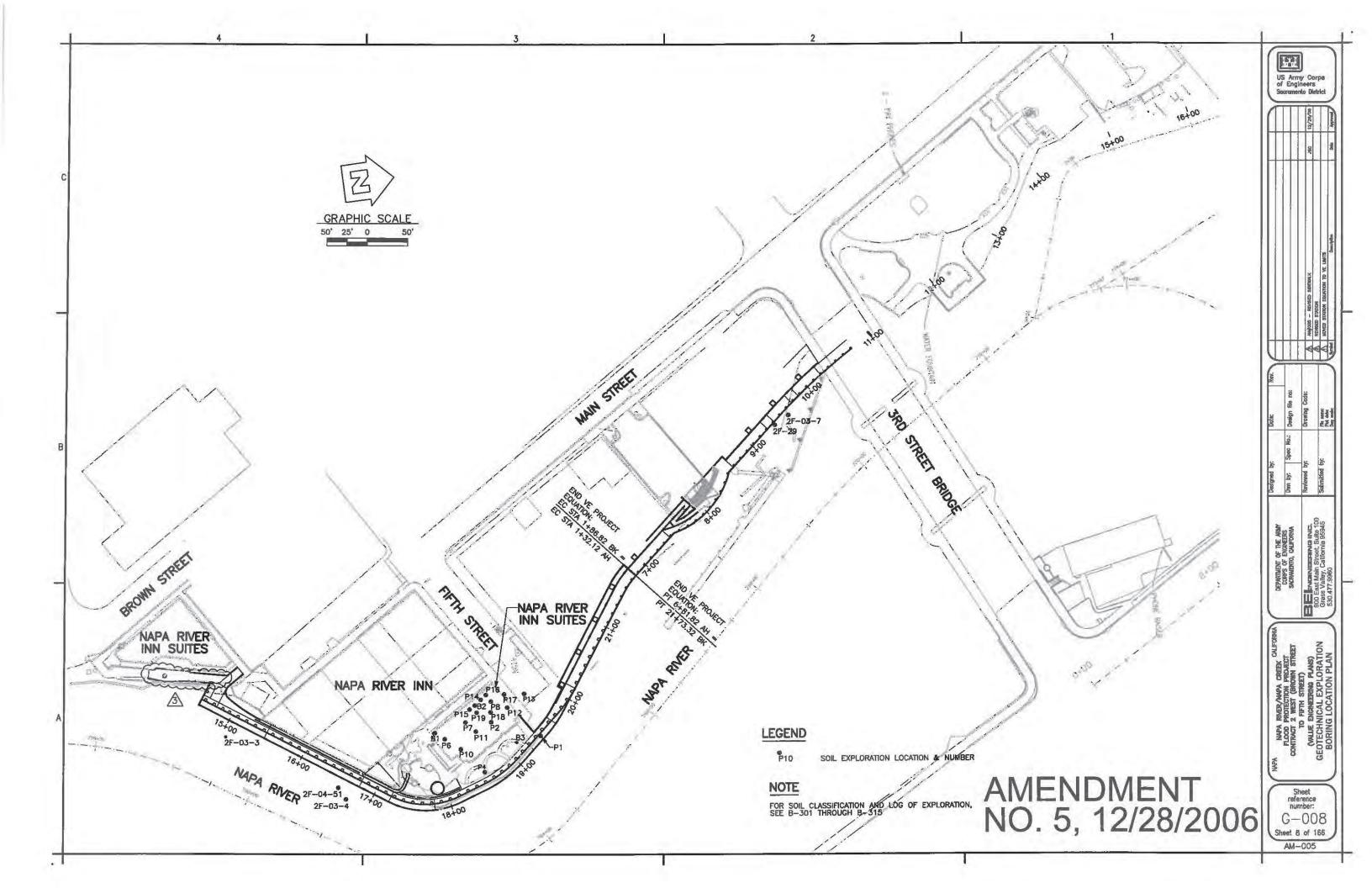

REF#	ΠΠ.Ε	SHEET#	AMENDMENT#1 12/23/05	AMENDMENT#2 03/10/06	AMENDMENT#3 05/30/06	VALUE ENGINEERING 09/06/06	AMENDMENT#4 (11/09/06	VE - UPDATE 1 12/22/06	AMENDMENT#5	AMENDM 03/1
	STRUCTURAL		12/20/00	00/10/00				m		
S-127	RAMP/STAIR ACCESS NO. 2 - PLAN & FOUNDATION LAYOUT	99								
S-128	RAMP/STAIR ACCESS NO. 2 - DEVELOPED ELEVATIONS	100					1			
S-129	RAMP/STAIR ACCESS NO. 2 - SECTIONS AND DETAILS	101								
S-130	RAMP/STAIR ACCESS NO. 3 - PLAN & FOUNDATION LAYOUT	102								
S-131 S-132	RAMP/STAIR ACCESS NO. 3 - DEVELOPED ELEVATIONS RAMP/STAIR ACCESS NO. 3 - SECTIONS AND DETAILS	103			- 10-					
S-132	RAMP/STAIR ACCESS - TYPICAL DETAILS NO. 1	104								
S-134	RAMP/STAIR ACCESS - TYPICAL DETAILS NO. 1	105								1
S-135	VETERANS PARK - PLAN	107								
S-136	VETERANS PARK - VP WALL NO. 1 DETAILS	108							-	(
S-137	VETERANS PARK - VP WALL NO. 10 DETAILS	109								
S-138	VETERANS PARK - VP WALL NO. 2 DETAILS	110								
S-139 S-140	VETERANS PARK - VP WALL NO. 3 AND NO. 4 DETAILS VETERANS PARK - VP WALLS SECTIONS AND DETAILS	111								-
S-141	VETERANS PARK - VP WALL MISCELLANEOUS DETAILS NO. 1	112					1.10			1
S-142	VETERANS PARK - VP WALL MISCELLANEOUS DETAILS NO. 2	114		-				-		
S-143	VETERANS PARK - MISCELLANEOUS DETAILS NO. 1	115								
5-144	VETERANS PARK - MISCELLANEOUS DETAILS NO. 2	116						12 - C		
S-145	VETERANS PARK - MISCELLANEOUS DETAILS NO. 3	117								
S-146	DOWNTOWN JOE'S RETAINING WALL PLAN AND ELEVATION	118			05/30/06					
S-147	DOWNTOWN JOE'S RETAINING WALL SECTION AND DETAILS	119				09/06/06		12/22/06		-
S-148	LIMITS OF PAYMENT FOR EXCAVATION	120				09/06/06		12/22/00		
	LANDSCAPE	10 mar - 11		and the second						
L-101	LANDSCAPE LAYOUT PLAN NO. 1	121		03/10/06						1
L-101A	LANDSCAPE LAYOUT PLAN NO. 1A	121A				09/06/06			12/28/06	
L-101B	LANDSCAPE LAYOUT PLAN NO. 1B	121B				09/06/06				-
L-102 L-103	LANDSCAPE LAYOUT PLAN NO. 2 LANDSCAPE LAYOUT PLAN NO. 3	122		03/10/06		09/06/06				
L-104	LANDSCAPE LAYOUT PLAN NO. 5	123		03/10/06	1	09/00/00			1	1
L-105	LANDSCAPE LAYOUT PLAN NO. 5	125						C	17-17-18	
L-106	LANDSCAPE LAYOUT PLAN NO. 6	126						1		
L-507	PAVING AND MISCELLANEOUS DETAILS	127				09/06/06		A CONTRACTOR OF A	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
L-508	PILASTER DETAILS	128		03/10/06		09/06/06				
L-509	VETERANS PARK DETAILS	129								
L-510	BARRIER RAIL DETAILS	130	in the second	03/10/06		09/06/06			12/28/06	
L-511 L-512	GENERAL HANDRAIL DETAILS AND RAMP AT 0+00 HANDRAILS AT 5TH STREET LANDING	131		03/10/06		09/06/06			12/20/00	
L-512	HANDRAILS AT 4TH STREET LANDING NO. 1	133		03/10/08					-	1.
L-514	HANDRAILS AT 4TH STREET LANDING NO. 2	134								
L-515	HANDRAILS AT VETERANS PARK	135				100 million (1990)	1. A		· · · · · · · · · · · · · · · · · · ·	in the second
L-516	HANDRAILS AT 1ST STREET LANDING	136								
L-517	HATT PATIO RECONSTRUCTION NO. 1 NOT USED	137-		03/10/06						
L 518	HATT TAND ACCOUNT NO. 2	138		03/10/06						-
L-519 L-519A	FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 1 FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 1A	139		03/10/06		00/05/05		12/22/06	12/28/06	03/1
L-519A	FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 1A	139A 139B			- 14 /	09/06/06		12/22/06	12/20/00	00/1
L-520	FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 2	1396		03/10/06		09/00/00		12/22/00	1	
L-521	FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 3	141		03/10/06					1	1000
L-522	FLOOD WALL NO. 1 FORM LINER LAYOUT NO. 4	142		03/10/06					1	1
	PLANTING									
										-
2-101	LANDSCAPE LAYOUT PLAN NO.1	143		07 40 100		1			1	-
P-102 P-103	LANDSCAPE LAYOUT PLAN NO.2 LANDSCAPE LAYOUT PLAN NO.3	144		03/10/06						-
-103	LANDSCAPE LAYOUT PLAN NO.3	145 146		03/10/06		1			1	1
-104	LANDSCAPE LAYOUT PLAN NO.5	146							1	1
-105	LANDSCAPE LAYOUT PLAN NO.5	147	and the second second			1				1000
-507	PLANTING AND VINE PIT DETAILS	149				in the second				
-508	PROMENADE TREE PIT DETAILS	150								

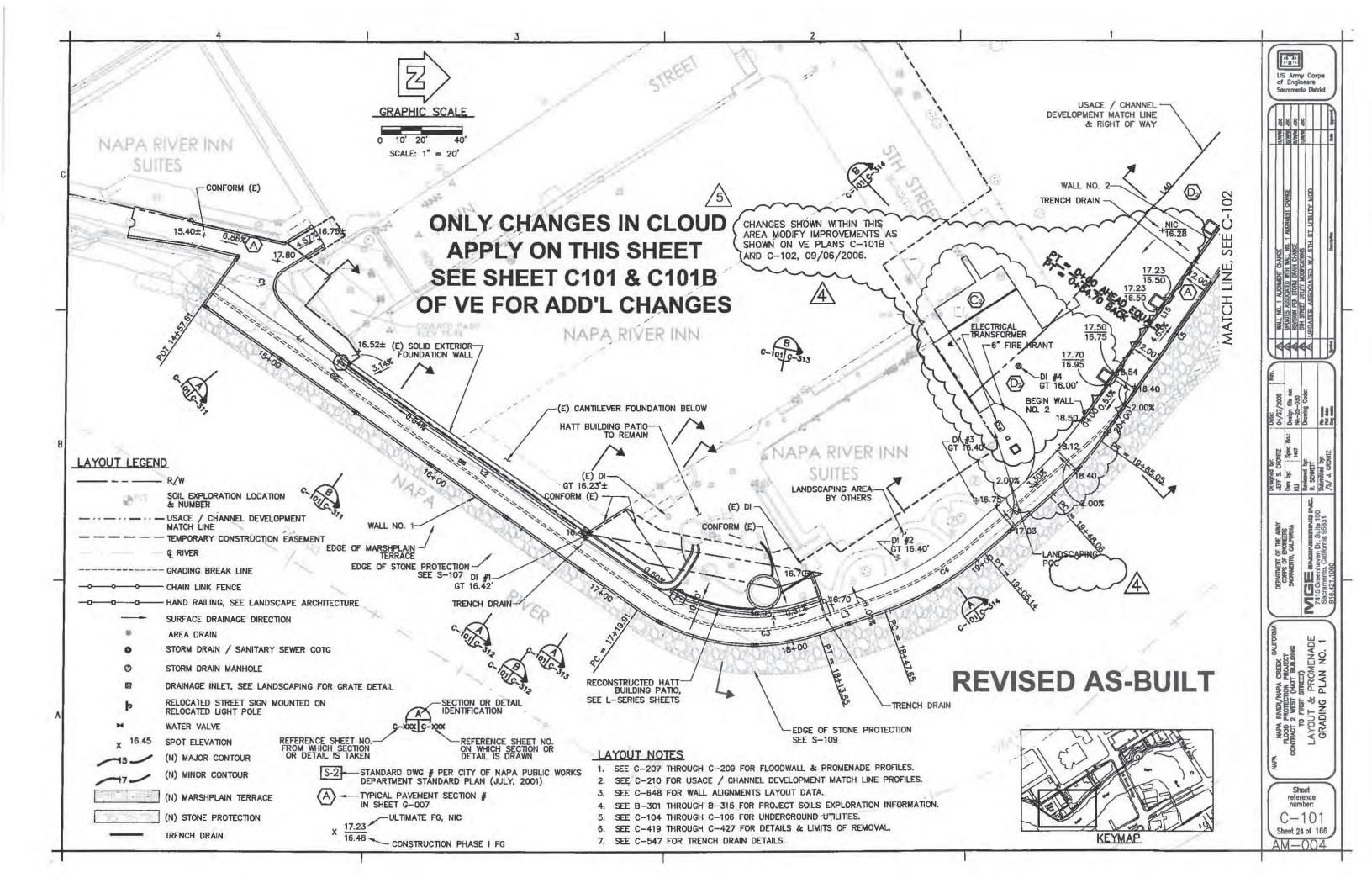

DRAWING INDEX

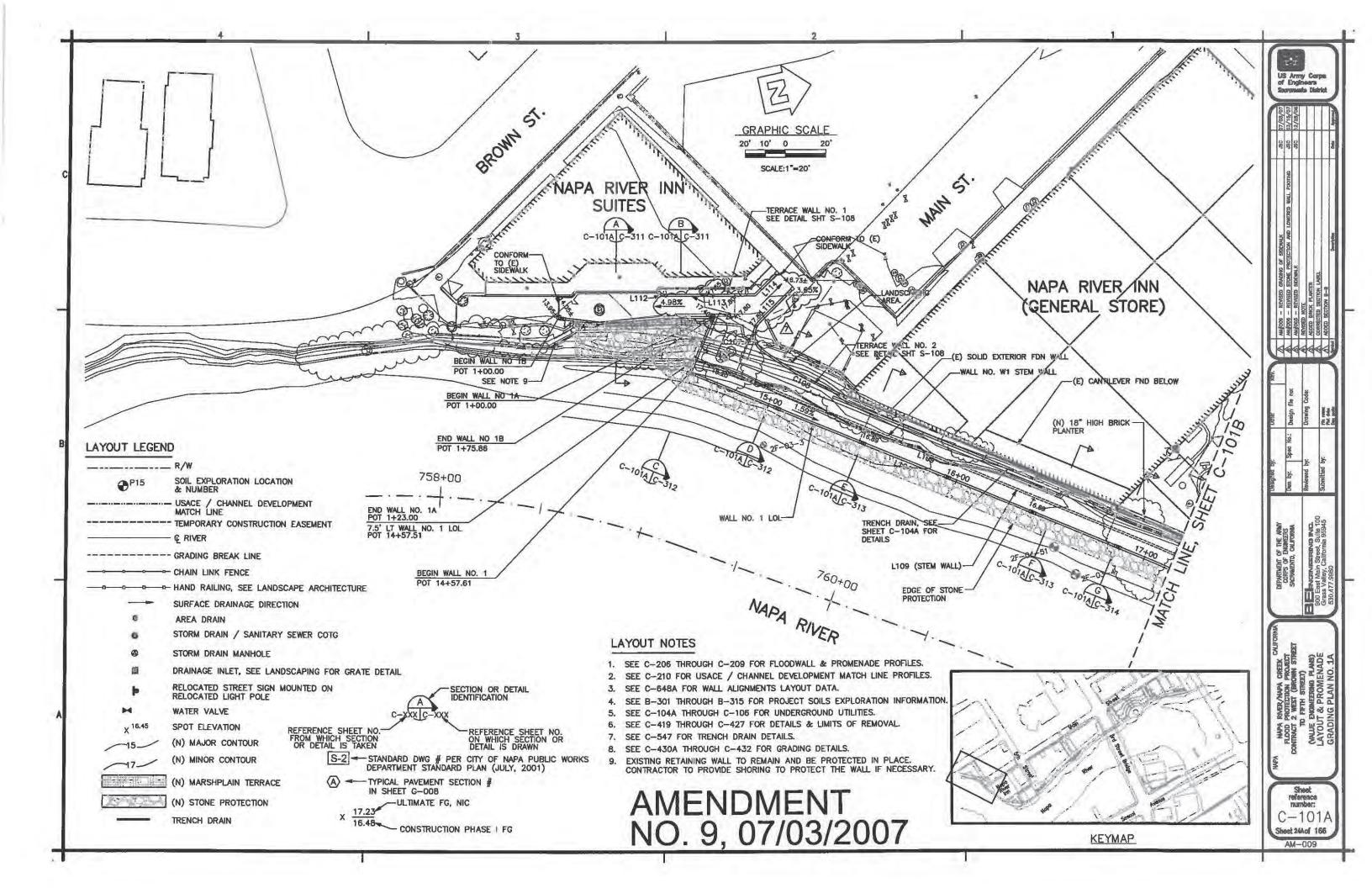
REF#	TITLE	SHEET#	AMENDMENT#1 12/23/05	AMENDMENT#2 03/10/06	AMENDMENT#3 05/30/06	VALUE ENGINEERING 09/06/06	AMENDMENT#4 11/09/06	AMENDMENT#5 12/28/06	AMENDMENT#0 03/02/07
	IRRIGATION							1000	1000
1-101	IRRIGATION LAYOUT PLAN NO. 1	151	1	No.			nus mes		· · · · · · · · · · · · · · · · · · ·
I-102	IRRIGATION LAYOUT PLAN NO. 2	152	s 67	03/10/06			12/11/06		
I-103	IRRIGATION LAYOUT PLAN NO. 3	153	(t)	03/10/06					
1-104	IRRIGATION LAYOUT PLAN NO. 4	154	1						
I-105	IRRIGATION LAYOUT PLAN NO. 5	155	h						
I-106	IRRIGATION LAYOUT PLAN NO. 6	156	1						
1-507	NAPA STANDARD IRRIGATION DETAILS	157							
1-508	MISCELLANEOUS IRRIGATION DETAILS	158	1						
	ELECTRICAL							1.2	
E-101	ELECTRICAL LAYOUT PLAN NO. 1	159		03/10/06					-
E-101A	ELECTRICAL LAYOUT PLAN NO. 1A	159A	-		1	09/06/06		12/28/06	100 million (1997)
E-101B	ELECTRICAL LAYOUT PLAN NO. 1B	1598				09/06/06	Q		
E-102	ELECTRICAL LAYOUT PLAN NO. 2	160		03/10/06		09/06/06	12/11/06		
E-103	ELECTRICAL LAYOUT PLAN NO. 3	161		03/10/06		09/06/06			
E-104	ELECTRICAL LAYOUT PLAN NO. 4	162						· · · · · · · · · · · · · · · · · · ·	
E-105	ELECTRICAL LAYOUT PLAN NO. 5	163							1.
E-106	ELECTRICAL LAYOUT PLAN NO. 6	164				E			
E-507	ELECTRICAL DETAILS NO.1	165				1			
E-508	ELECTRICAL DETAILS NO.2	166		03/10/06					

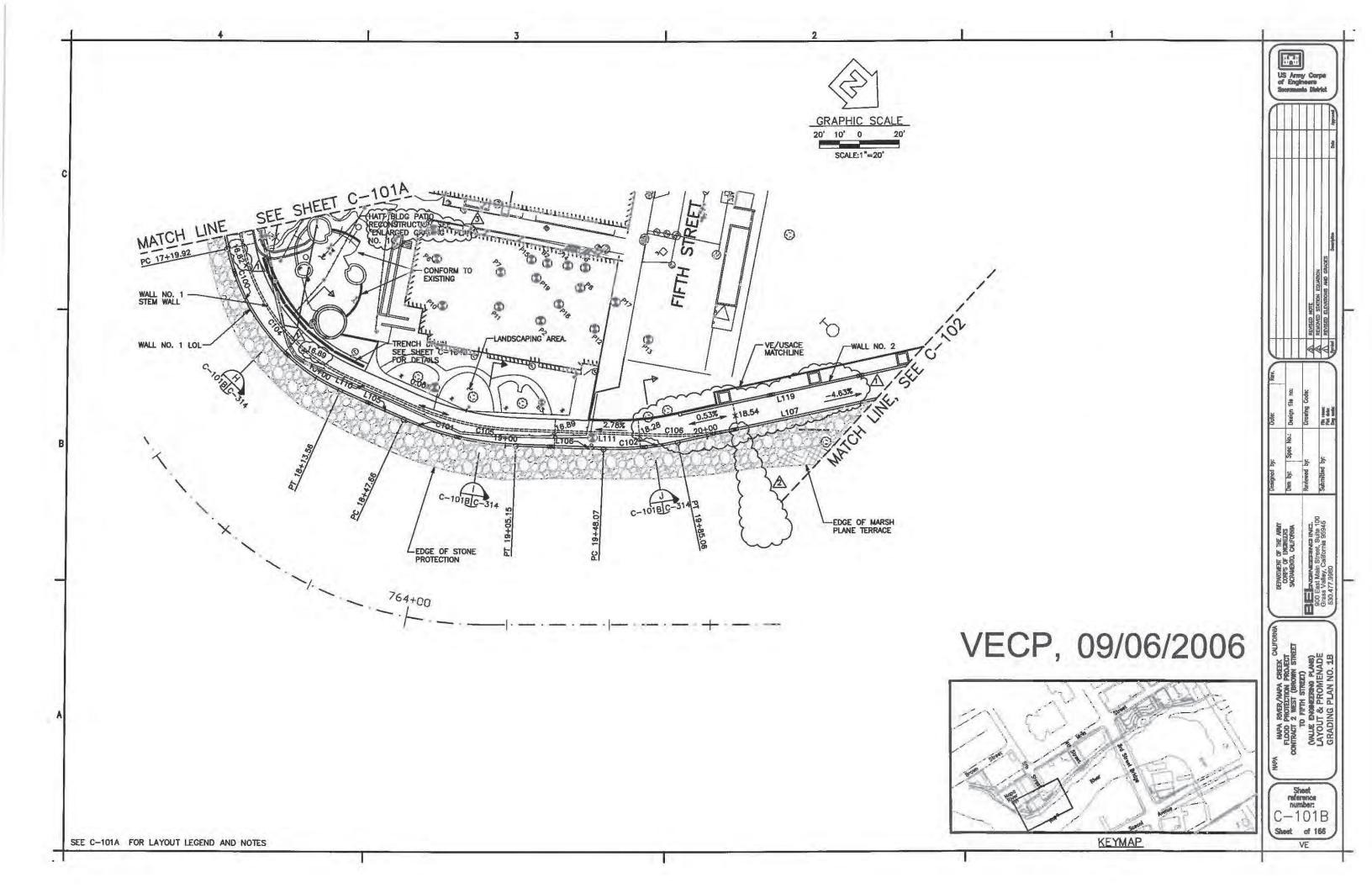

3

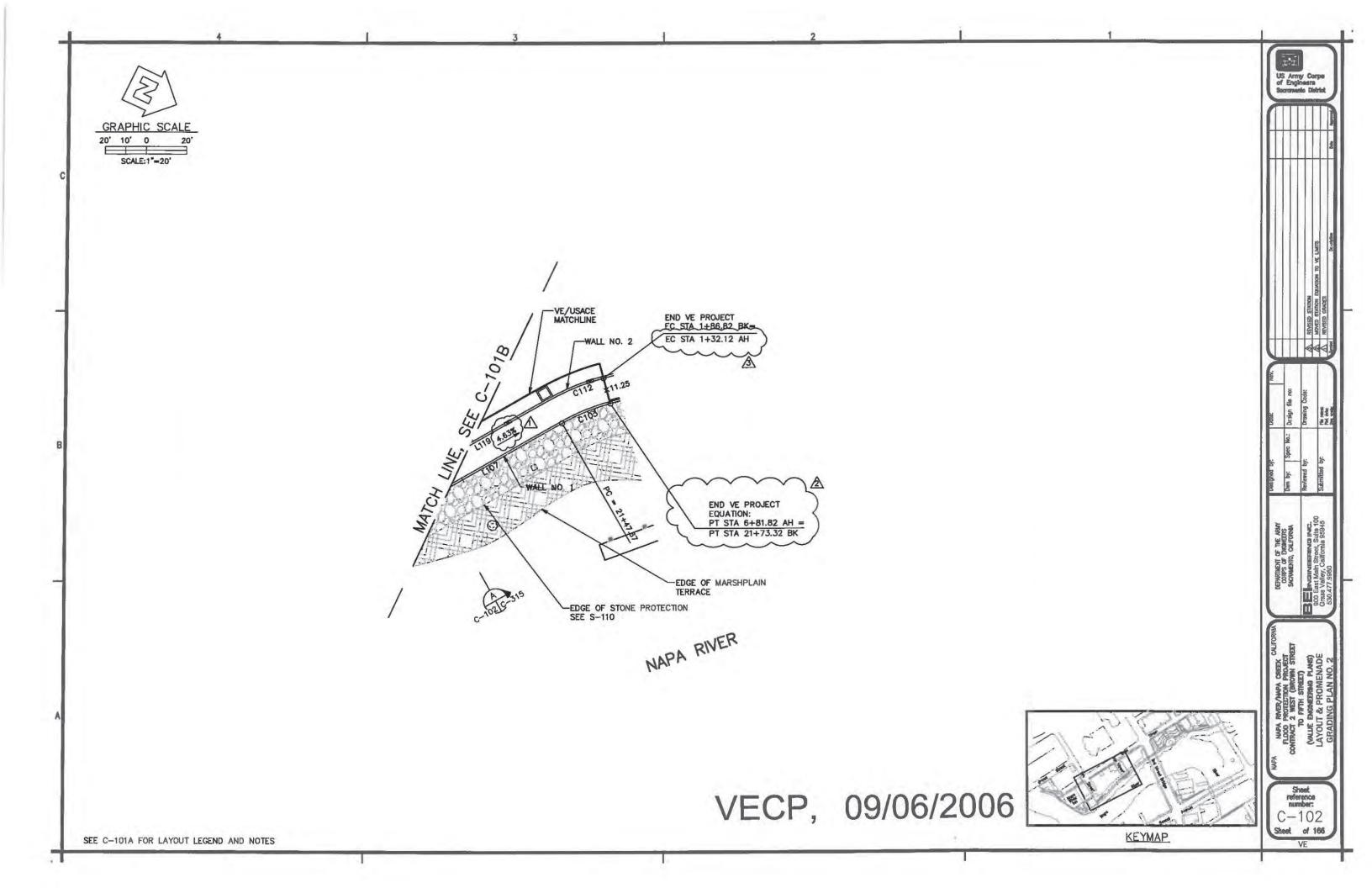


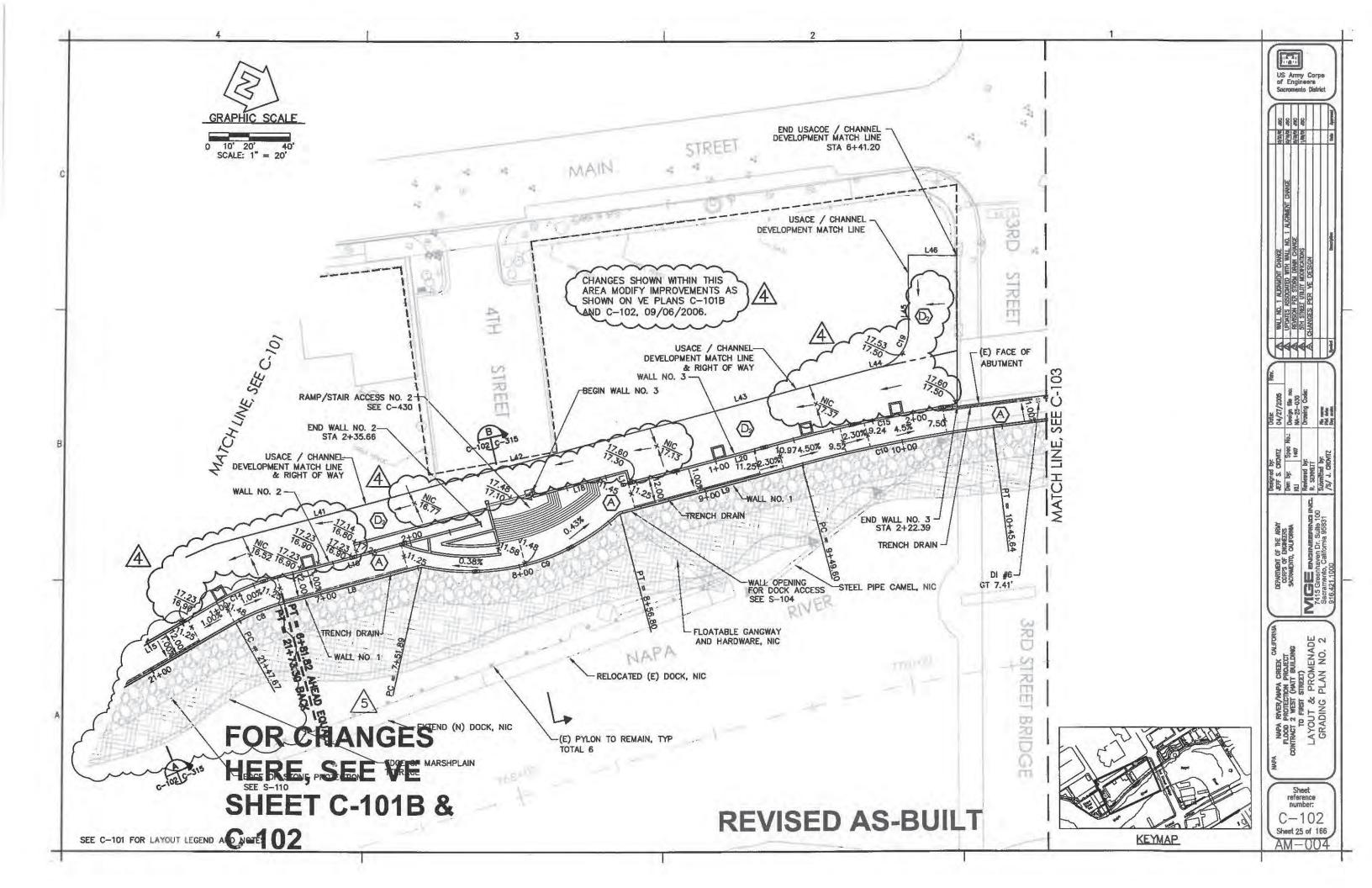

REVISED AS-BUILT

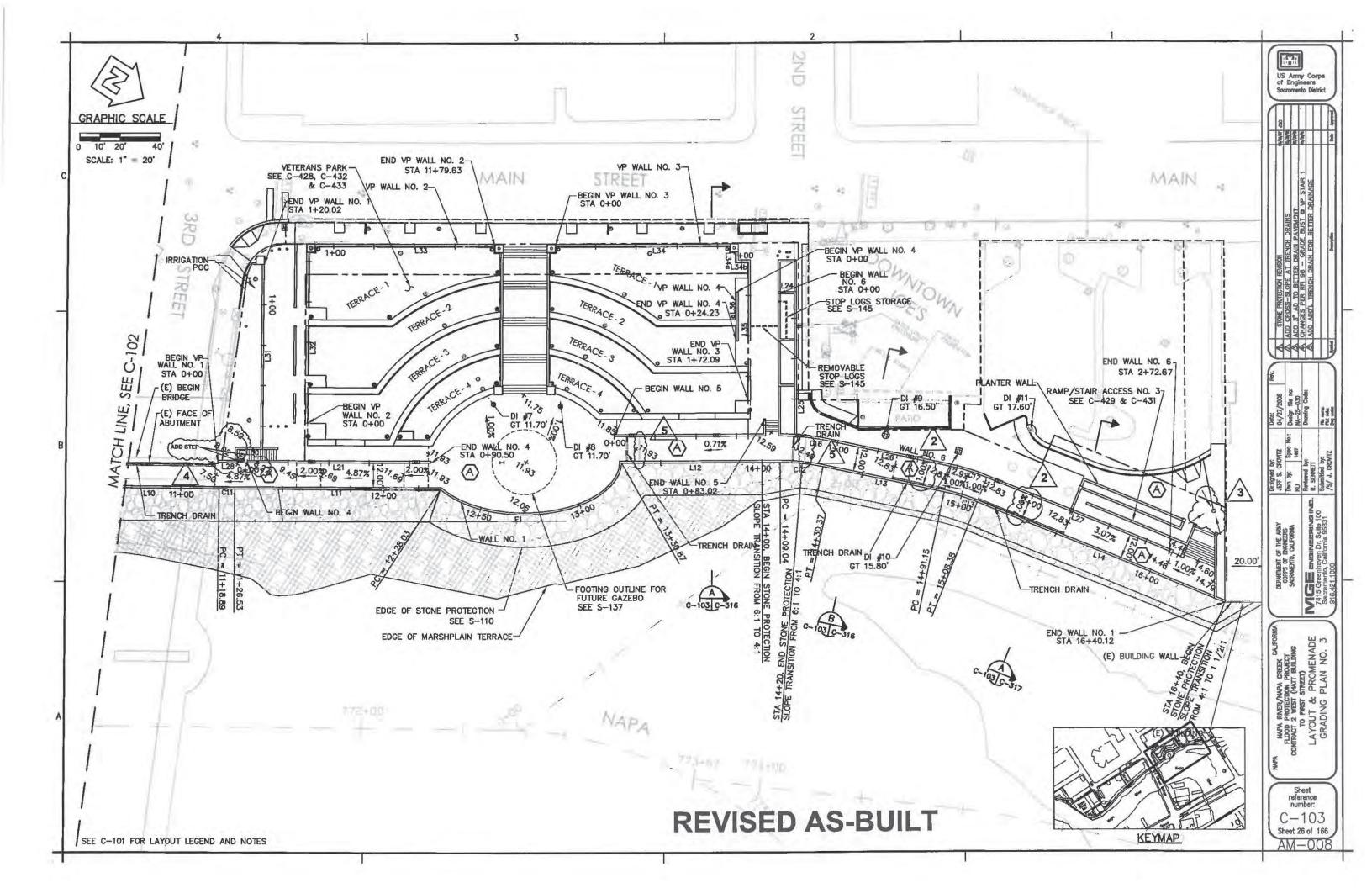


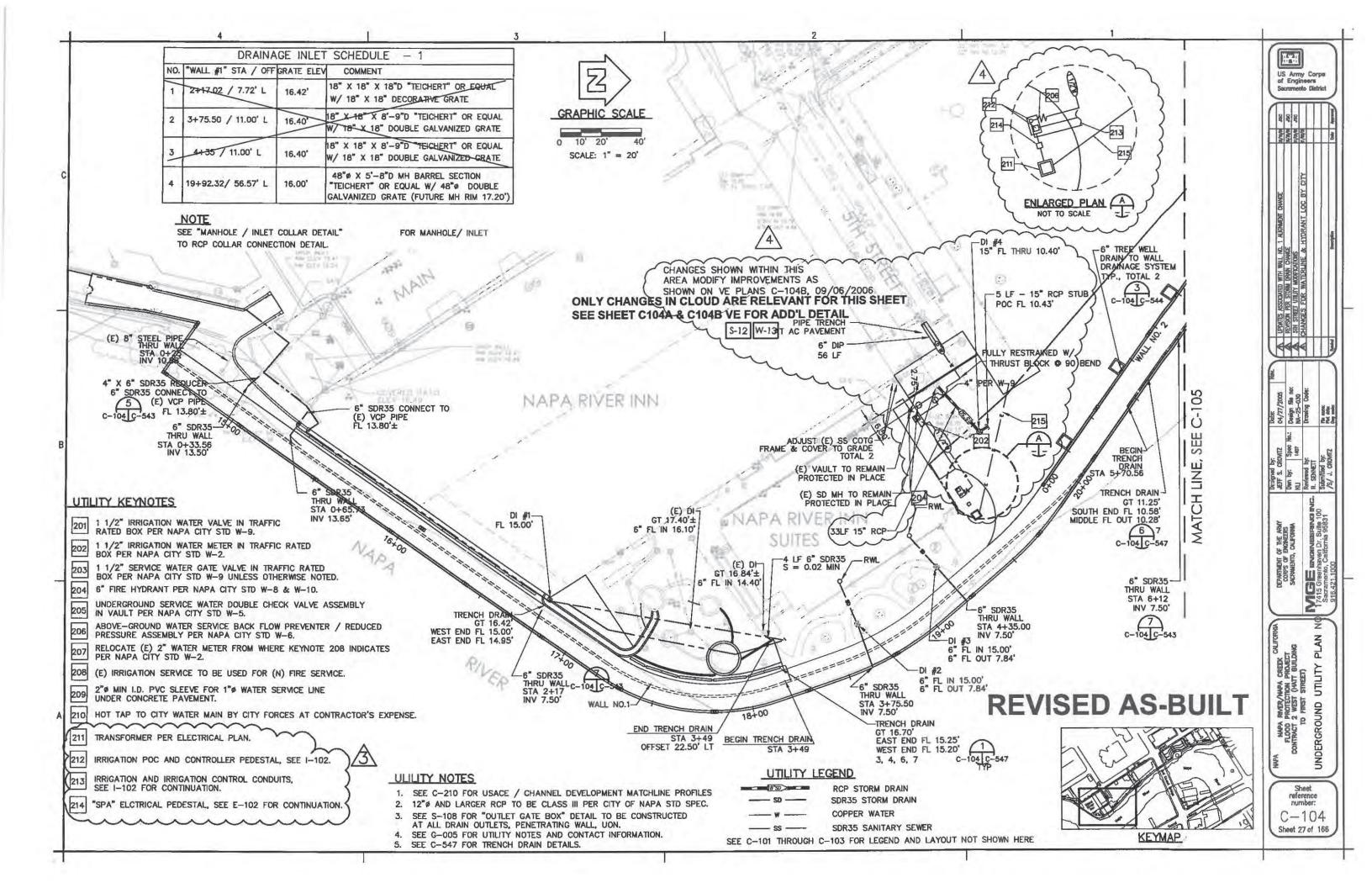

ON	NORTHING	EASTING	MON. ELVE.	RIM ELEV.	MARKER
A	1870918.39	6480045.40	14.13		SPIKE & WASHER
в	1870845.40	6479946.95	17.97		SPIKE & WASHER
С	1870765.44	6479860.26	17.49	*	SPIKE & WASHER
D	1870604.06	6479959.42	17.50	*	SPIKE & WASHER
E	1870458.45	6480058.43	17.08		SPIKE & WASHER
F	1870127.62	6480266.42	16.17	*	SPIKE & WASHER
G	1869945.61	6480377.45	15.55		SPIKE & WASHER
н	1869782.07	6480475.05	16.68		SPIKE & WASHER
1	1869607.21	6480493.30	15.42		SPIKE & WASHER
J	1869477.47	6480464.04	13.42	*	SPIKE & WASHER
к	1870003.40	6480593.20	16.45		SPIKE & WASHER
L	1869910.96	6480668.80	16.91		SPIKE & WASHER
M	1869867.81	6480602.55	16.27	*	SPIKE & WASHER
N	1870002.14	6480513.95	15.39		SPIKE & WASHER
R	1870290.31	6480830.14	13.43	*	SPIKE & WASHER
	1870201.61	6480404.95	15.85	*	SPIKE & WASHER
.7	1870028.18	6480981.15	14.38	*	CITY OF NAPA BRASS
	1870132.55	6480437.37	15.57	*	SPIKE & WASHER
	1870112.23	6480209.39	16.31		SPIKE & WASHER
	1869972.98	6480462.57	15.48	*	SPIKE & WASHER
	1870376.25	6480243.58	17.14		SPIKE & WASHER
	CALCES ALMA		1 2 2 2 C		

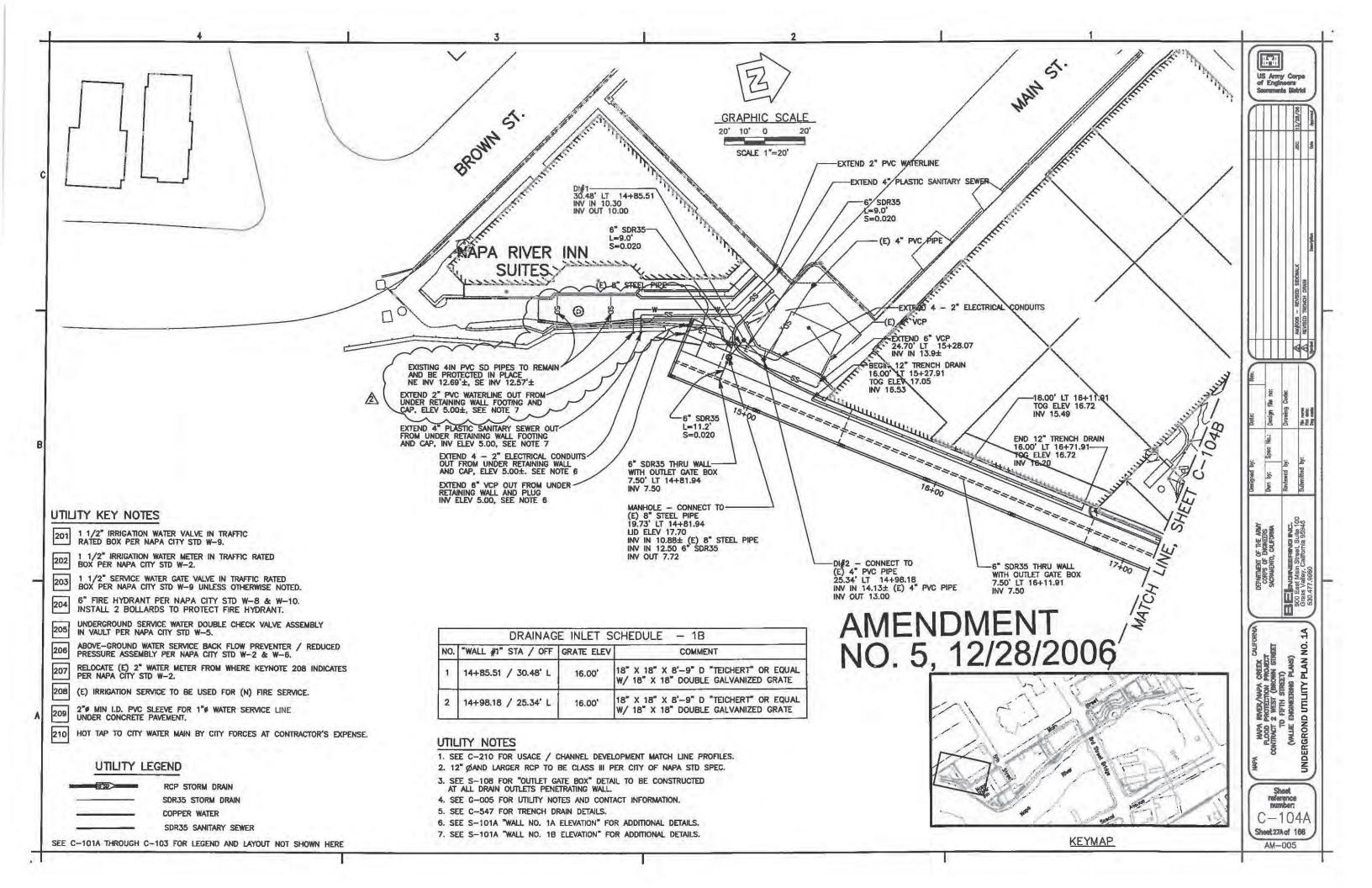


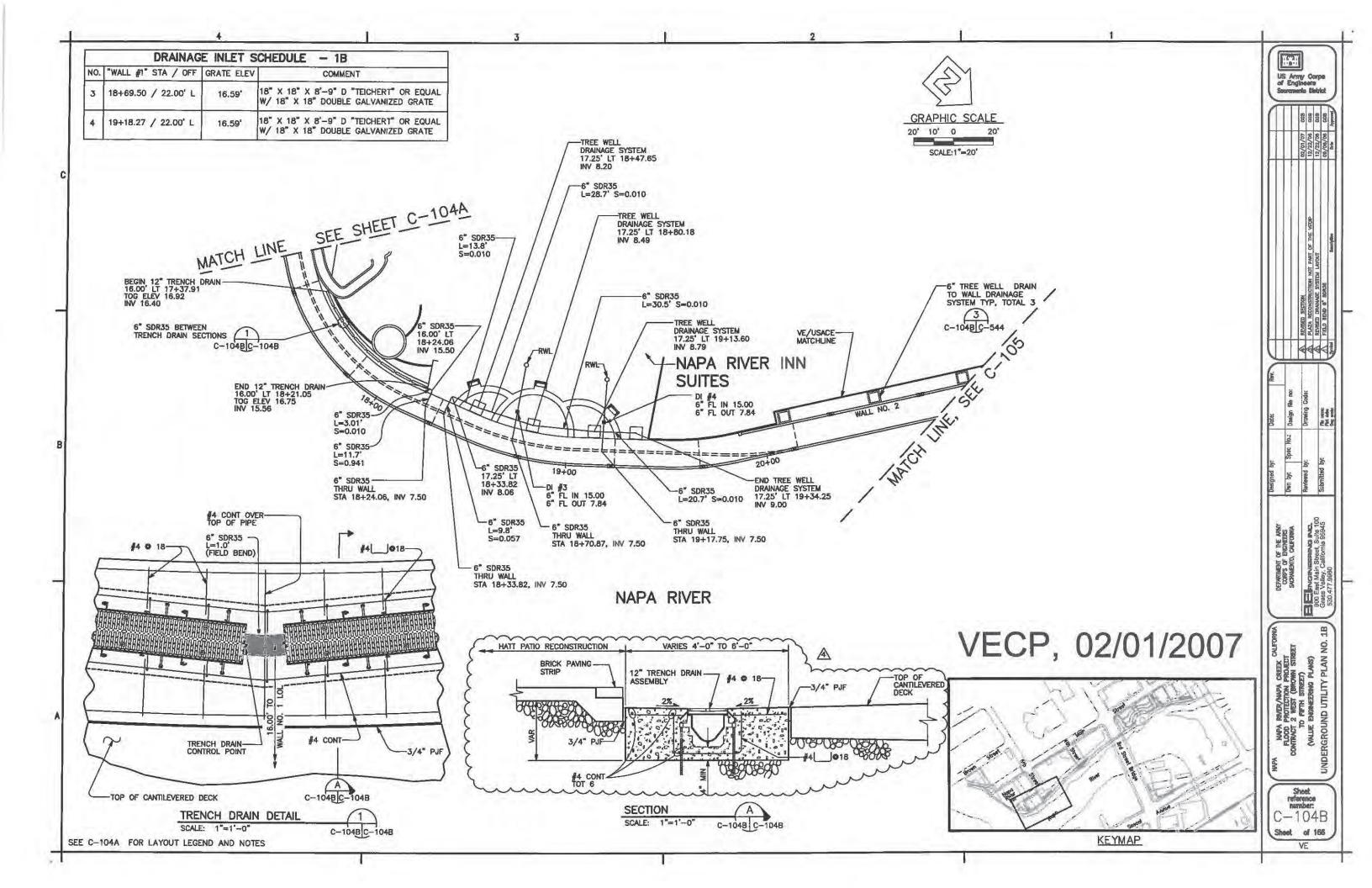


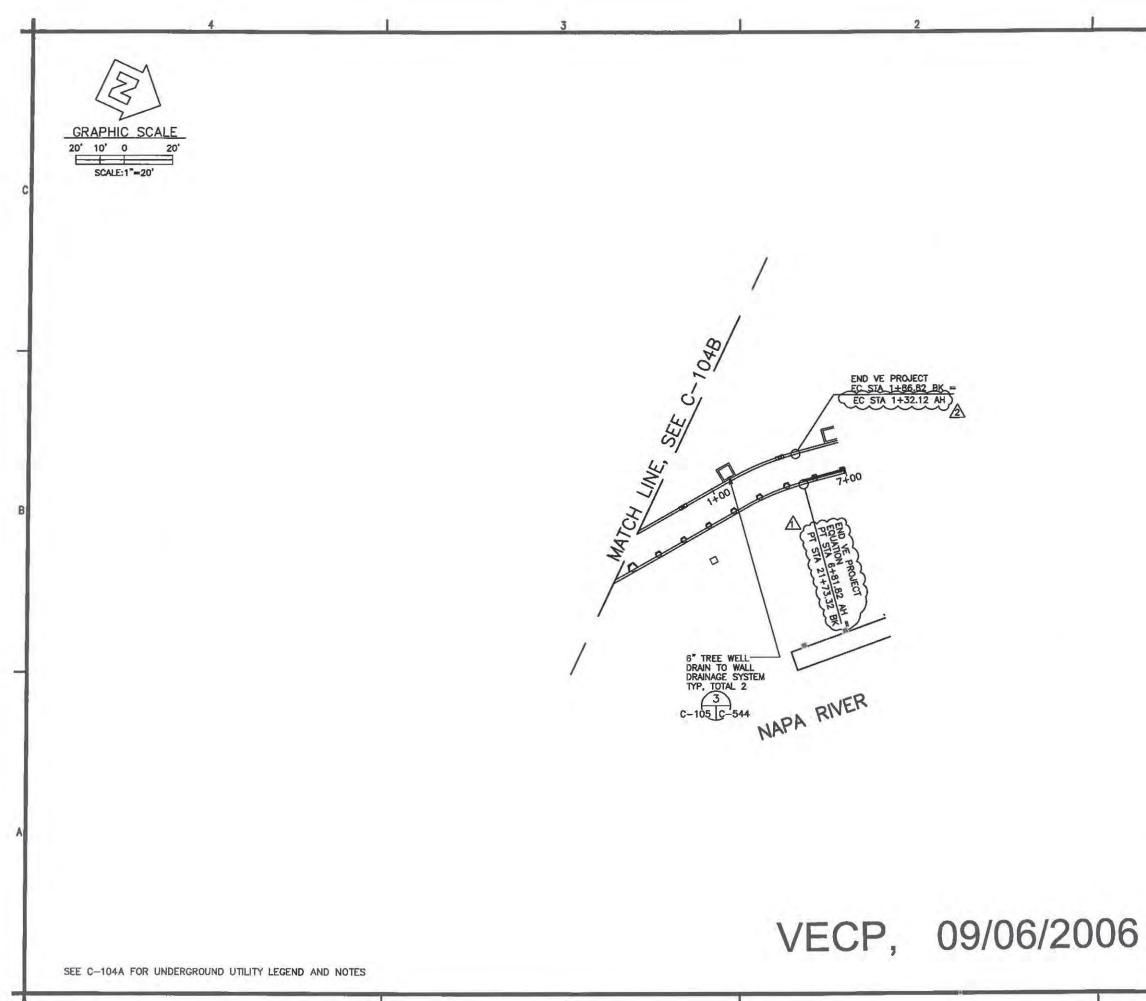


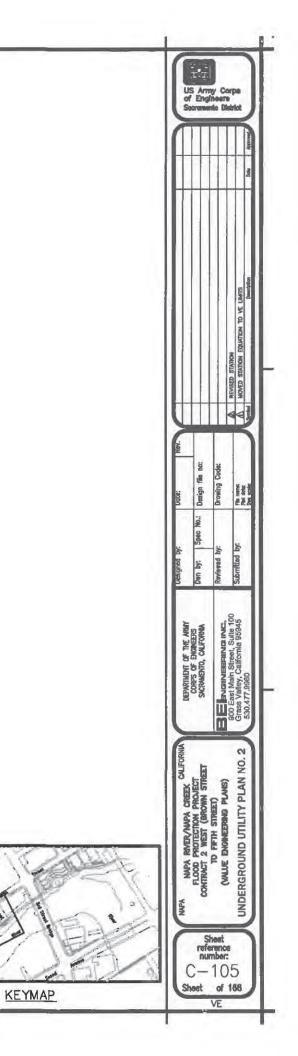


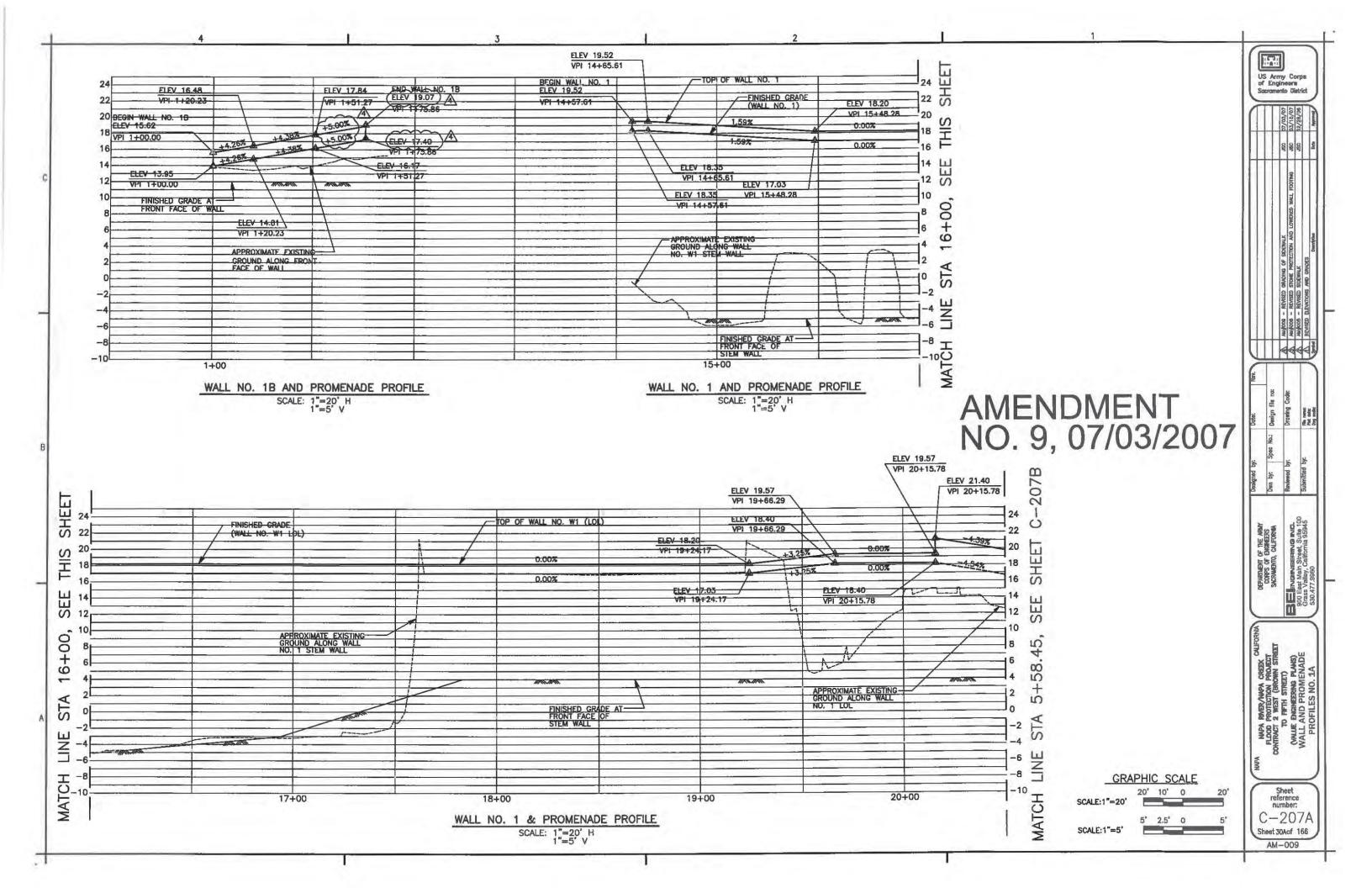


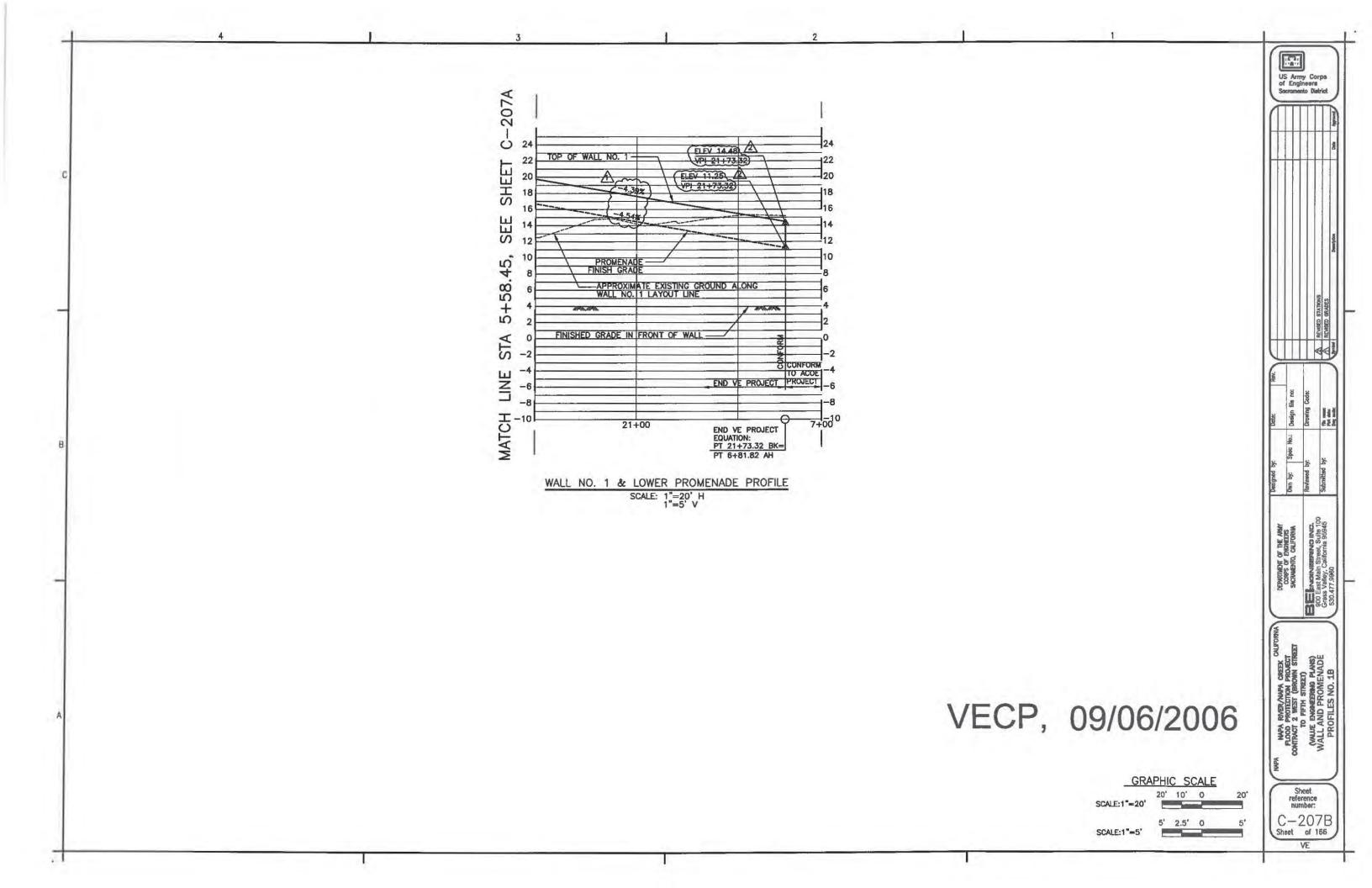


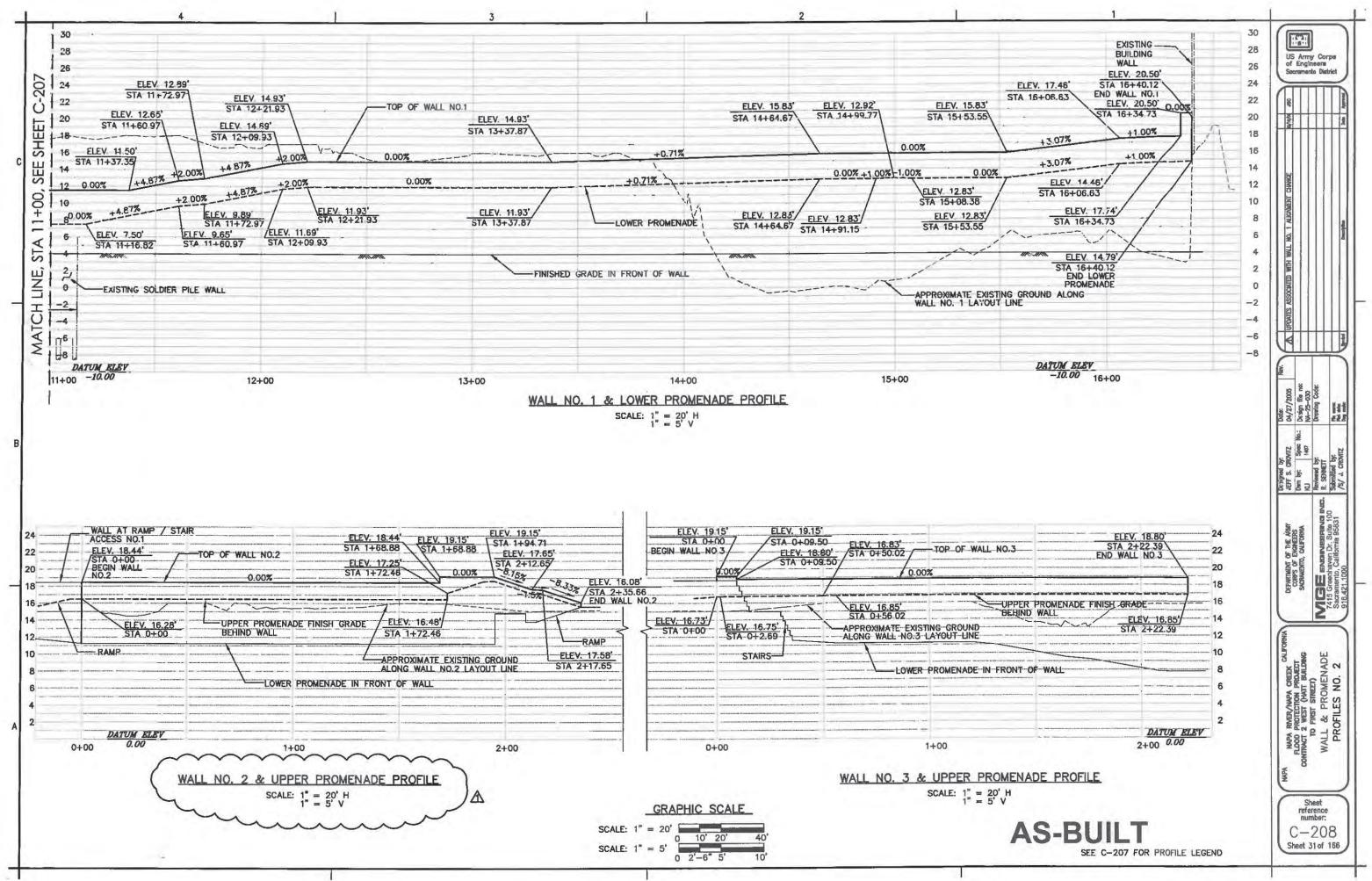


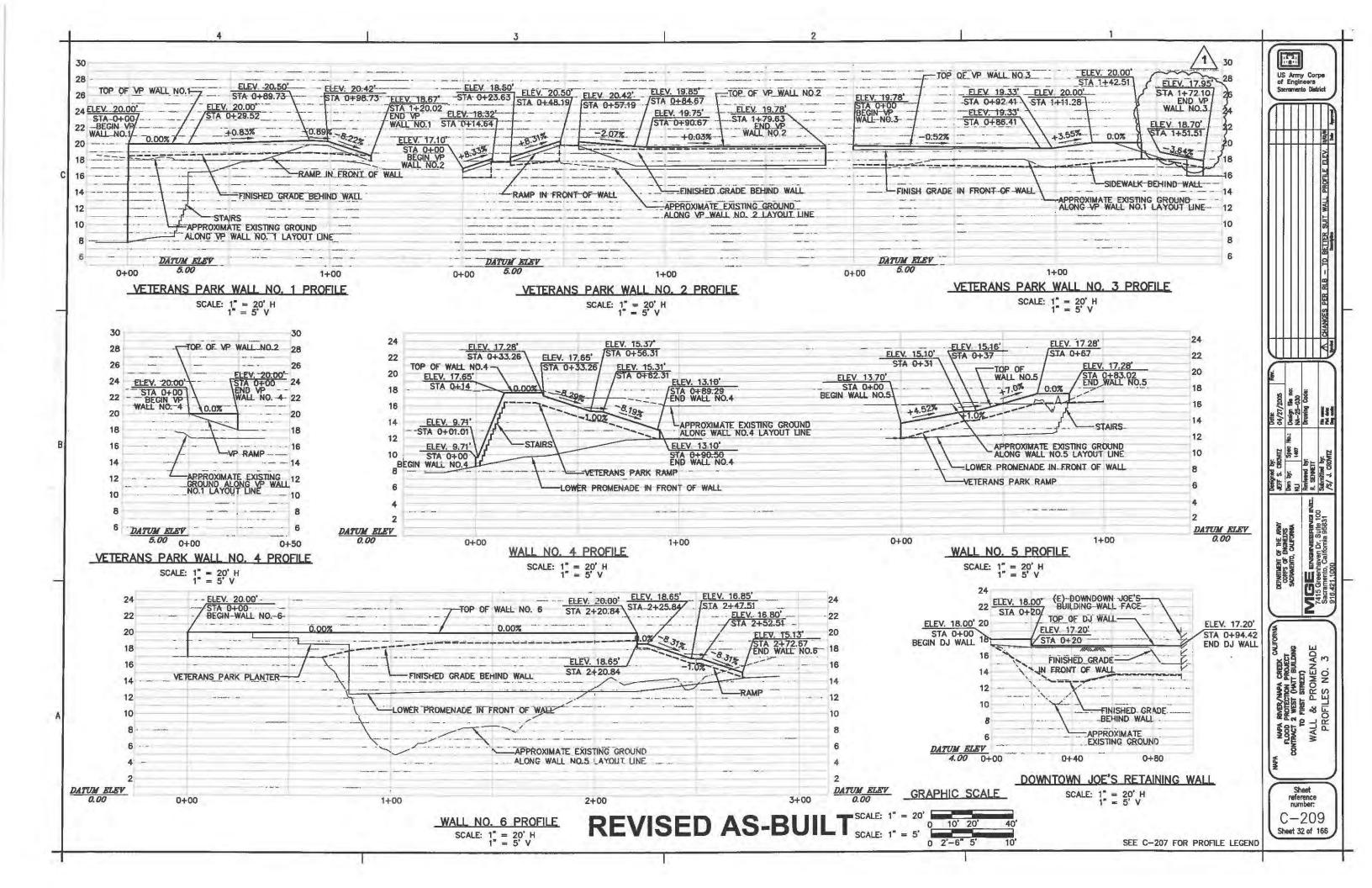


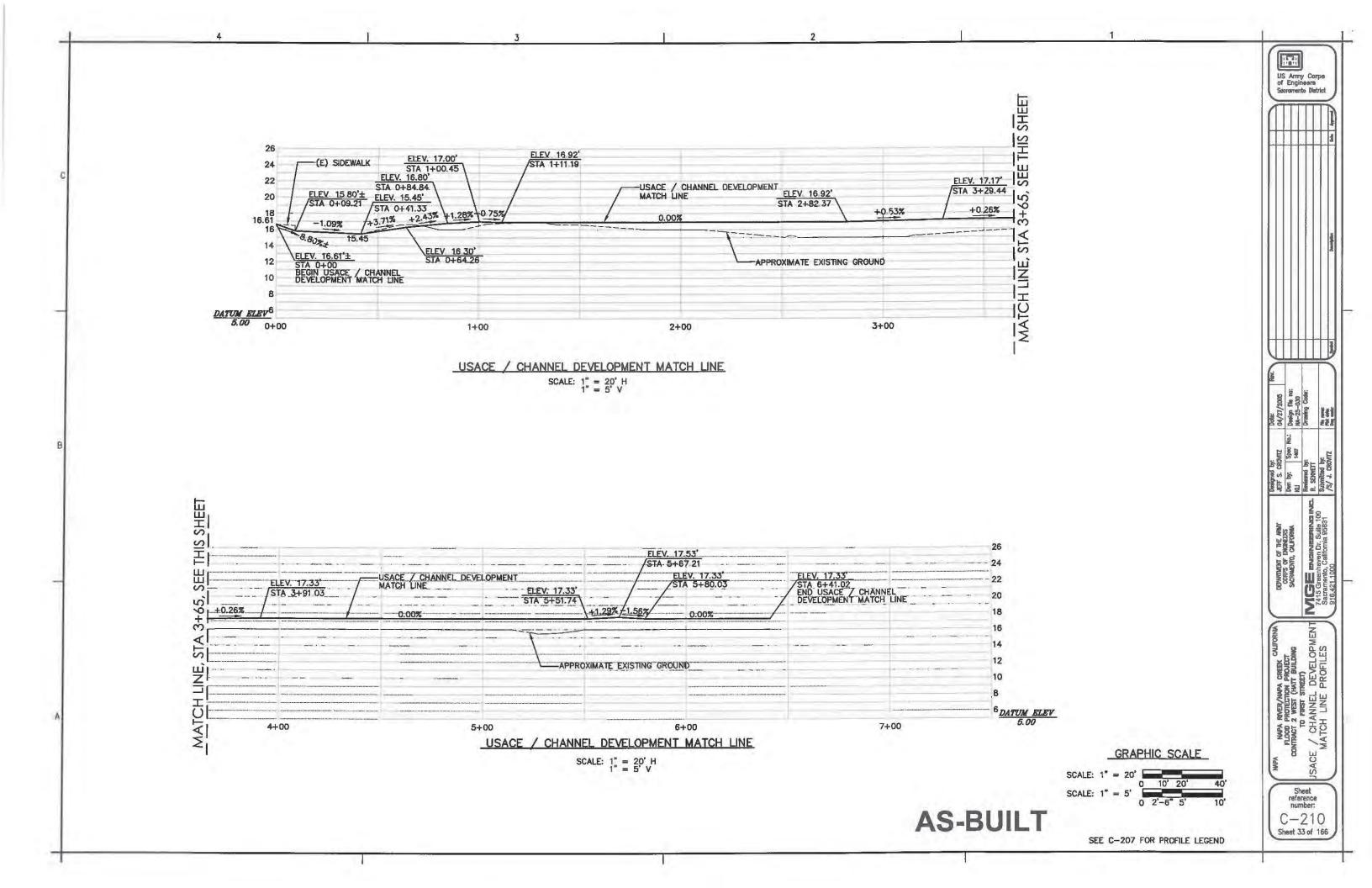


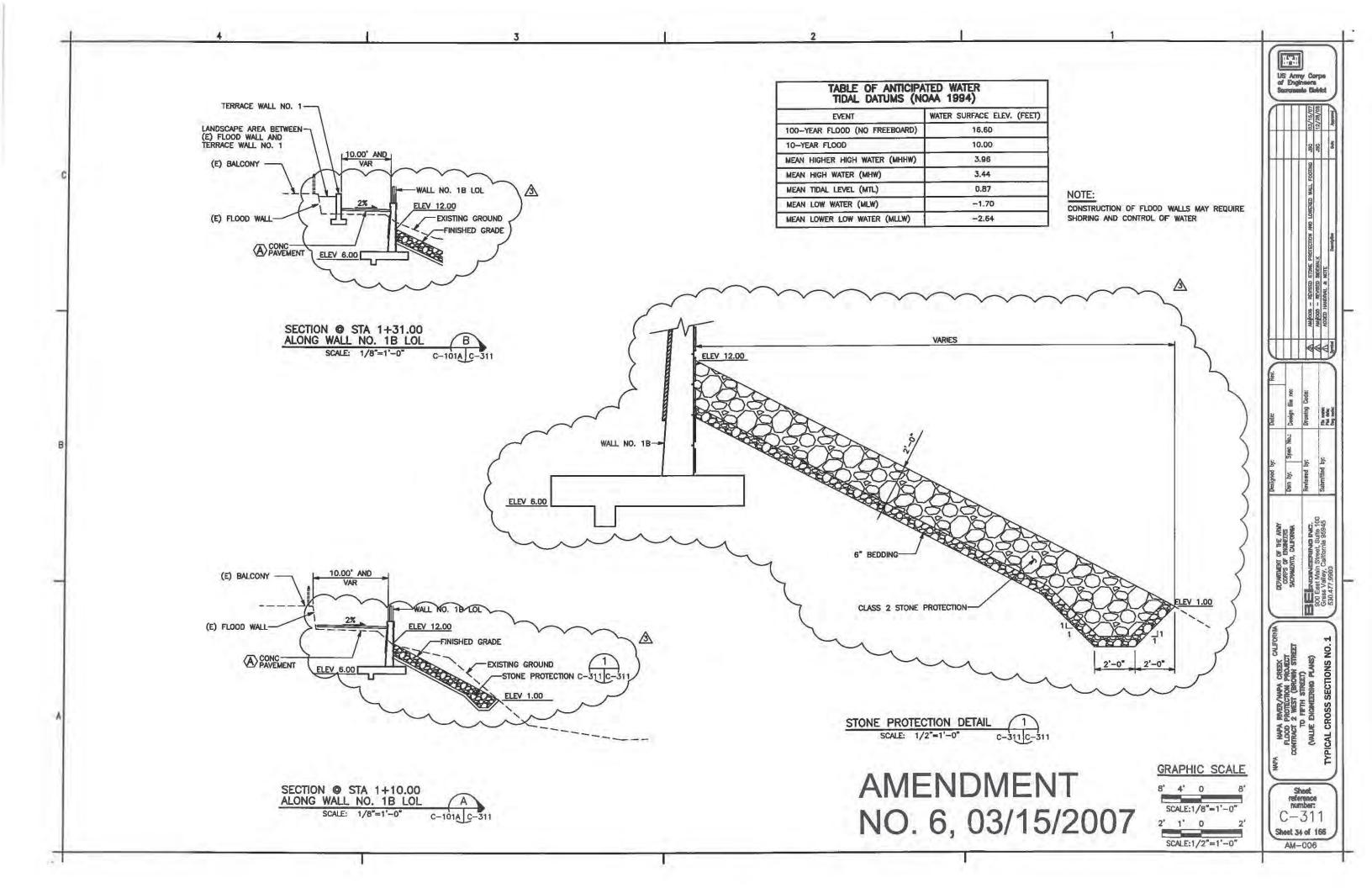


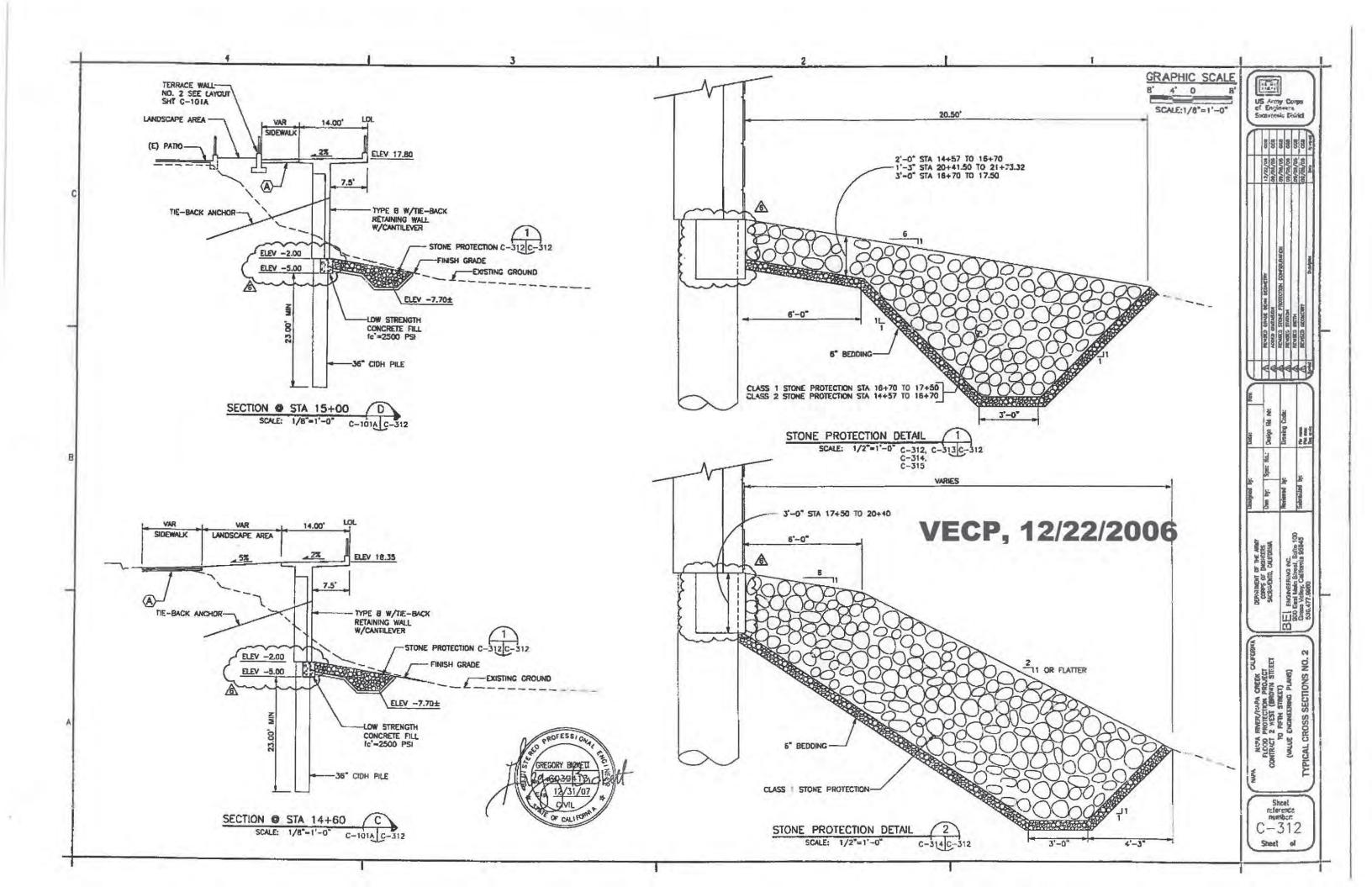


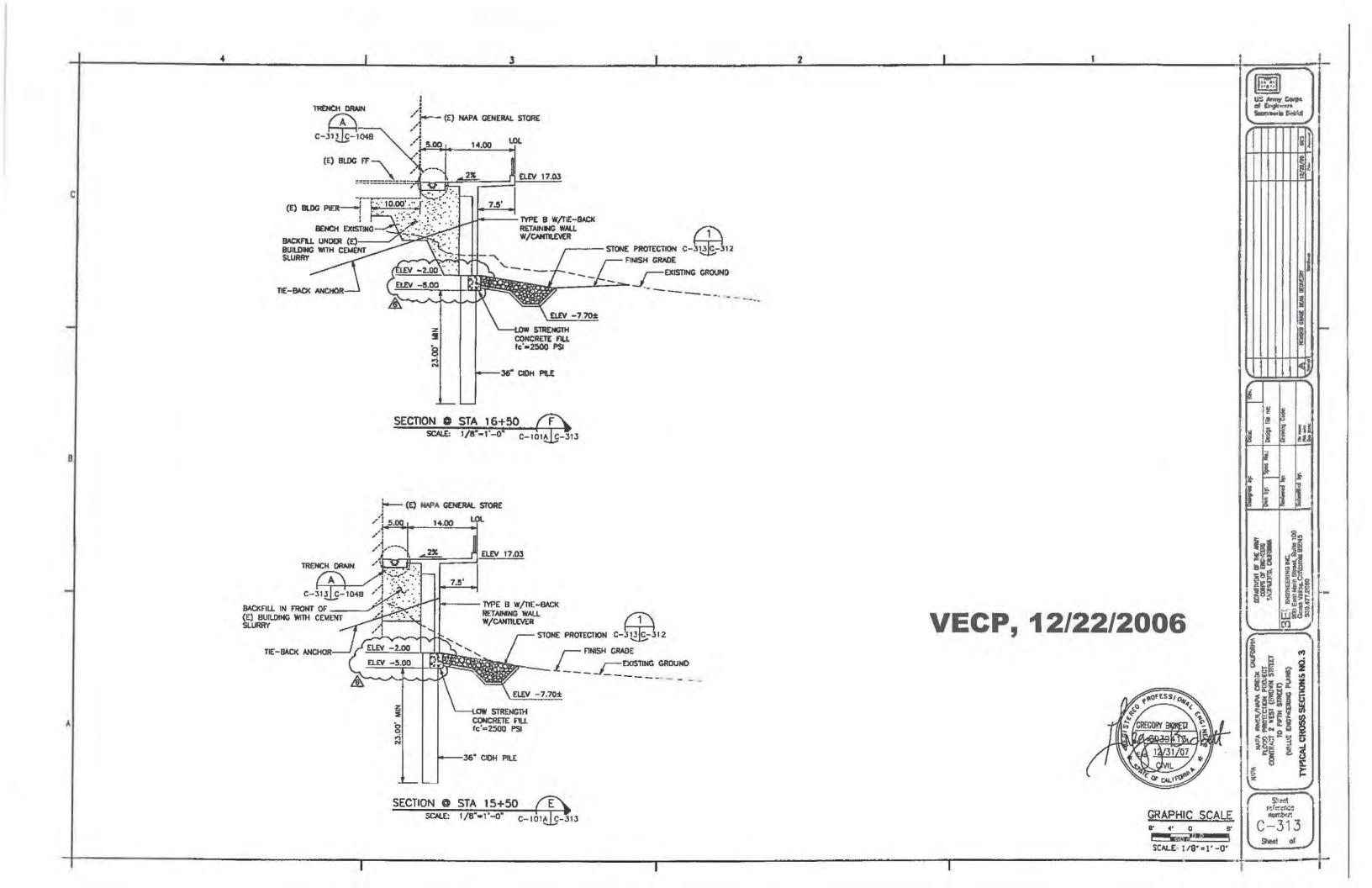


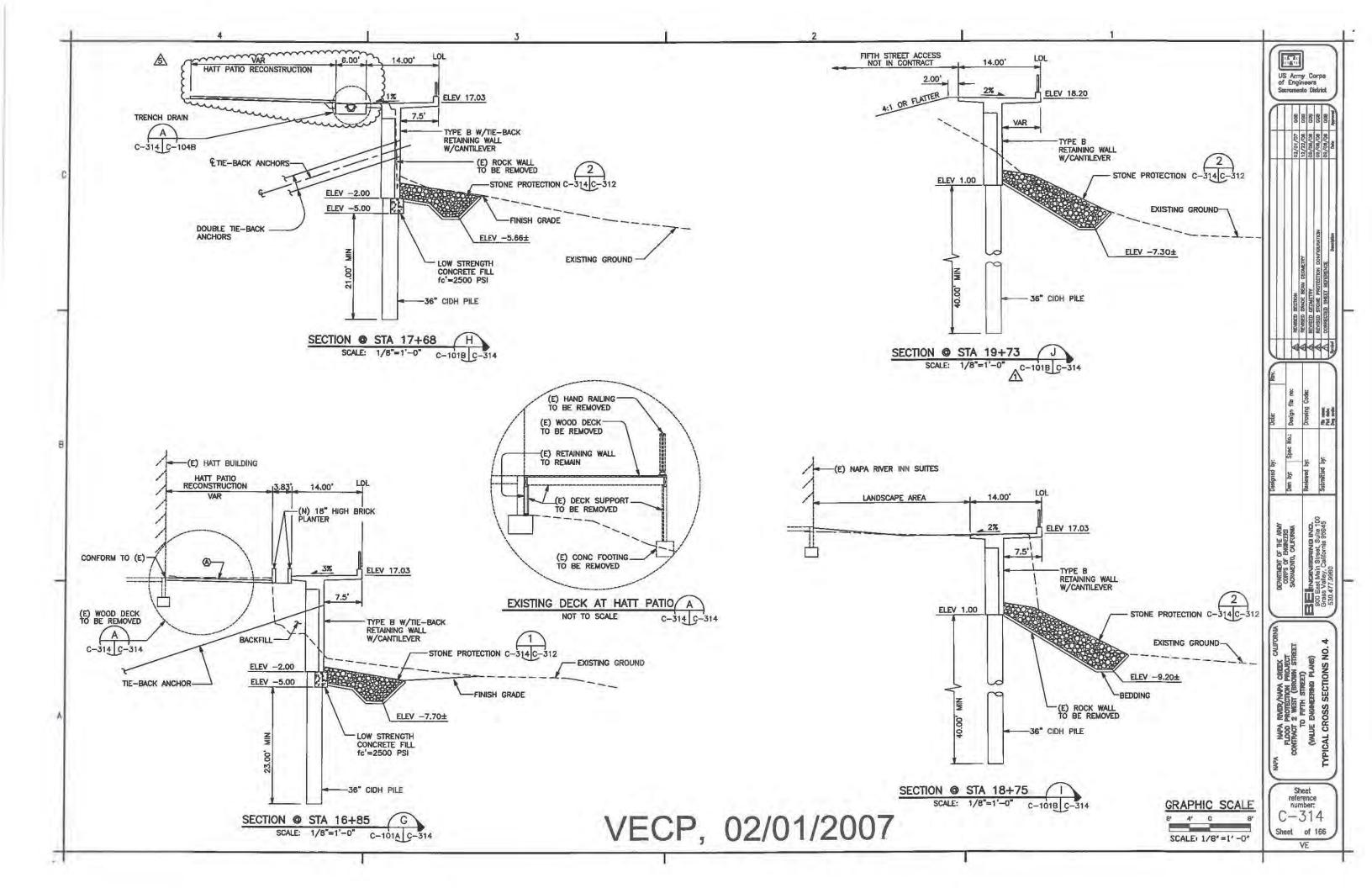


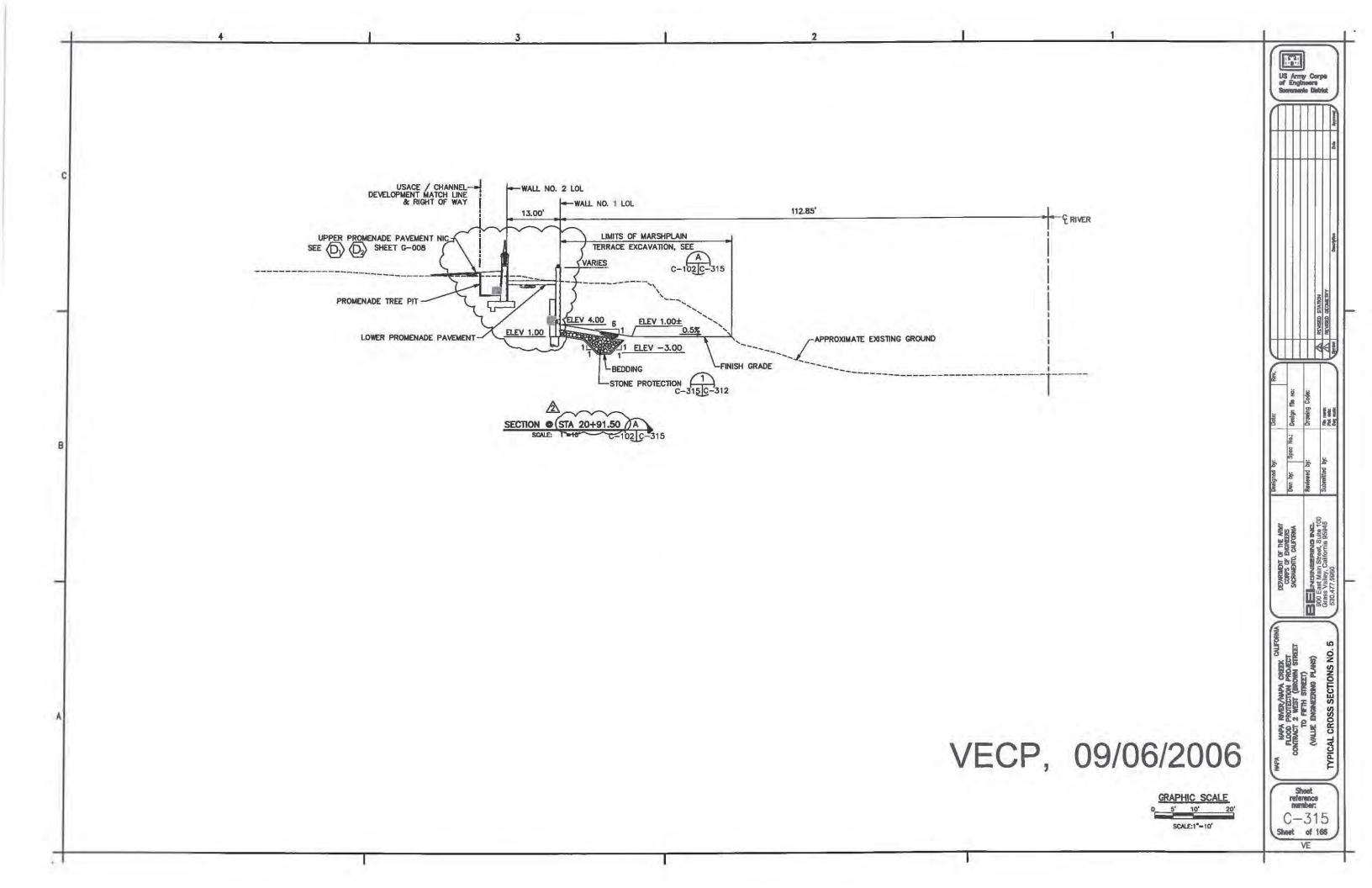


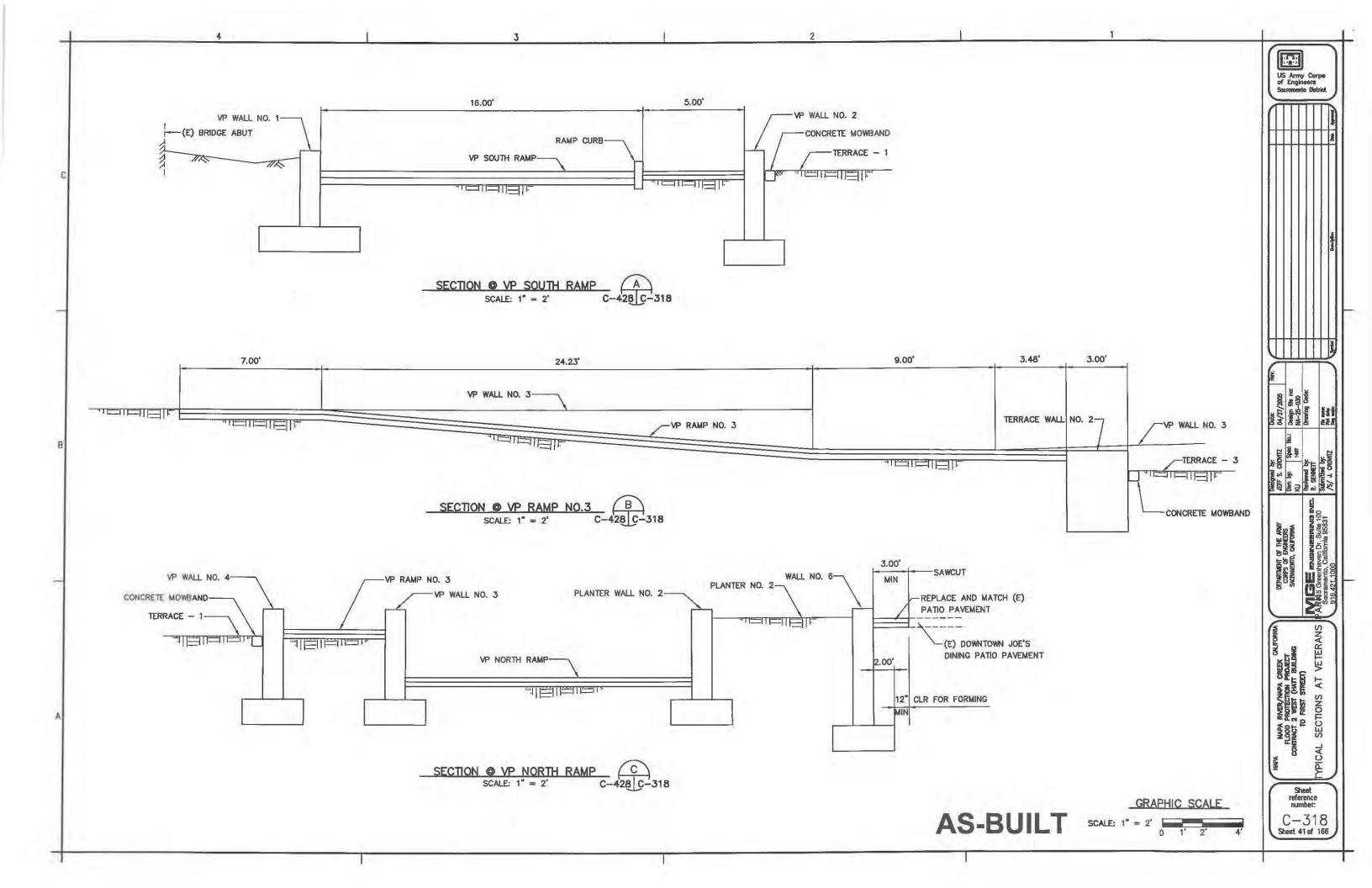


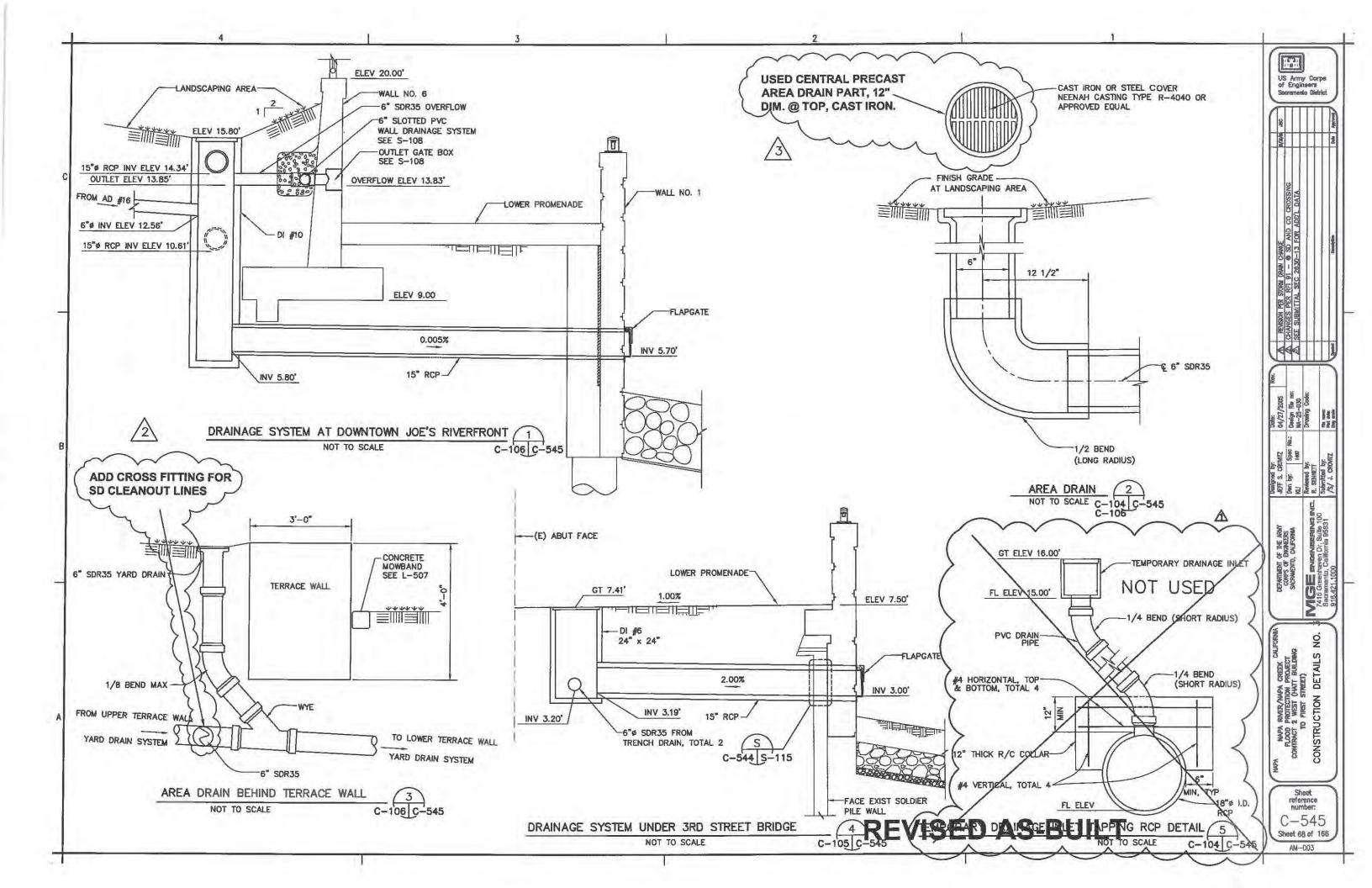


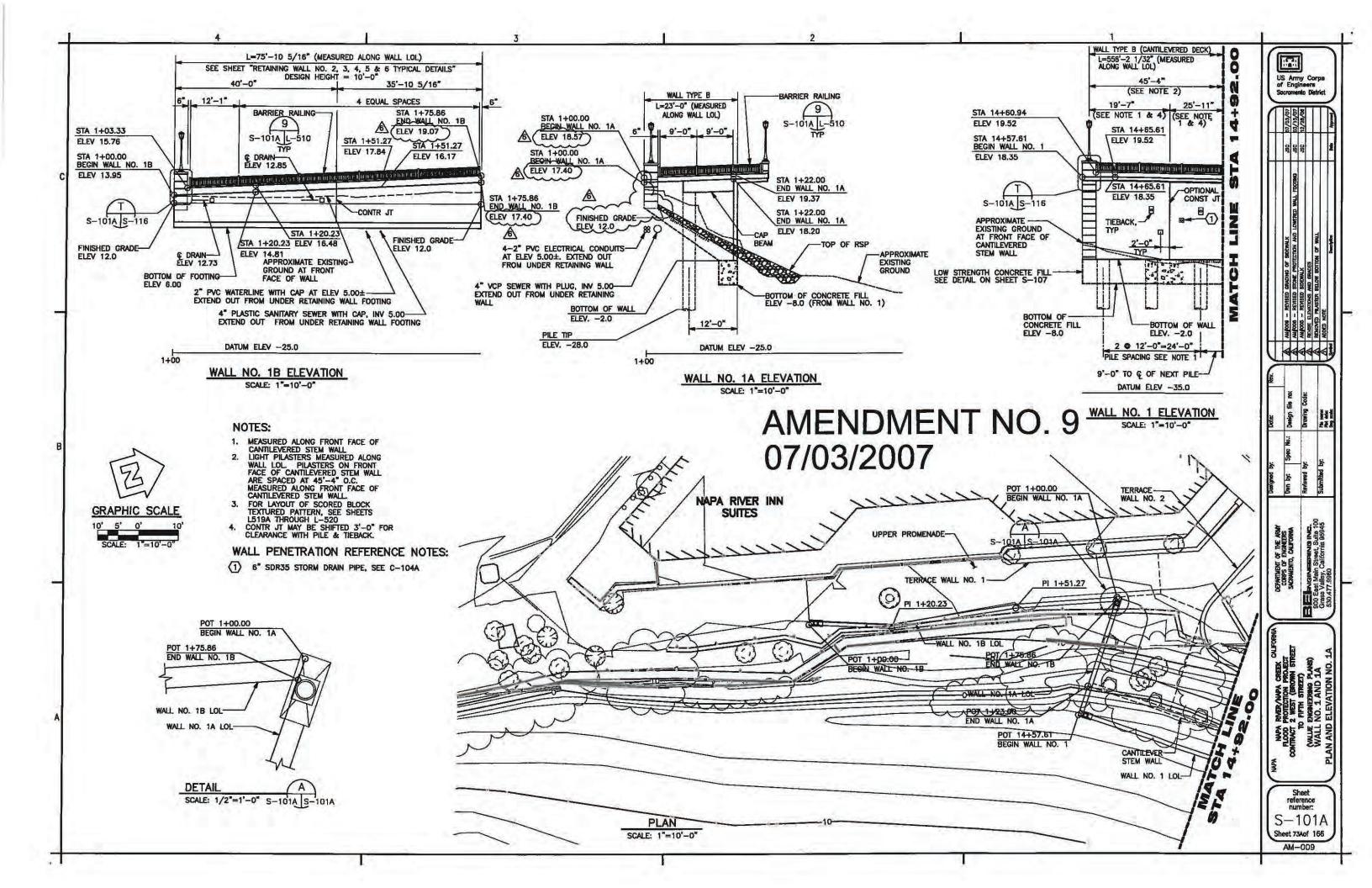


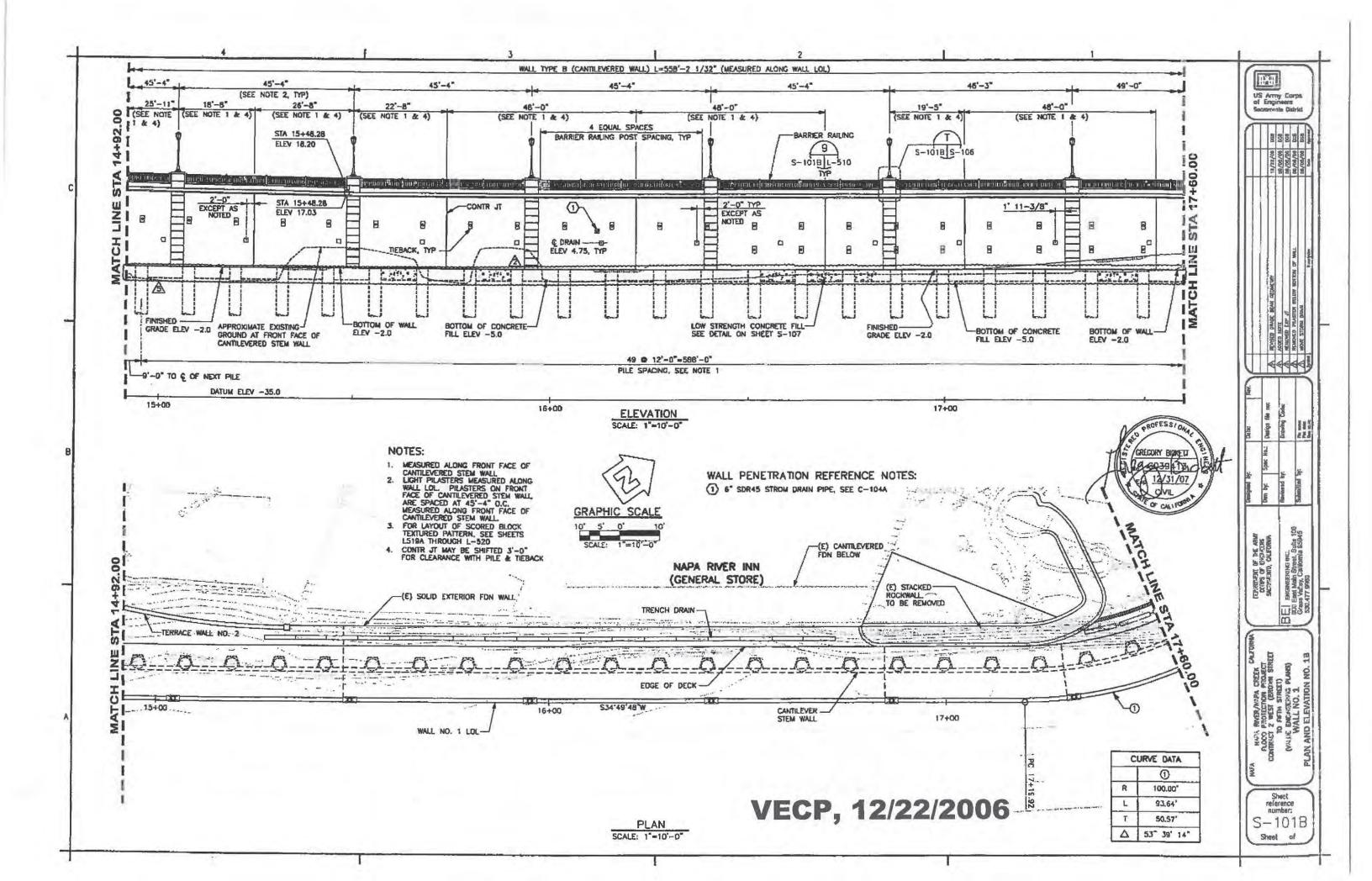


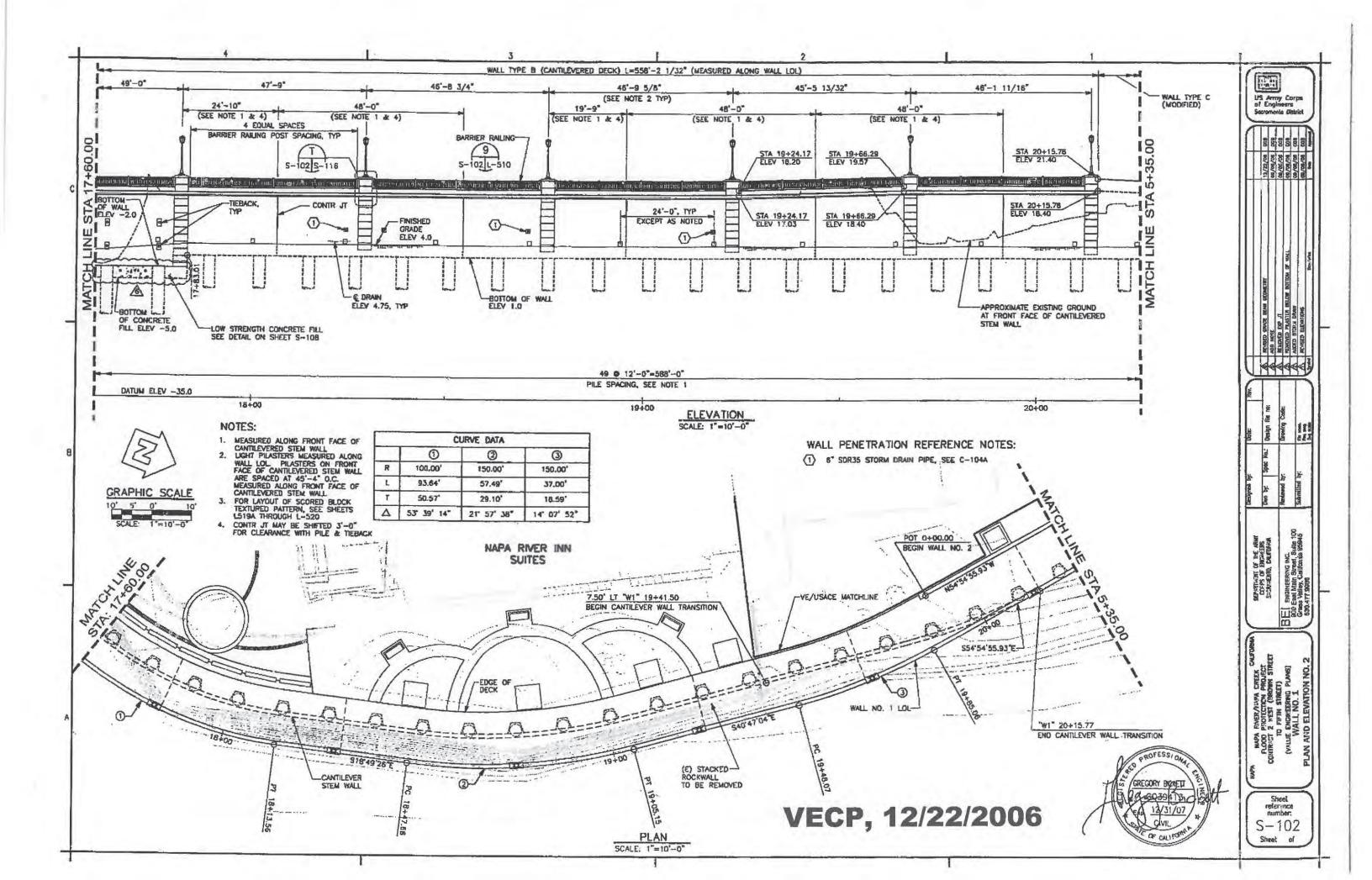


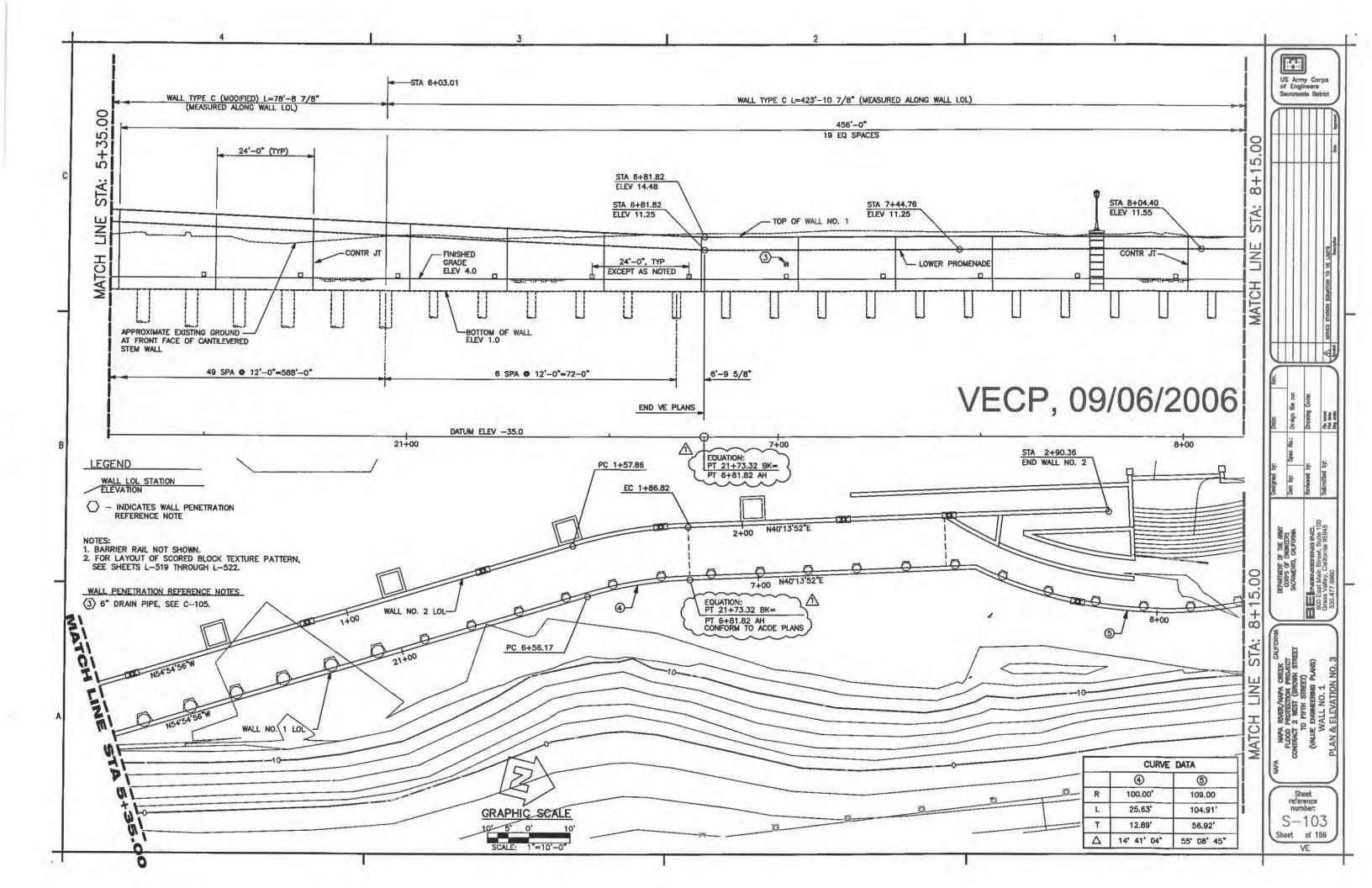


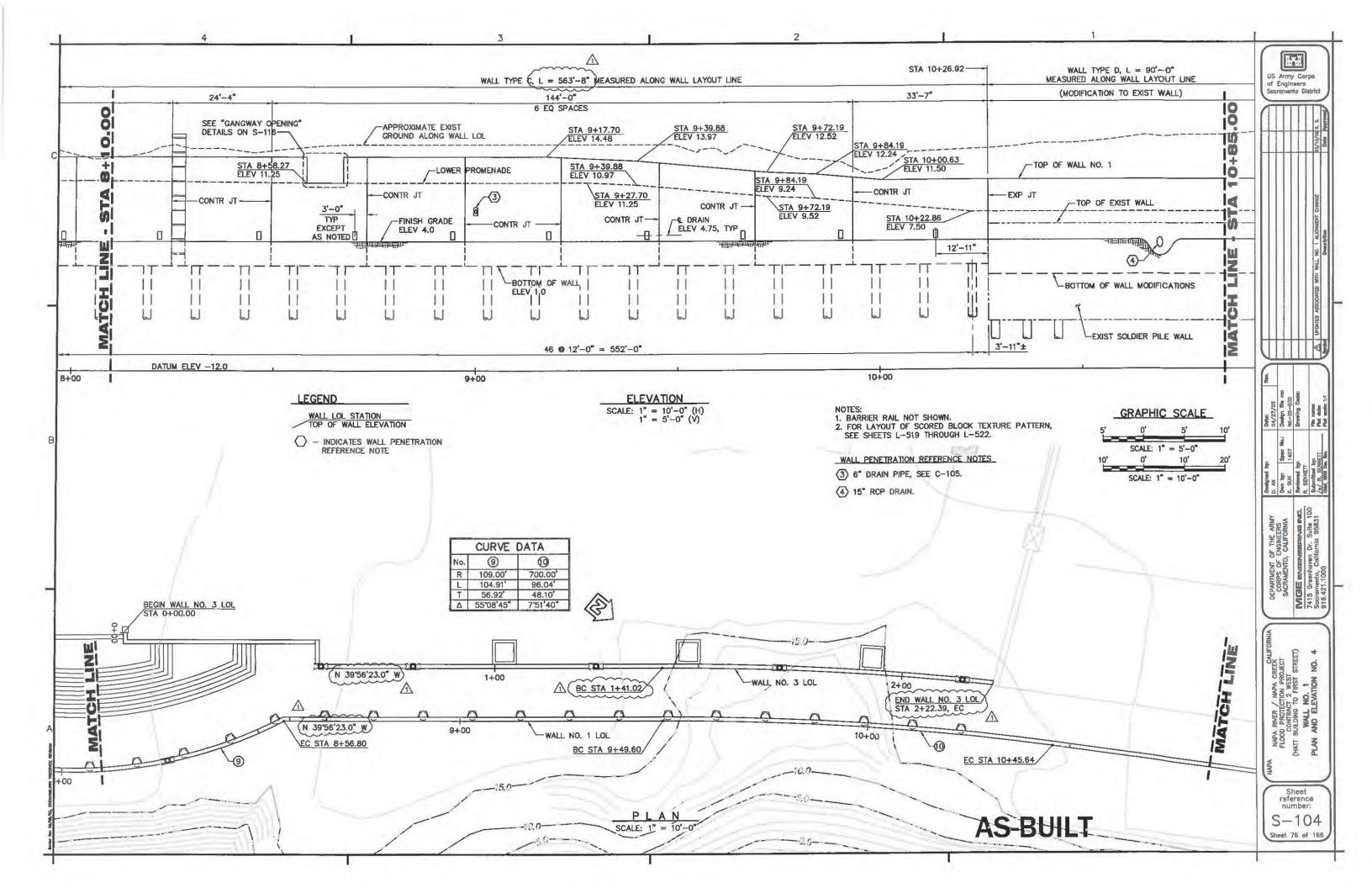


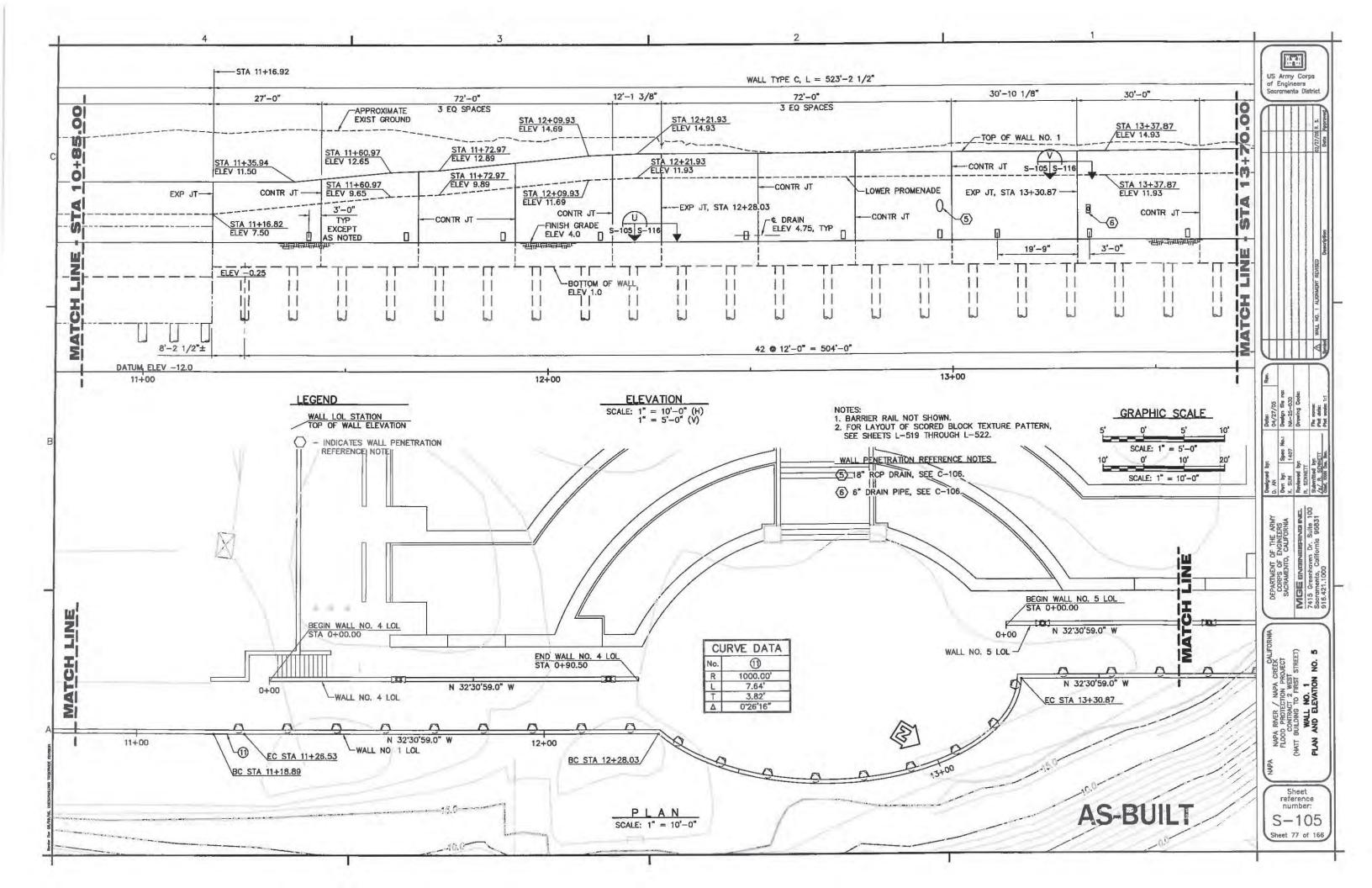


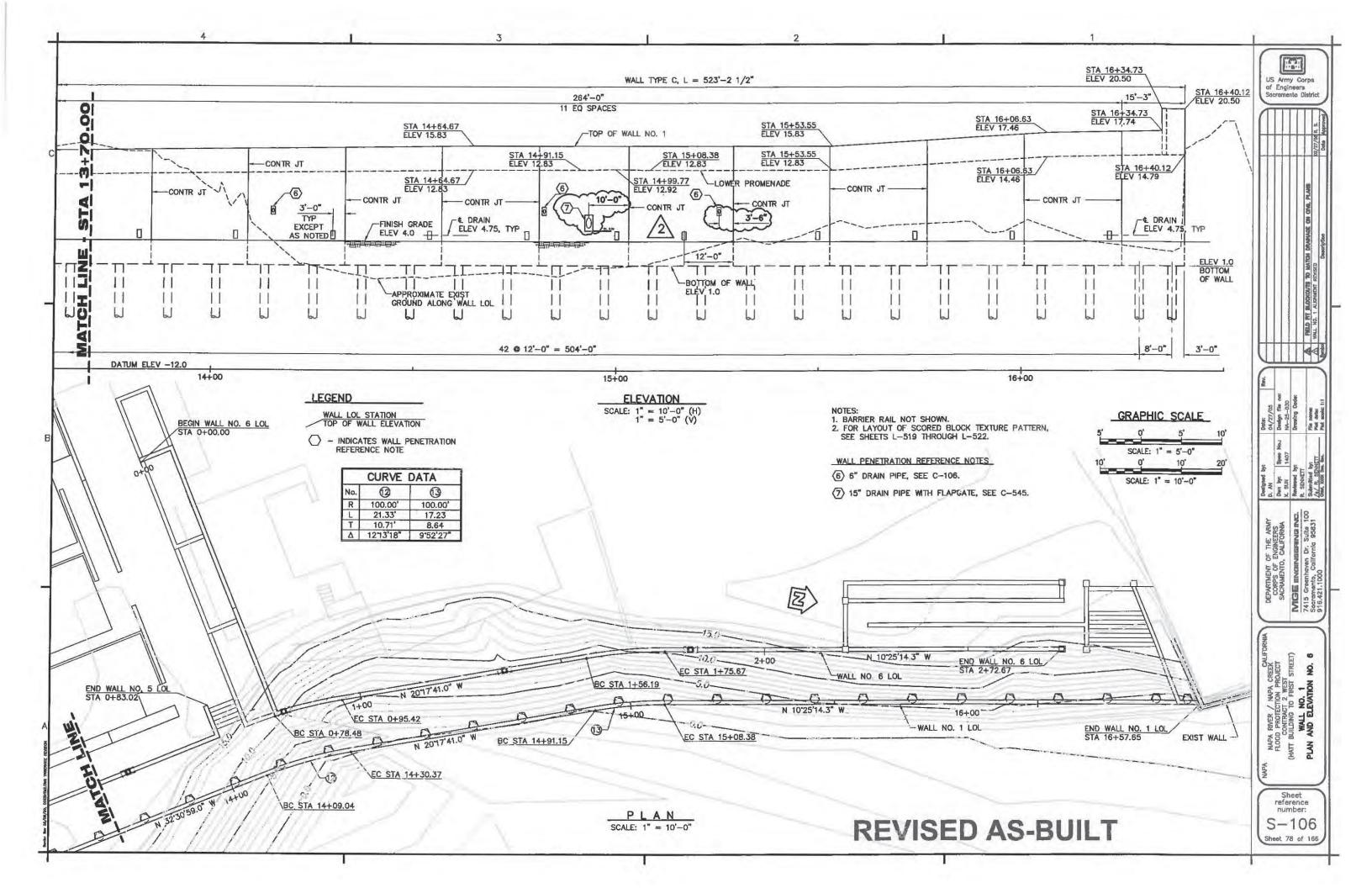


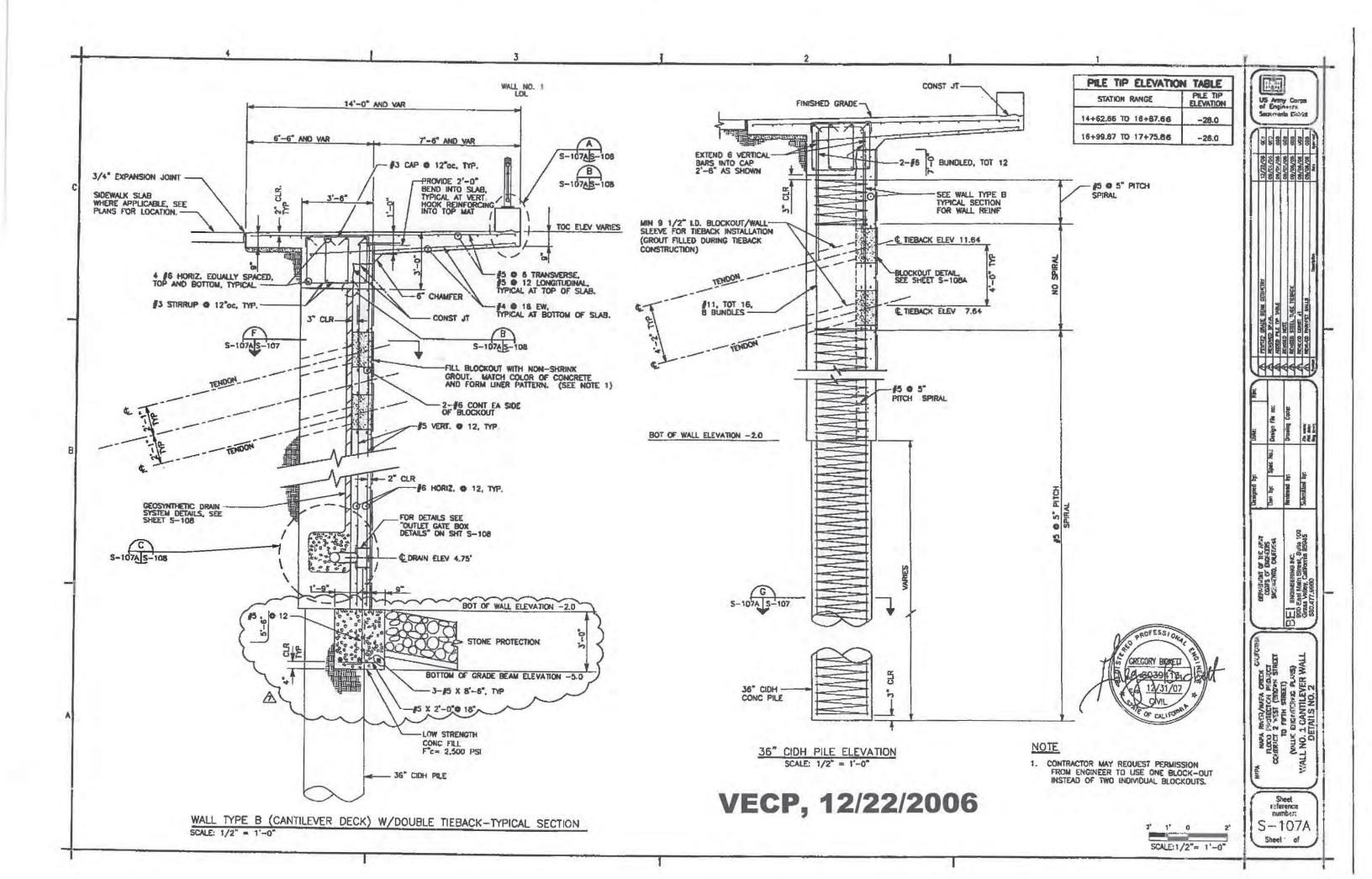


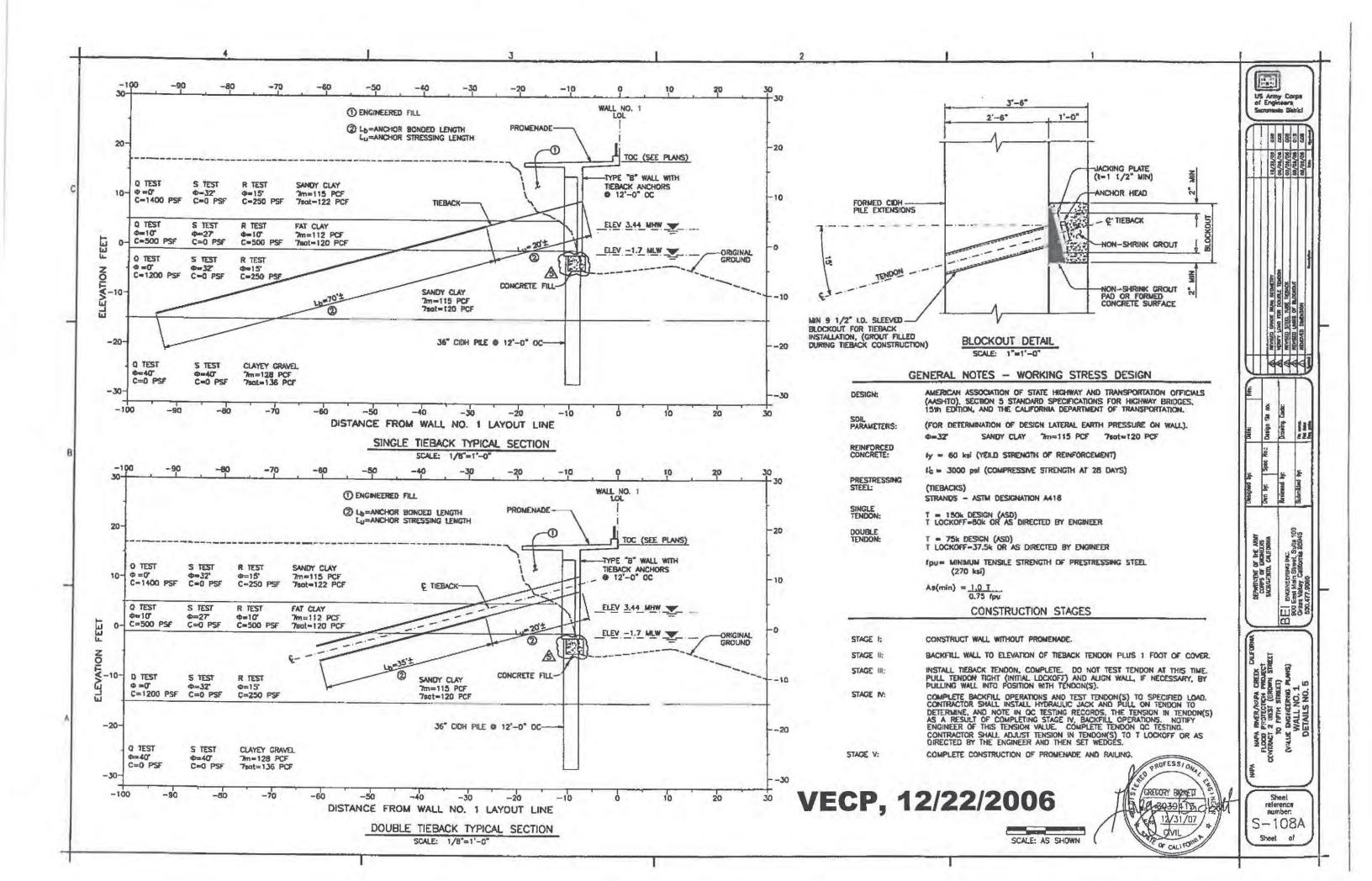


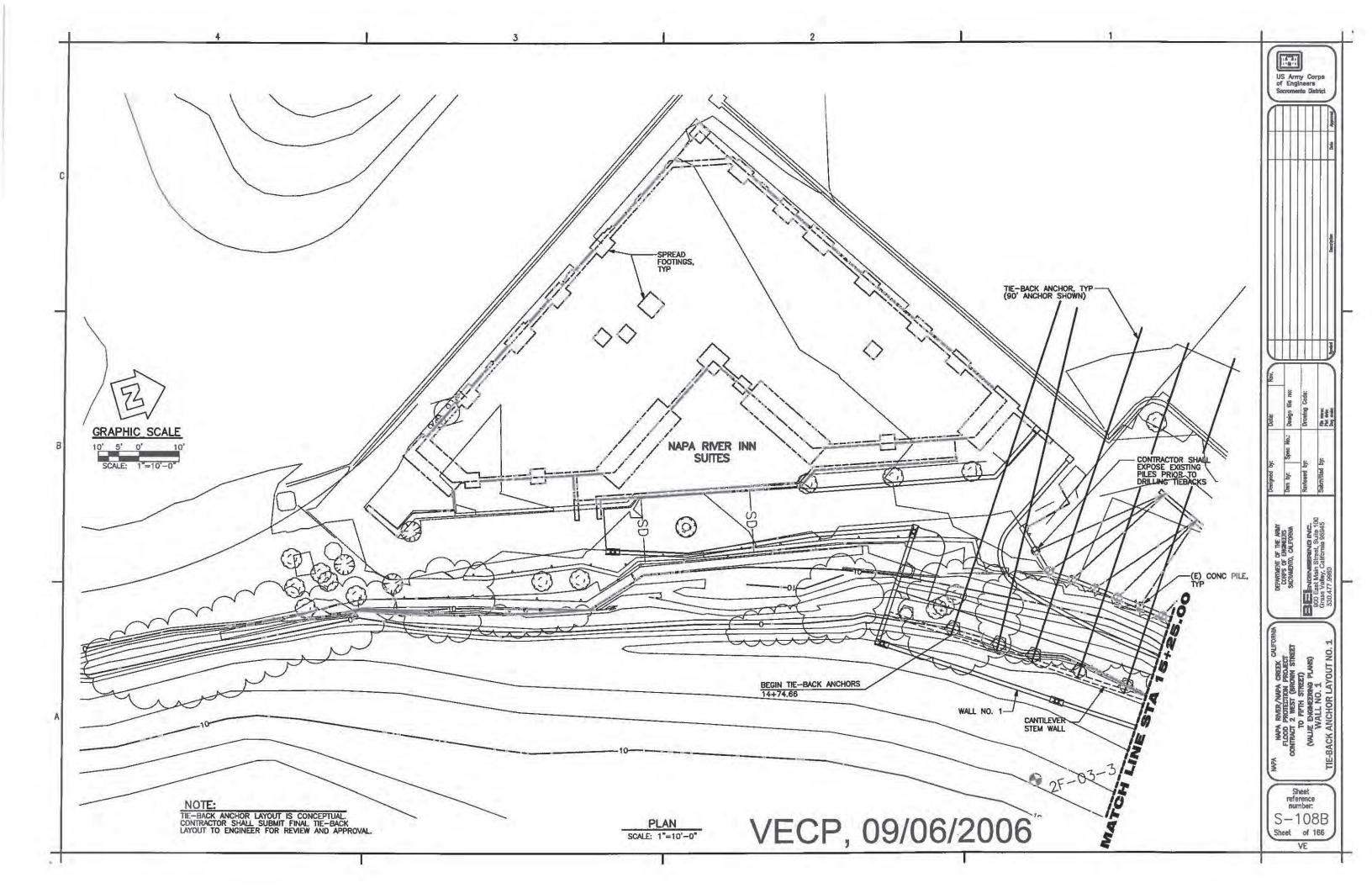


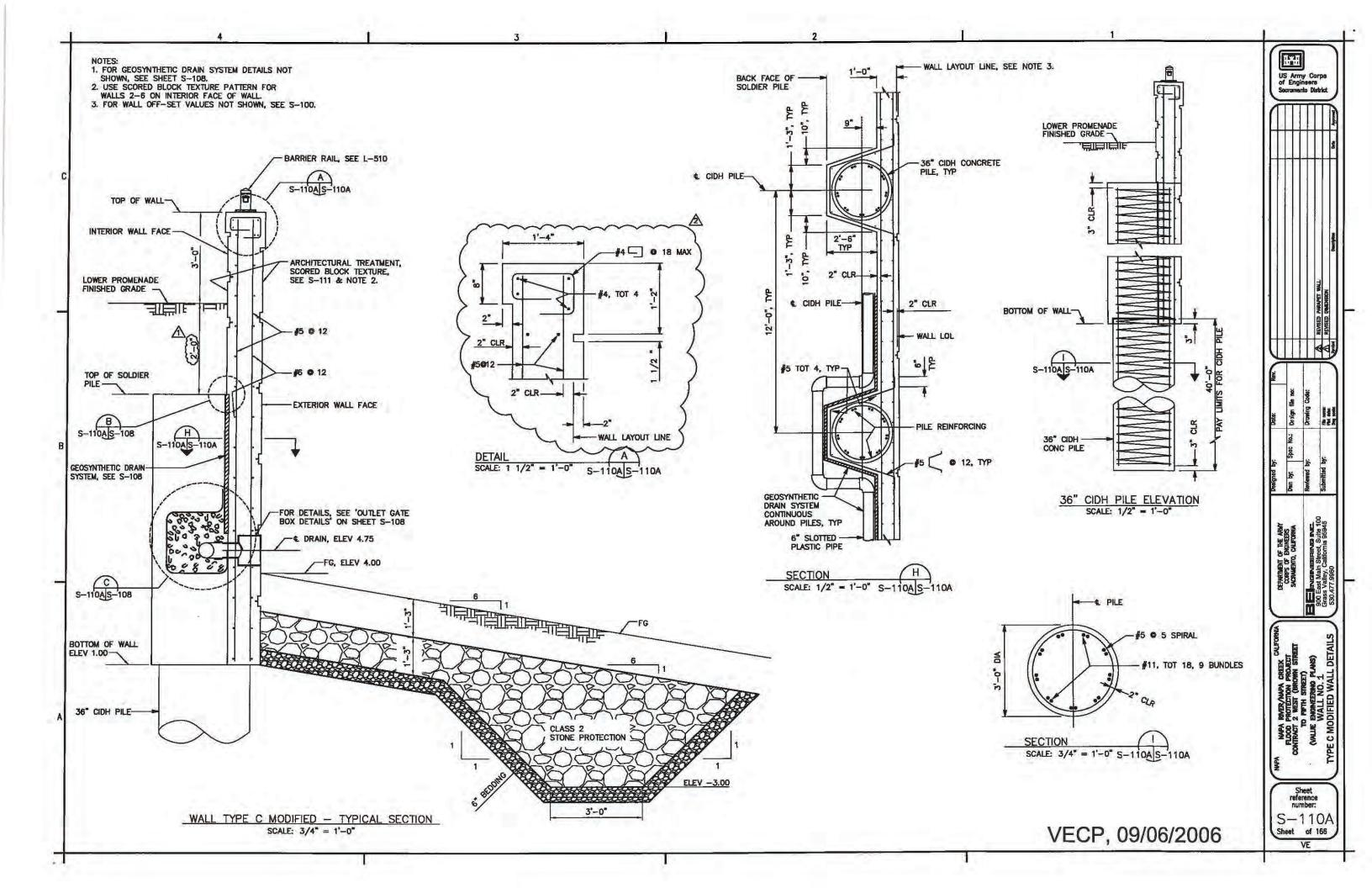


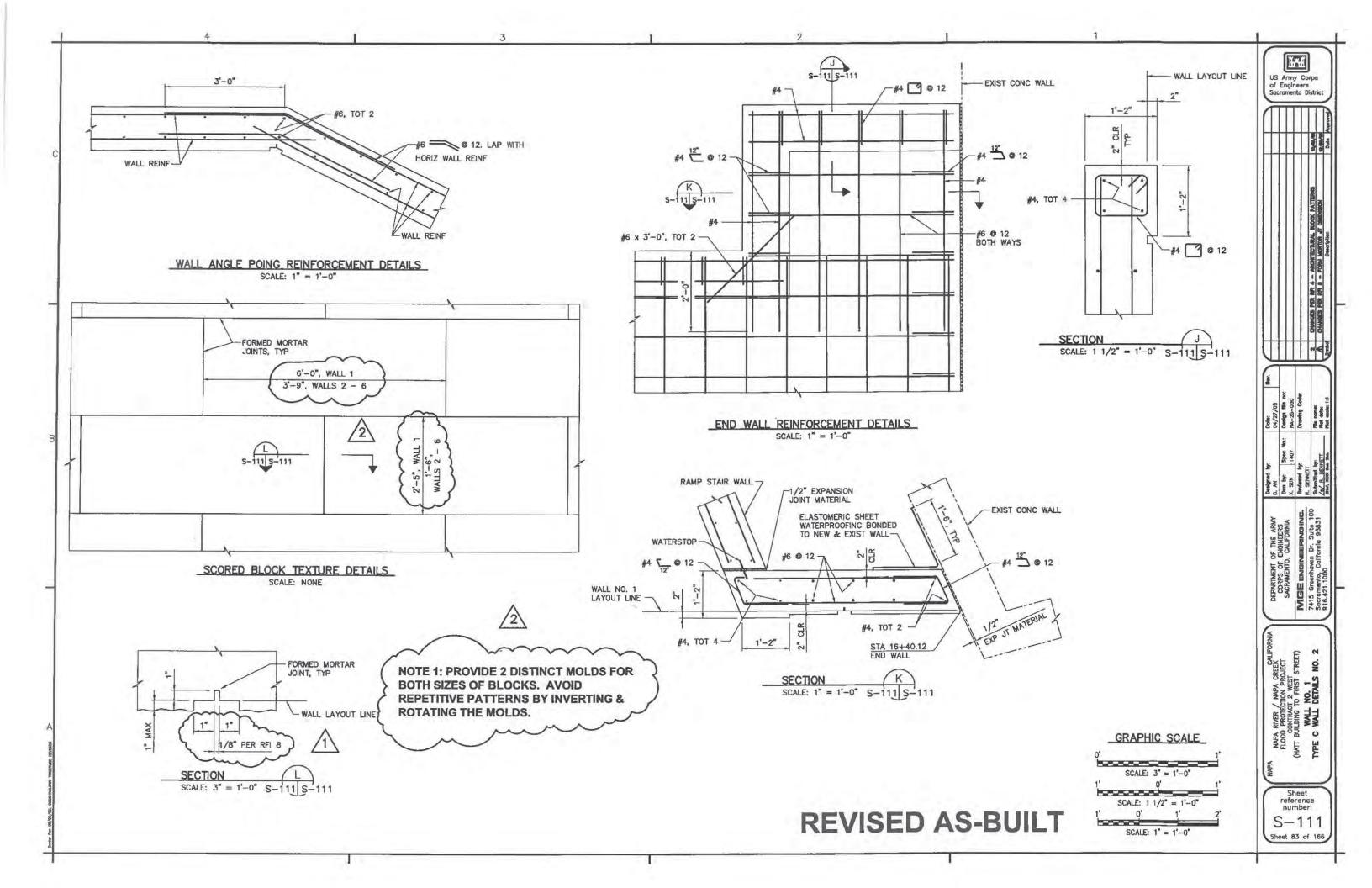


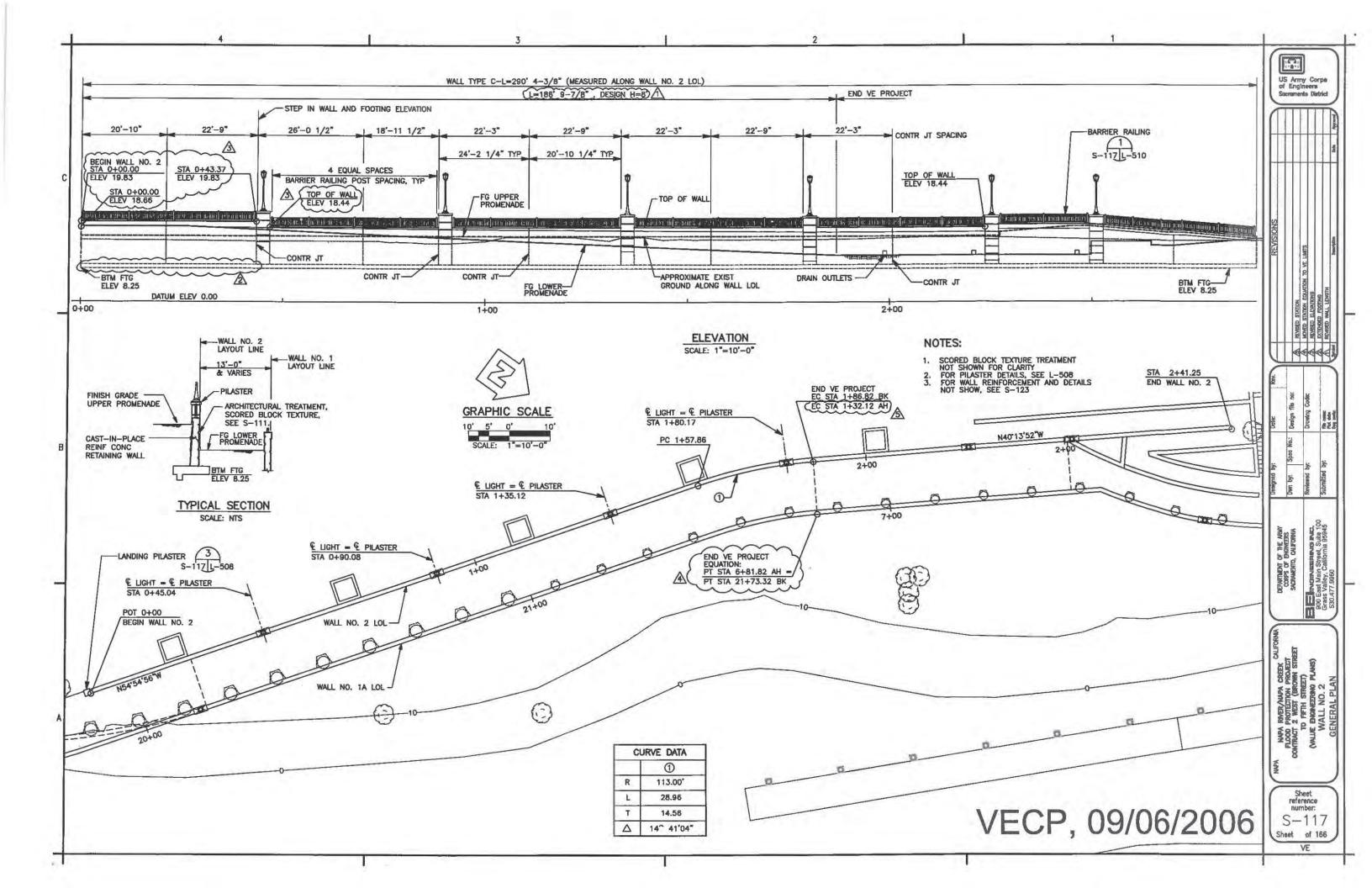


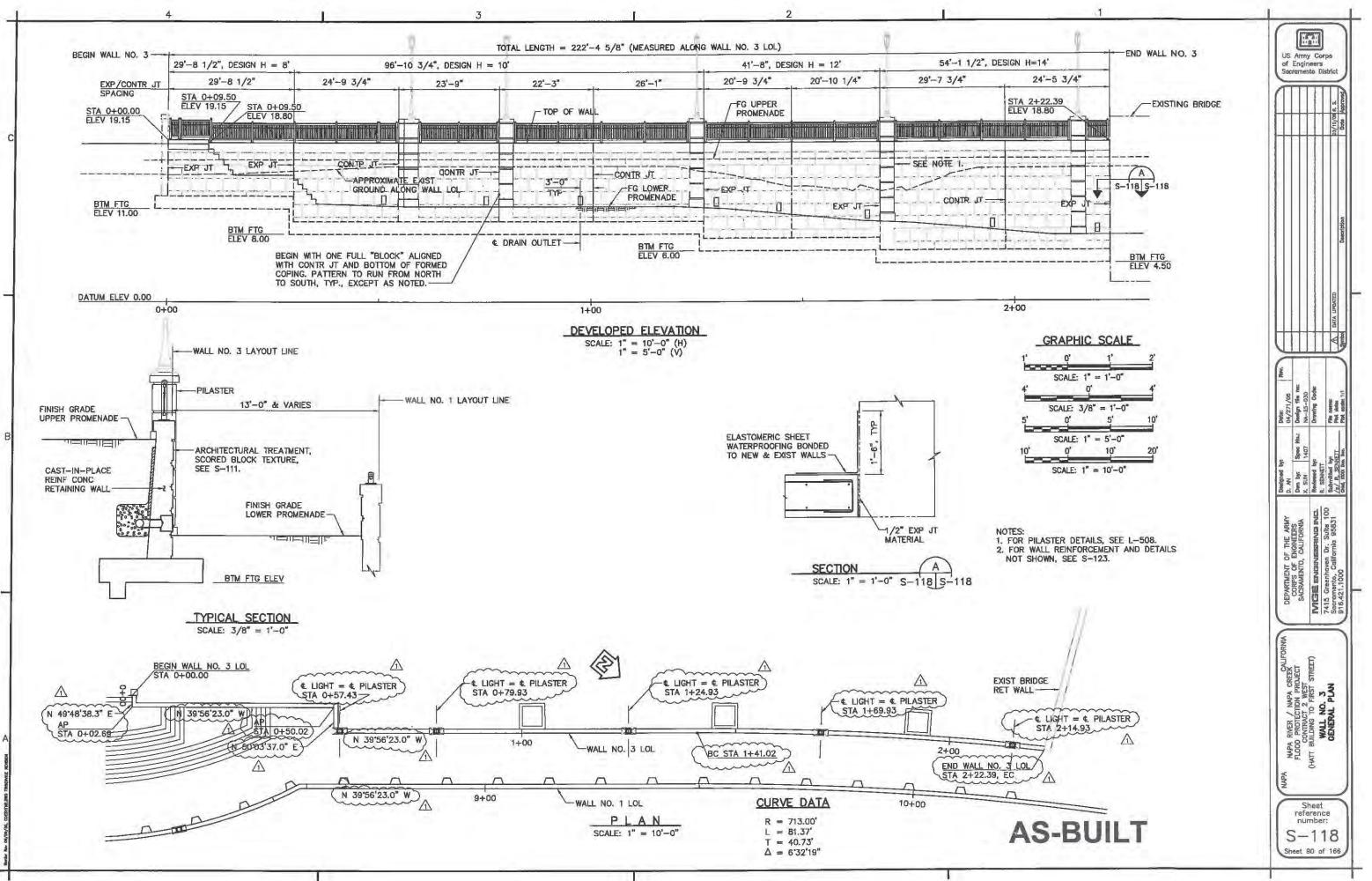


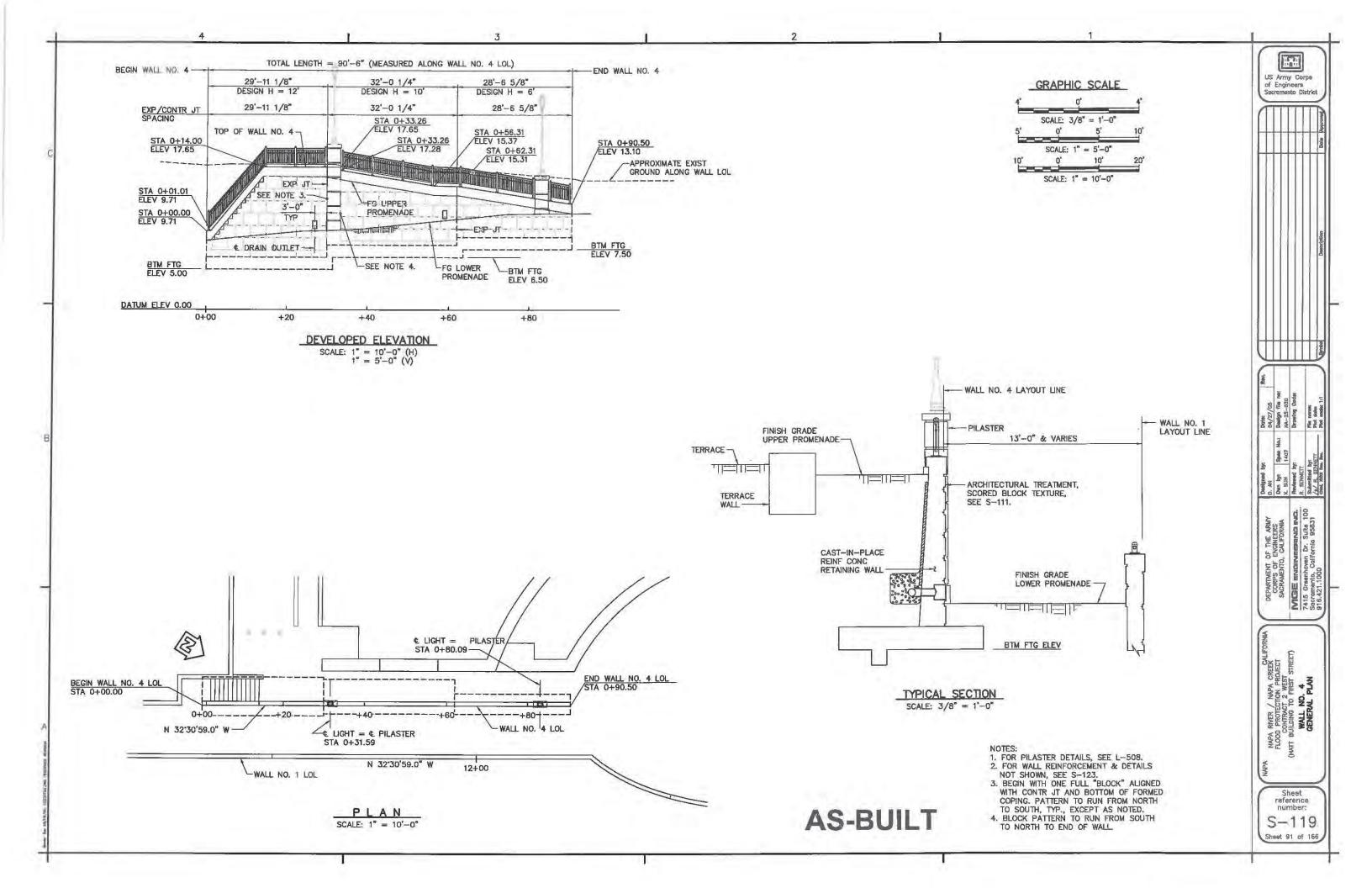


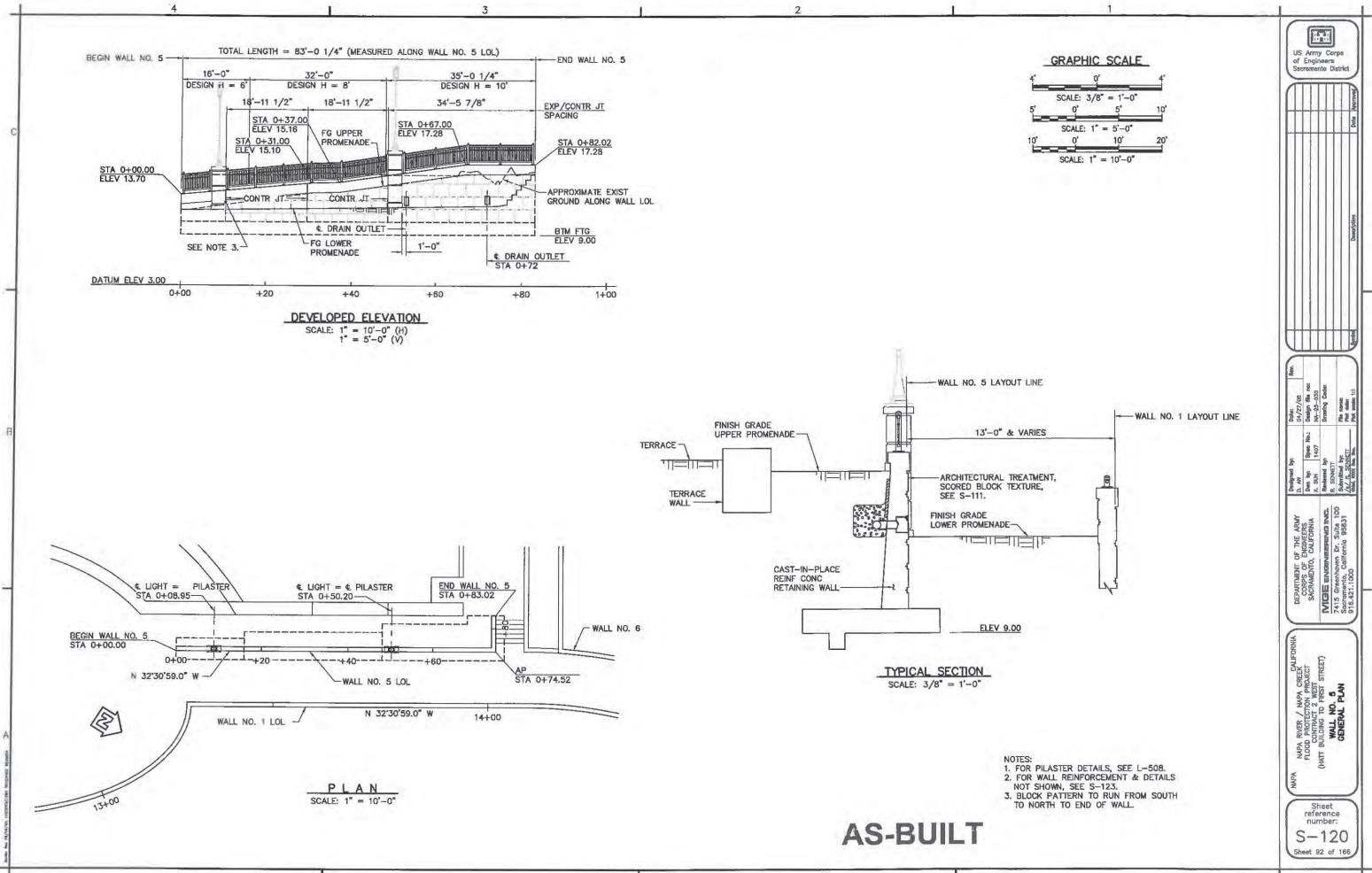


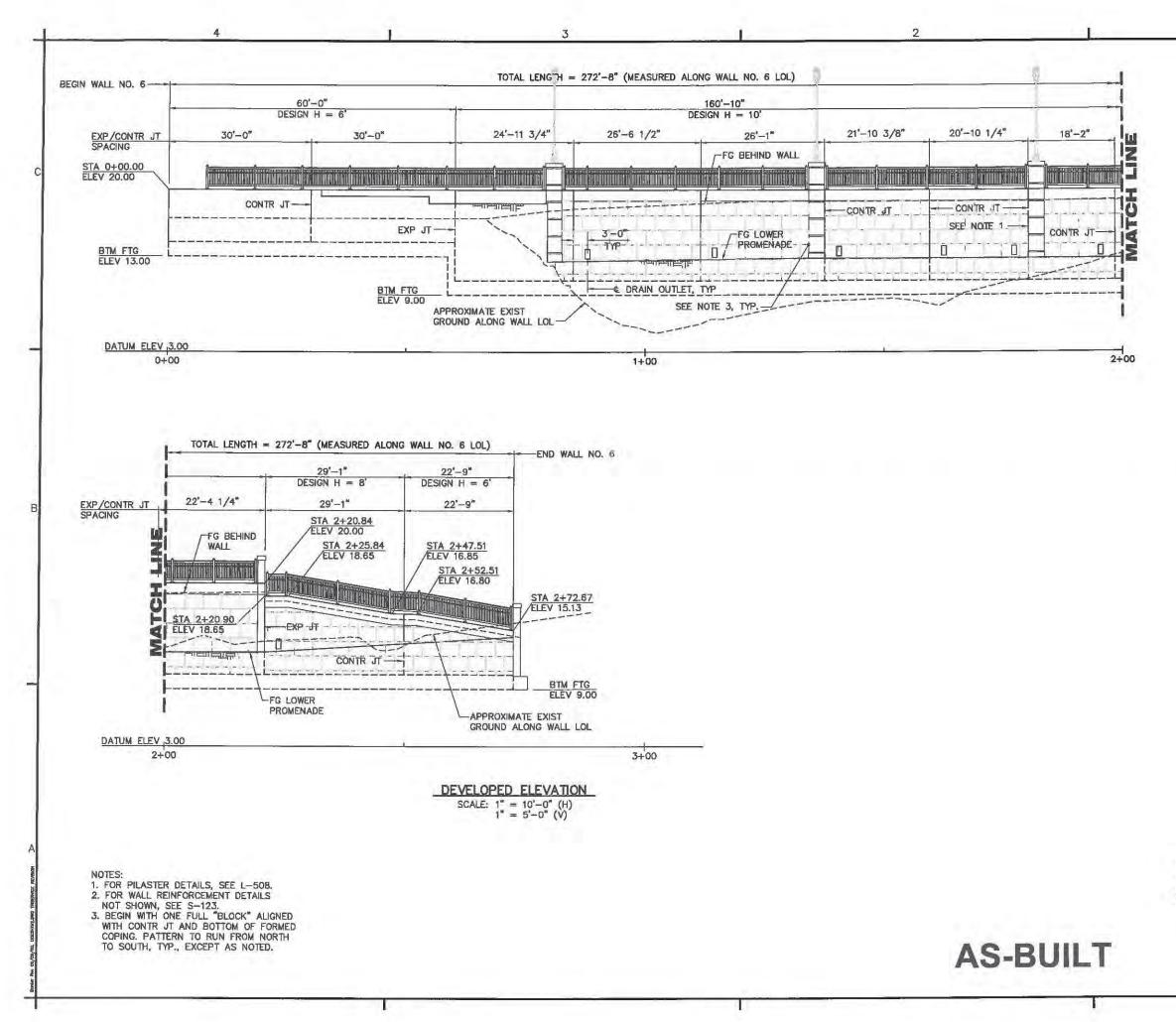


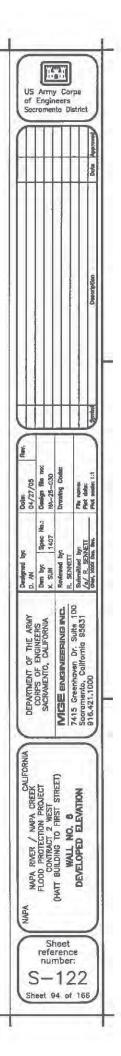


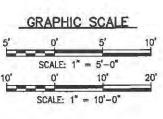


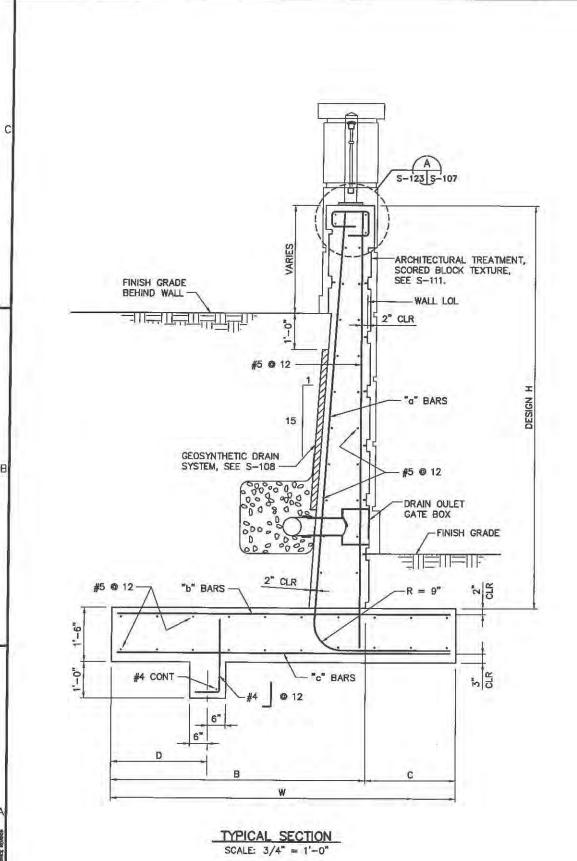




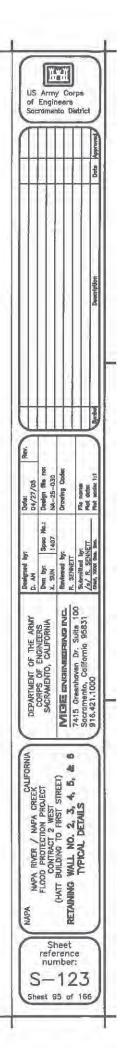






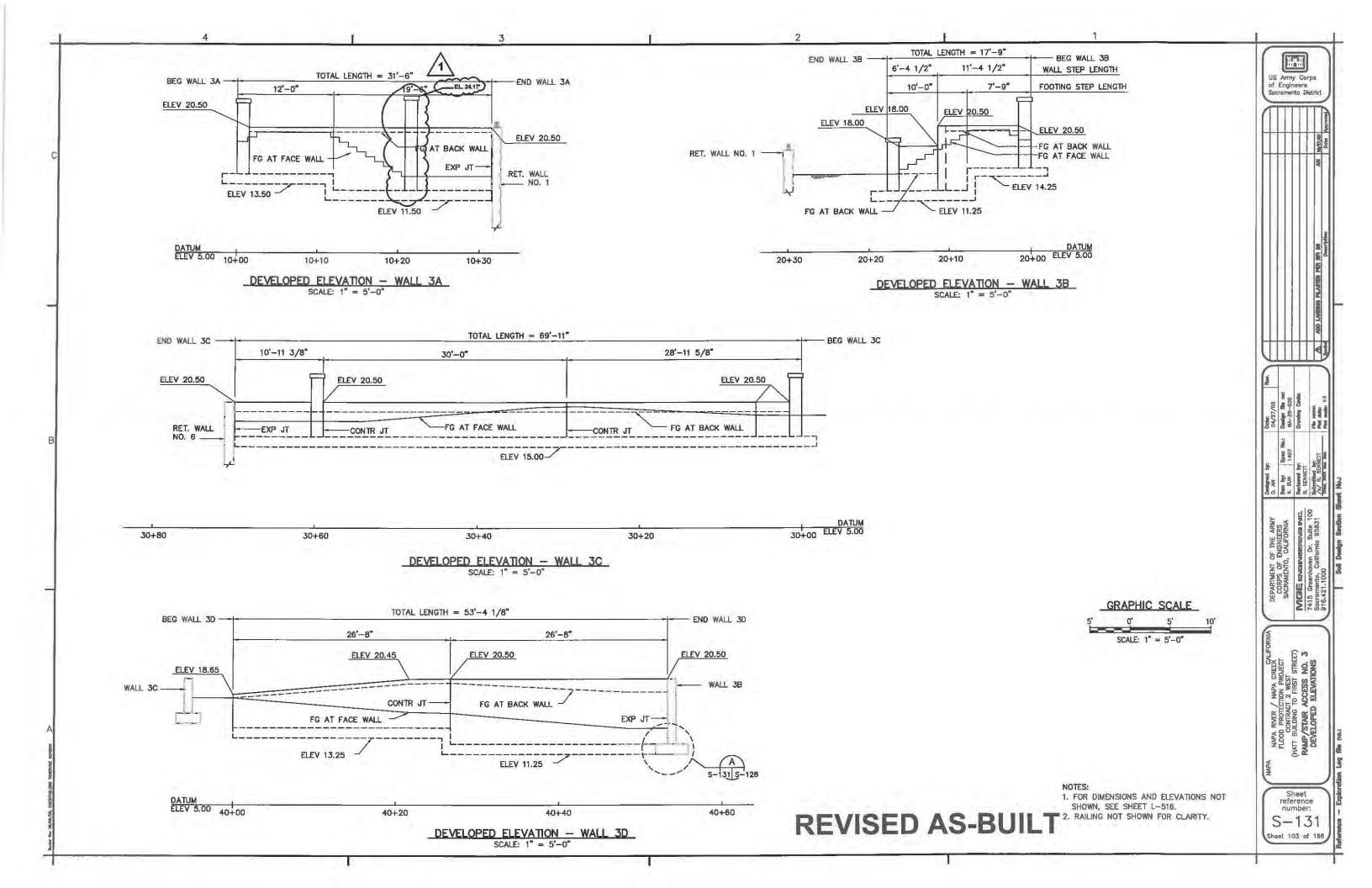


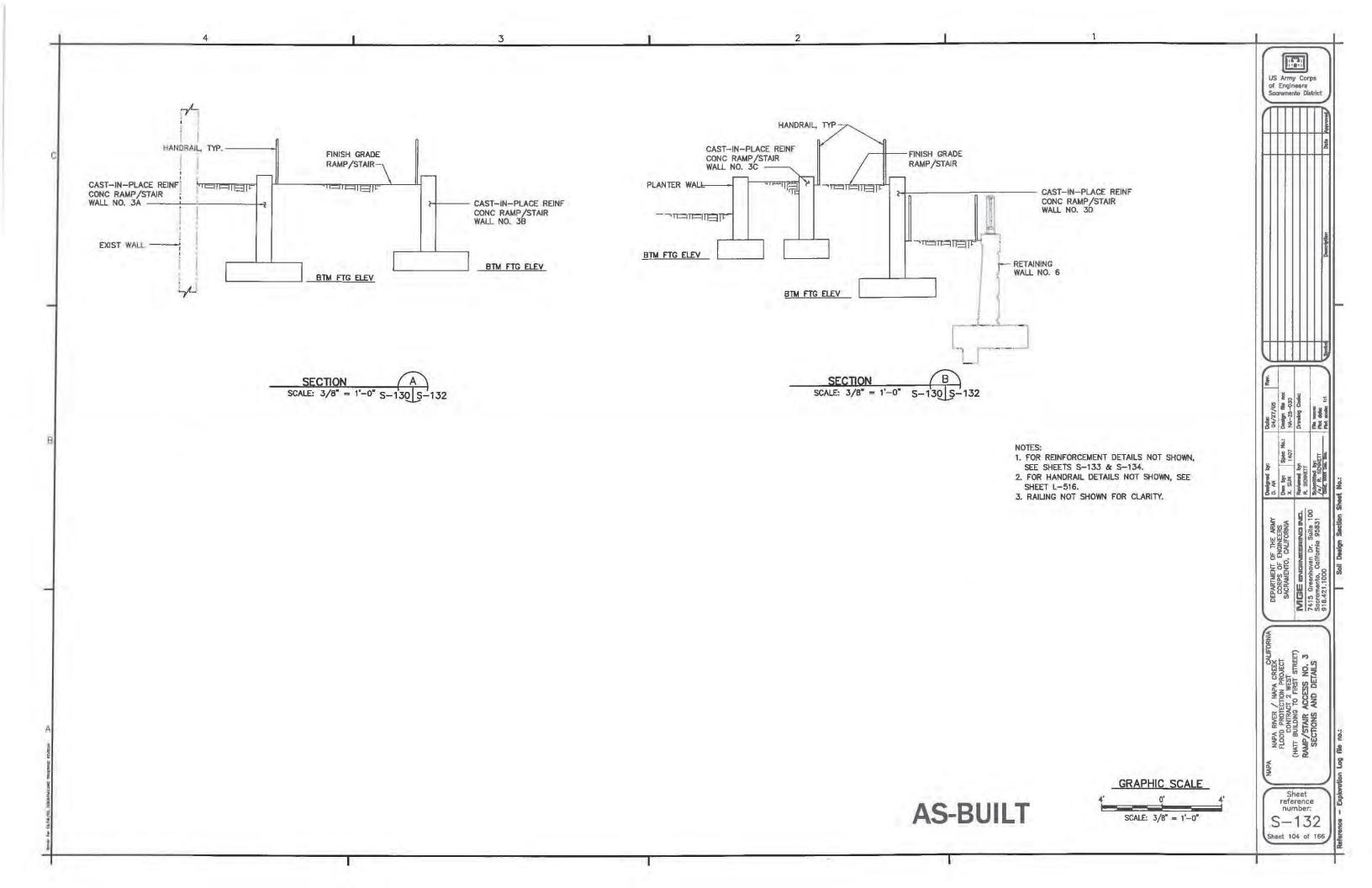
3

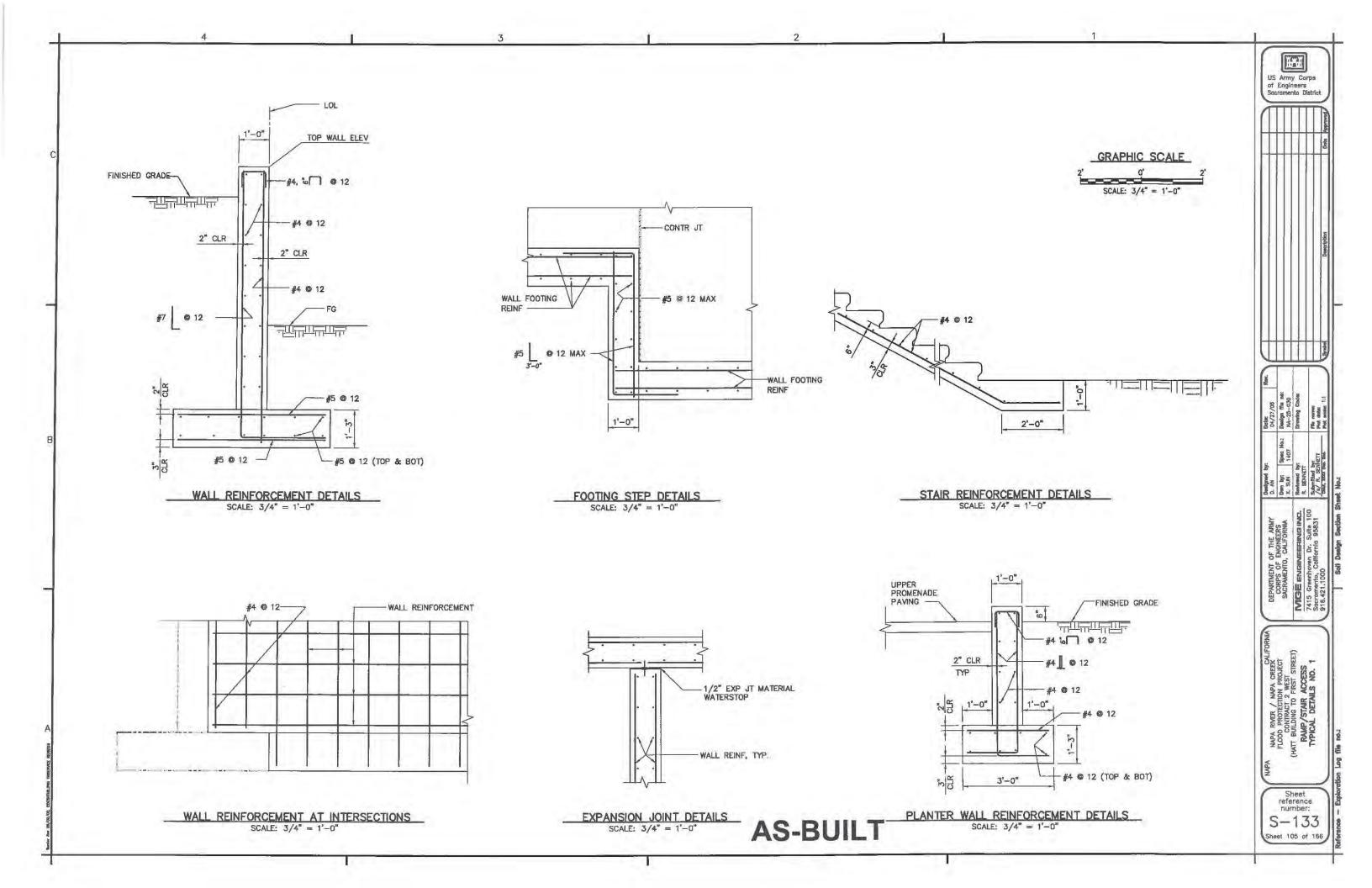

2

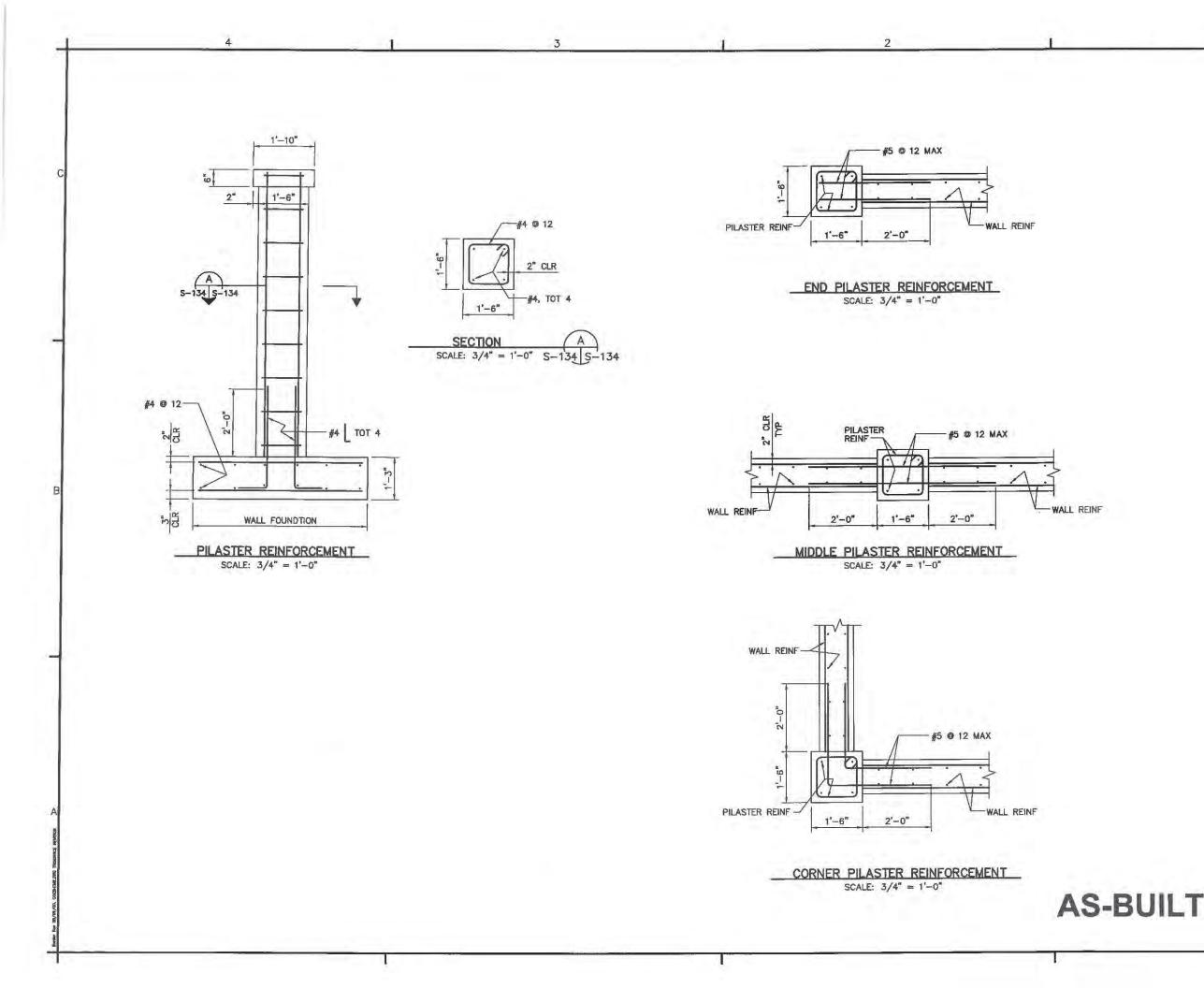
4

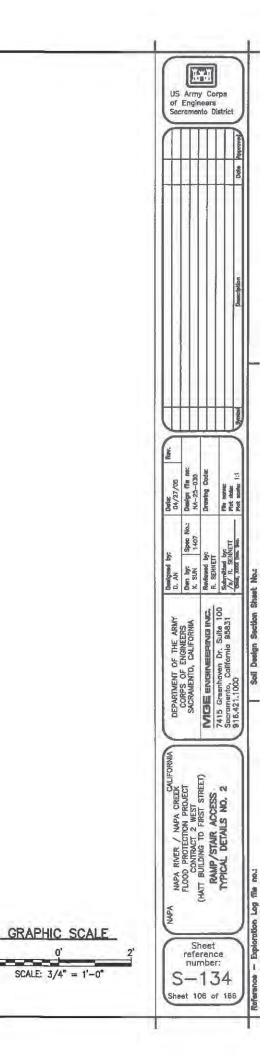
	BLE OF	WALL	DIMEN		
DESIGN H (FT)	6	8	10	12	14
W (Ft)	5.00	6.50	8.50	9.50	11.00
C (Ft)	2.00	2.00	2.00	2.50	2.75
B (Ft)	3.00	4.50	6.50	7.00	8.25
D (Ft)	1.17	1.17	2.17	2.17	2.17
"a" BARS	#5 @ 12	#6 @ 12	#6 0 9	#7 0 9	#8 @ 9
"b" BARS	#4 @ 12	#5 @ 12	#5 @ 12	#6 @ 12	#6 @ 10
"c" BARS	#4 @ 12	#4 @ 12	#5 @ 12	#7 @ 12	#7 @ 10

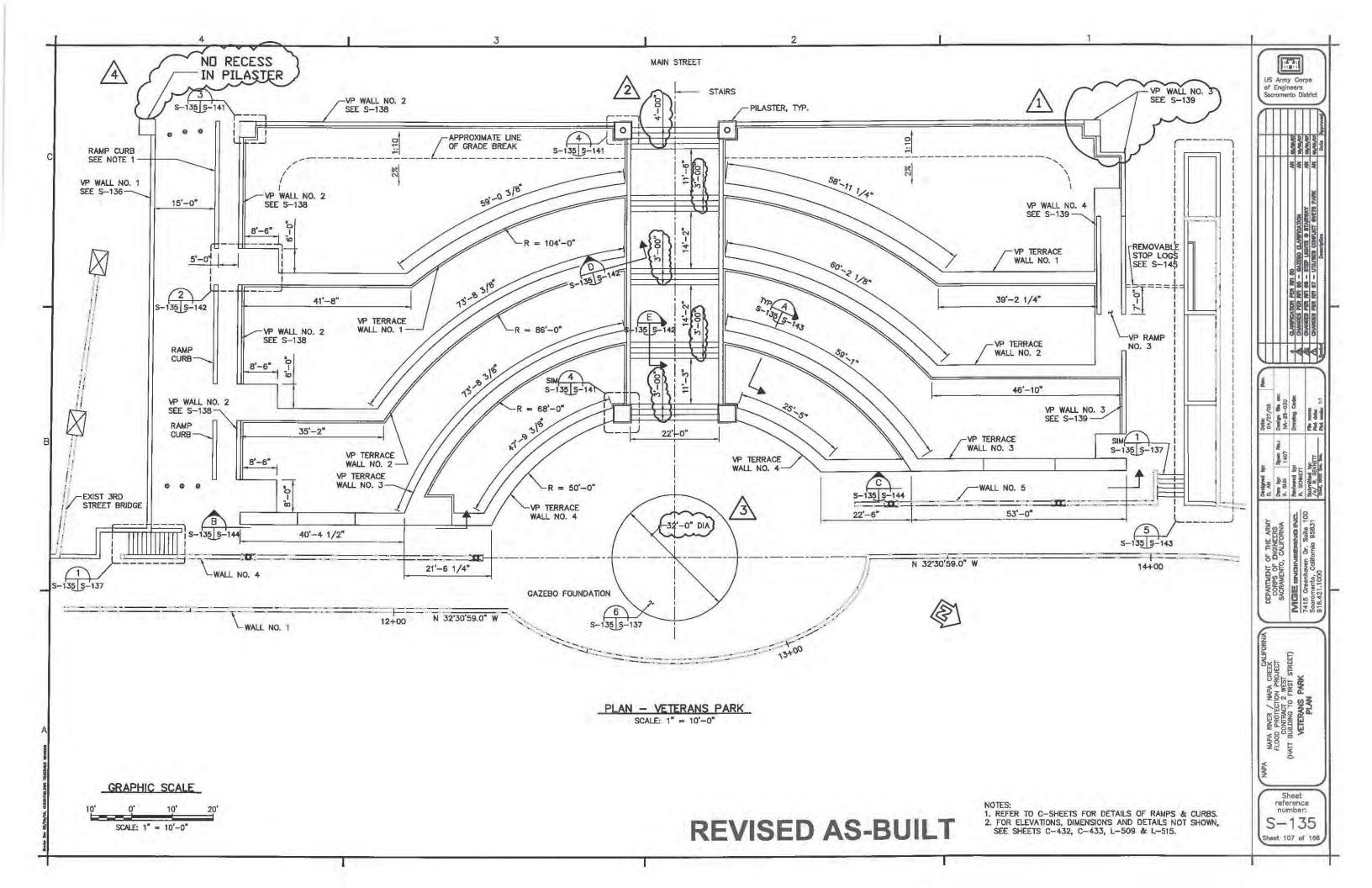

AS-BUILT

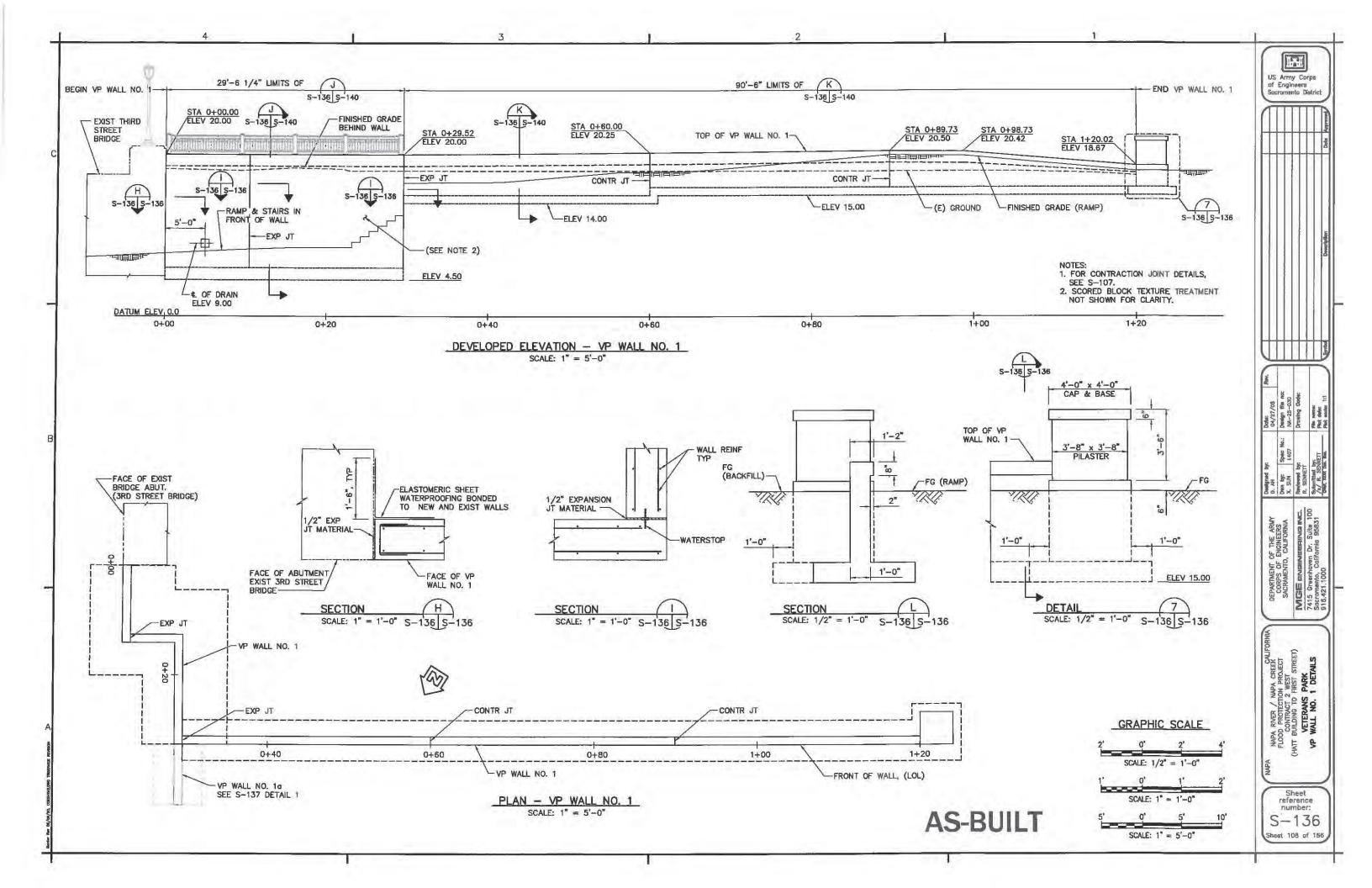


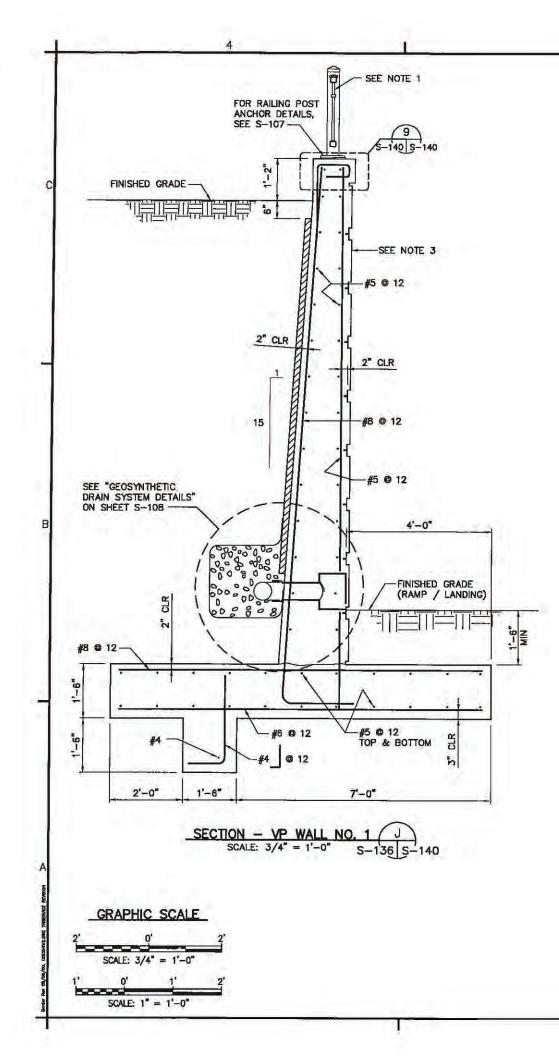

GRAPHIC SCALE 0' SCALE: 3/4" = 1'-0"

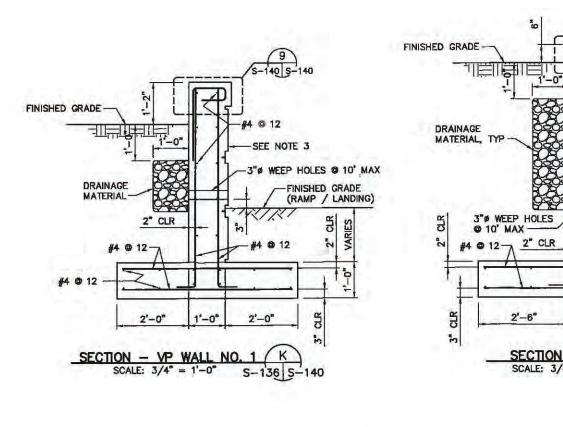

NOTE: 1. FOR OUTLET GATE BOX DETAILS NOT SHOWN, SEE S-108.

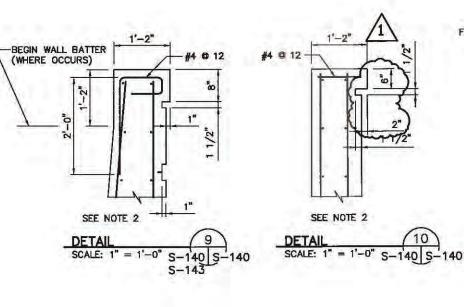

1

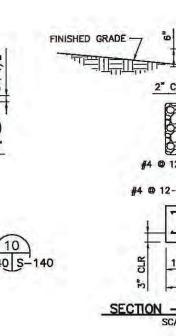


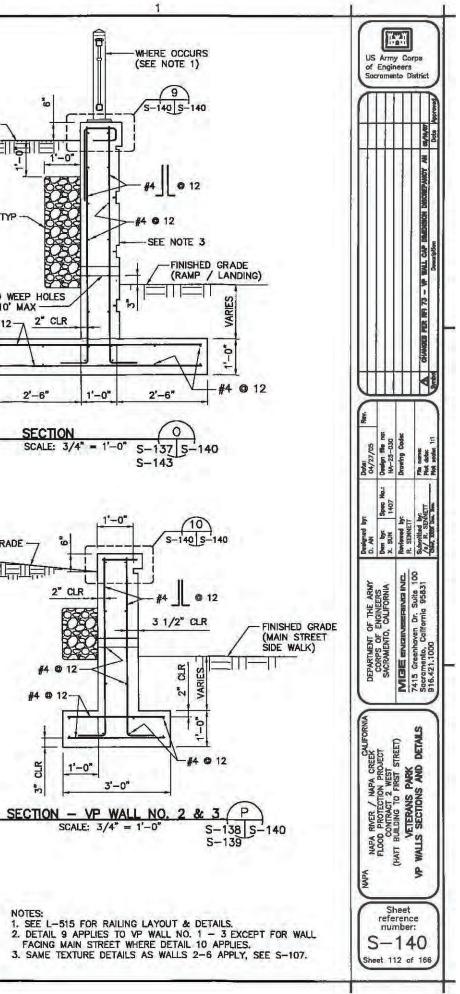


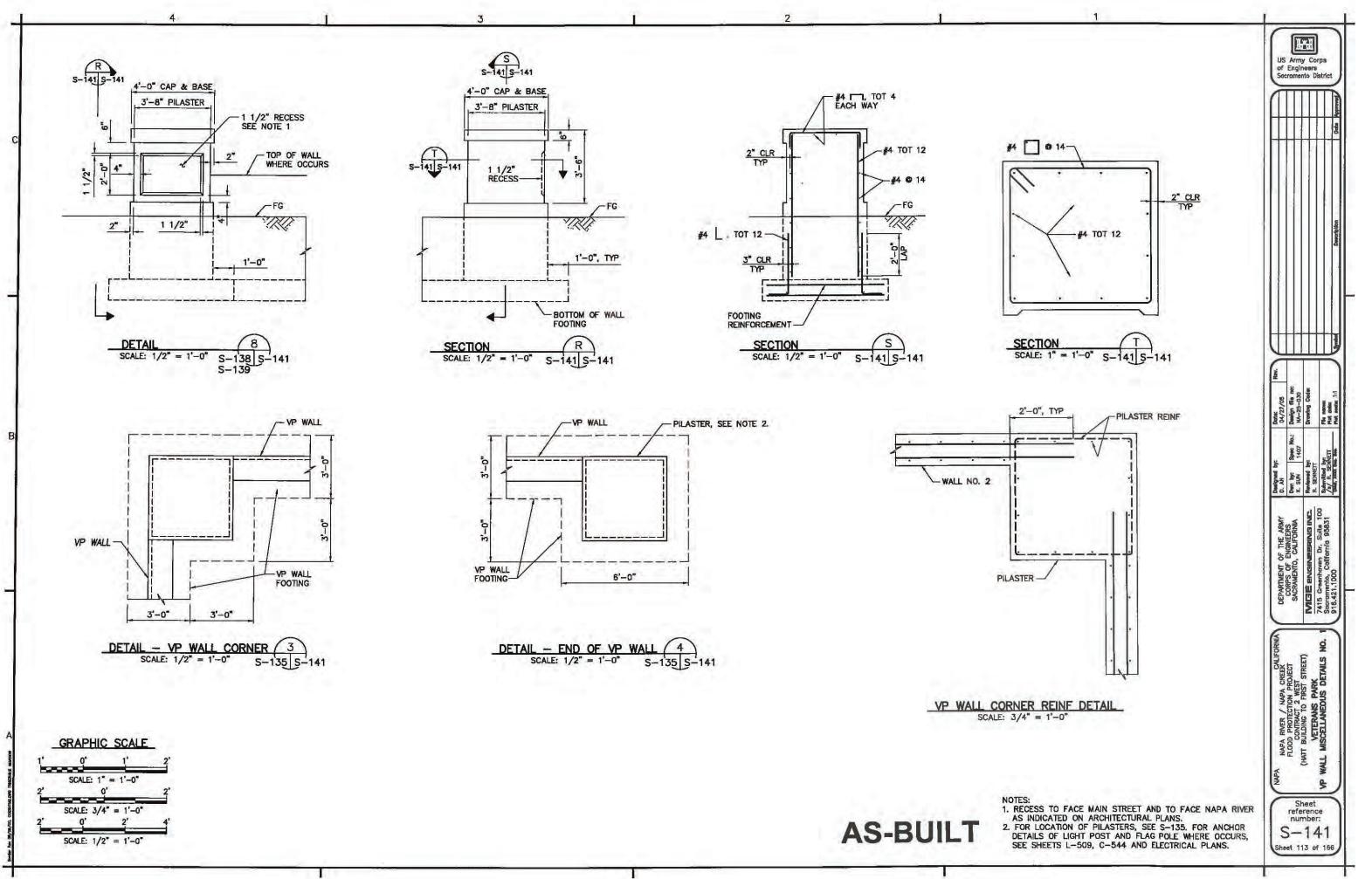


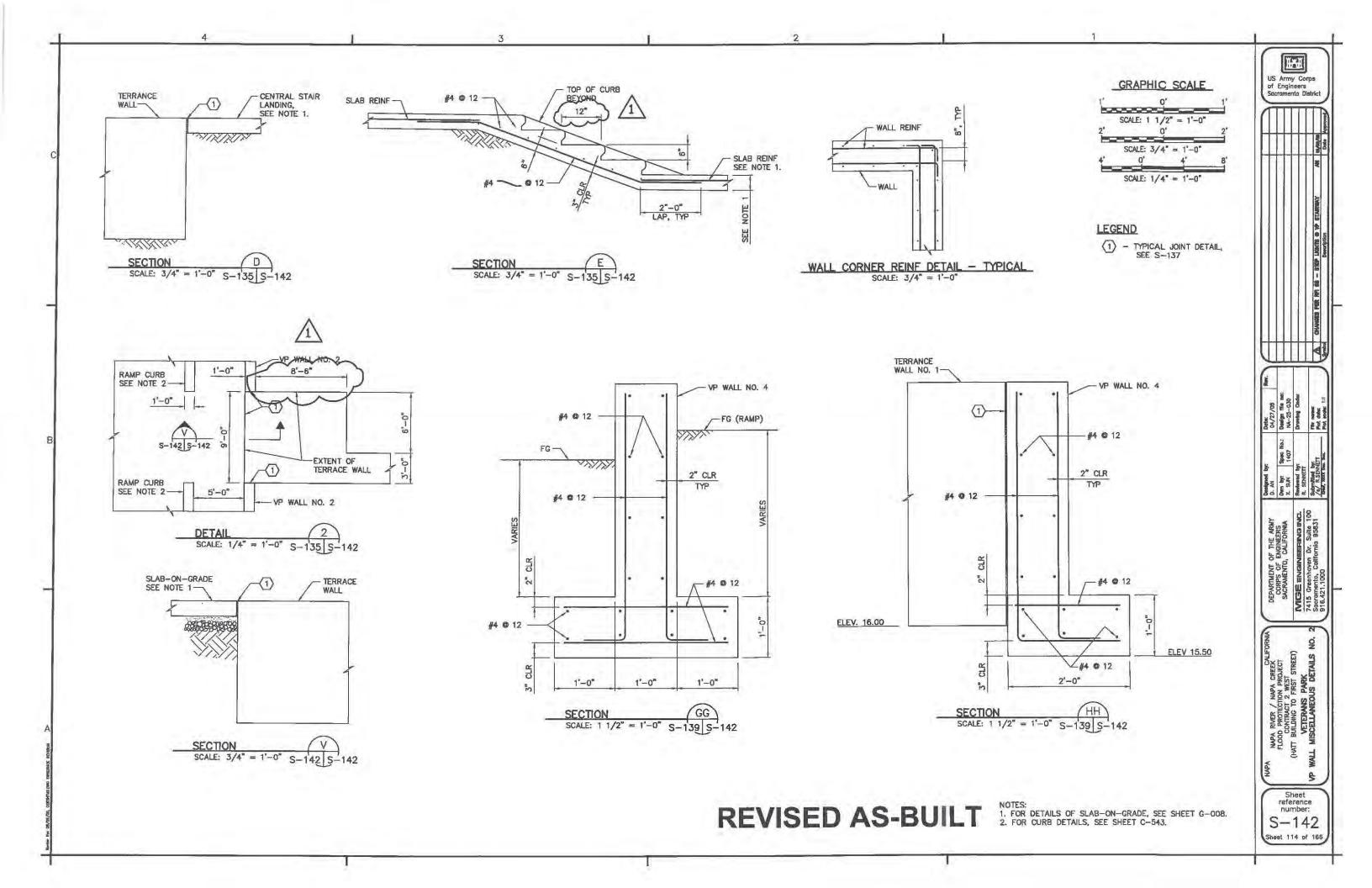

0'

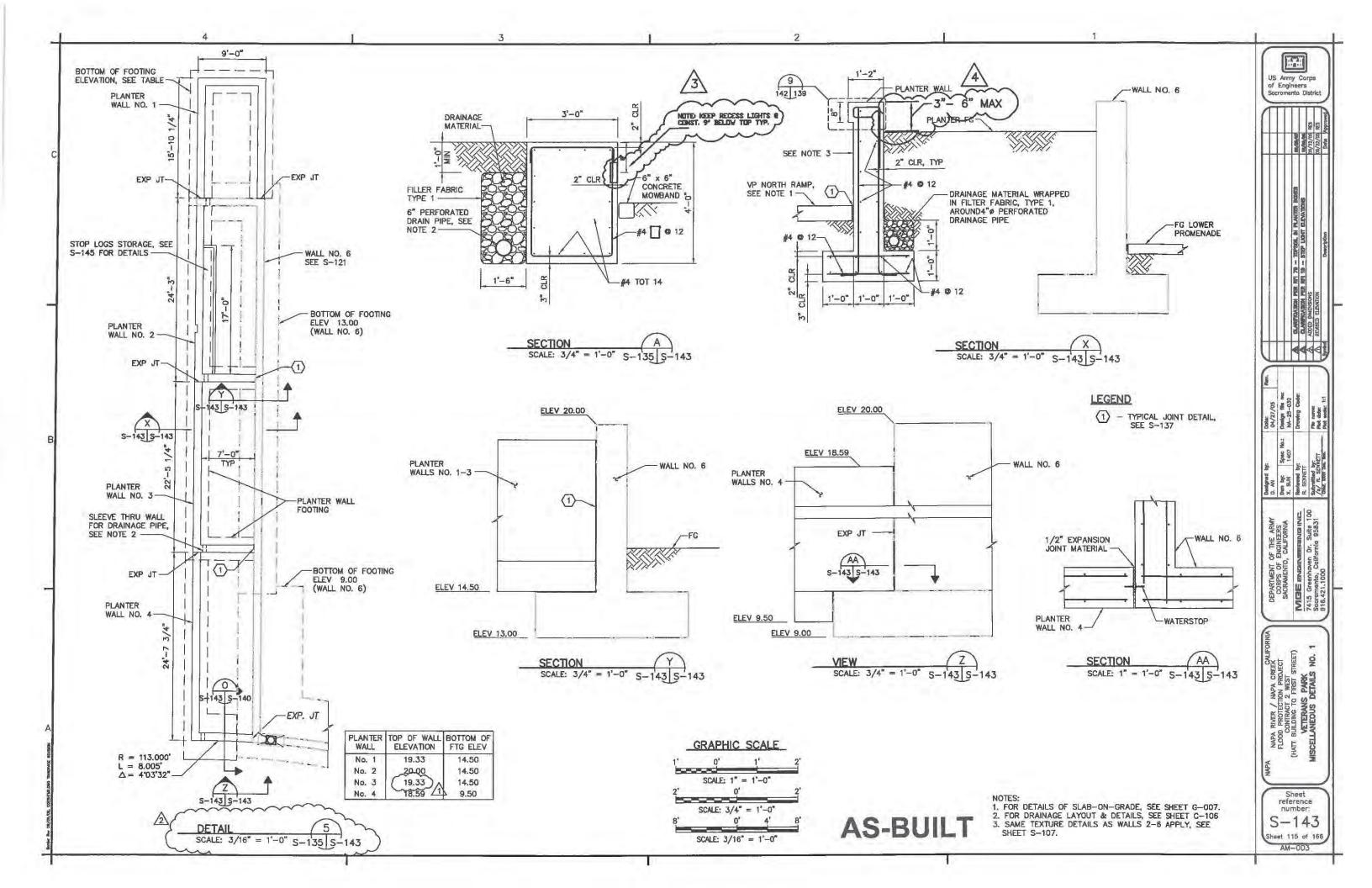

SCALE: 3/4" = 1'-0"








3



REVISED AS-BUILT

Appendix B

Flood Damage Reduction Segment/System Inspection Report

&

Inspection Map

US Army Corps of Engineers®	Flood Damage Red Inspec	luction Segment / S ction Report	System	
Name of Segment / S	System: Napa River, Hatt to 1st Street floodwall			
Public Sponsor(s):	Napa County Flood Control and Water Conservation	n District		
Public Sponsor Repr	esentative: Jeremy Sarrow			
Sponsor Phone:	707-259-8204			
Sponsor Email: j	eremy.sarrow@countyofnapa.org			
Corps of Engineers I	Corps of Engineers Inspector: Micheal Franssen PE and Nathan DeLannoy			07/22/2020
			Inspection End Date:	07/22/2020
Inspection Report Pr	epared By: Nathan DeLannoy		Date Report Prepared:	08/05/2020
Internal Technical R	eview (for Periodic Inspections) By:		Date of ITR:	
Final Approved By:	Marcus Palmer, PE, Levee Safety Officer		Date Approved:	
Type of Inspection:	 Initial Eligibility Inspection Continuing Eligibility Inspection (Routine) Continuing Eligibility Inspection (Periodic) 	Overall Segment / System Rating:	Acceptable Minimally Accept Unacceptable	able
Contents of Report:	Contents of Report:InstructionsNote: In addition to the report contents indicated here, a plan view drawing of the system, with stationing, should be included with this report to reference locations of items rated less than acceptable. Photos of general system condition and any noted deficiencies should also be attached.Concrete FloodwallsNote: This inspection rating represents the Corps evaluation of operations and maintenance of the flood damage reduction system and may be used in conjunction w other information for a levee certification determination for National Flood Insurance Program (NFIP) purposes if applicable. An Acceptable Corps inspection rating, alon does not equate to a certifiable levee for the NFIP. It is recommended for levee systee currently accredited by the Federal Emergency Management Agency (FEMA) for NF purposes receiving a Corps Minimally Acceptable or Unacceptable rating, be evaluat 			reference locations of adition and any noted f operations and e used in conjunction with ational Flood Insurance inspection rating, alone, mended for levee systems Agency (FEMA) for NFIP table rating, be evaluated

Flood Damage Reduction Segment / System Public Sponsor Pre-Inspection Form

The following information is to be provided by the levee district sponsor prior to an inspection. This information will be used to help evaluate the organizational capability of the levee district to manage the levee segment / system maintenance program.

1. Levee segment / system and district: (name of the segment / system and levee district)
Napa River, Hatt to 1st Street floodwall for CESPN
2. Reporting period: (month/day/year to month/day/year)
3. Summary of maintenance required by last inspection report:
None
4. Summary of maintenance performed this reporting period:
Excerising Flap Gate
5. Summary of maintenance planned next reporting period:
Excerising Flap Gate
6. Summary of changes to segment / system since last inspection:
None
7. Problems/ issues requiring the assistance of the US Army Corps of Engineers:
None

Public Sponsor Pre-Inspection Report

The following information is to be provided by the levee district sponsor prior to an inspection

Name	Position	Mailing Address	Phone Number	Email Address
Jeremy Sorrow	Resources Specialist	804 First Street, Napa, CA 94559	707-259-8204	jeremy.sarrow@countyofnapa.org

8. Levee district organization: (elected or appointed levee district officials and key employees)

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Pre-Inspection Form Page 2 of 2

General Instructions for the Inspection of Flood Damage Reduction Segments / Systems

A. Purpose of USACE Inspections:

The primary purpose of these inspections is to prevent loss of life and catastrophic damages; preserve the value of Federal investments, and to encourage non-Federal sponsors to bear responsibility for their own protection. Inspections should assure that Flood Damage Reduction structures and facilities are continually maintained and operated as necessary to obtain the maximum benefits. Inspections are also conducted to determine eligibility for Rehabilitation Assistance under authority of PL 84-99 for Federal and non-Federal systems. (ER 1130-2-530, ER 500-1-1)

B. Types of Inspections:

The Corps conducts several types of inspections of Flood Damage Reduction systems, as outlined below:

Initial Eligibility Inspections	Continuing Eligibility Inspections		
initial Englomity inspections	Routine Inspections	Periodic Inspections	
IEIs are conducted to determine whether a non- Federally constructed Flood Damage Reduction system meets the minimum criteria and standards set forth by the Corps for initial inclusion into the Rehabilitation and Inspection Program.	RIs are intended to verify proper maintenance, owner preparedness, and component operation.	PIs are intended to verify proper maintenance and component operation and to evaluate operational adequacy, structural stability, and safety of the system. Periodic Inspections evaluate the system's original design criteria vs. current design criteria to determine potential performance impacts, evaluate the current conditions, and compare the design loads and design analysis used against current design standards. This is to be done to identify components and features for the sponsor that need to be monitored more closely over time or corrected as needed. (Periodic Inspections are used as the basis of risk assessments.)	

C. Inspection Boundaries:

Inspections should be conducted so as to rate each Flood Damage Reduction "Segment" of the system. The overall system rating will be the lowest segment rating in the system.

Project	System	Segment
A flood damage reduction project is made up of one	A flood damage reduction system is made up of one or more flood damage	A flood damage reduction segment is defined as a discrete
or more flood damage reduction systems which were	reduction segments which collectively provide flood damage reduction to a	portion of a flood damage reduction system that is operated and
under the same authorization.	defined area. Failure of one segment within a system constitutes failure of the	maintained by a single entity. A flood damage reduction
	entire system. Failure of one system does not affect another system.	segment can be made up of one or more features (levee,
		floodwall, pump stations, etc).

D. Land Use Definitions:

The following three definitions are intended for use in determining minimum required inspection intervals and initial requirements for inclusion into the Rehabilitation and Inspection Program. Inspections should be considered for all systems that would result in significant environmental or economic impact upon failure regardless of specific land use.

Agricultural	Rural	Urban
Protected population in the range of zero to 5	Protected population in the range	Greater than 20 households per square mile; major industrial areas with significant infrastructure investment.
households per square mile protected.	of 6 to 20 households per square	Some protected urban areas have no permanent population but may be industrial areas with high value
	mile protected.	infrastructure with no overnight population.

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall (NRN1) General Instructions Page 1 of 3

E. Use of the Inspection Report Template:

The report template is intended for use in all Army Corps of Engineers inspections of levee and floodwall systems and flood damage reduction channels. The section of the template labeled "Initial Eligibility" only needs to be completed during Initial Eligibility Inspections of Non-Federally constructed Flood Damage Reduction Systems. The section labeled "General Items" needs to be completed with every inspection, along with all other sections that correspond to features in the system. The section labeled "Public Sponsor Pre-Inspection Report" is intended for completion before the inspection, if possible.

F. Individual Item / Component Ratings:

Assessment of individual components rated during the inspection should be based on the criteria provided in the inspection report template, though inspectors may incorporate additional items into the report based on the characteristics of the system. The assessment of individual components should be based on the following definitions.

Acceptable Item	Minimally Acceptable Item	Unacceptable Item
The inspected item is in satisfactory condition, with no deficiencies, and will function as intended during the next flood event.	The inspected item has one or more minor deficiencies that need to be corrected. The minor deficiency or deficiencies will not seriously impair the functioning of the item as intended during the next flood event.	The inspected item has one or more serious deficiencies that need to be corrected. The serious deficiency or deficiencies will seriously impair the functioning of the item as intended during the next flood event.

G. Overall Segment / System Ratings:

Determination of the overall system rating is based on the definitions below. Note that an Unacceptable System Rating may be either based on an engineering determination that concluded that noted deficiencies would prevent the system from functioning as intended during the next flood event, or based on the sponsor's demonstrated lack of commitment or inability to correct serious deficiencies in a timely manner.

Acceptable System	Minimally Acceptable System	Unacceptable System
All items or components are rated as Acceptable.	One or more items are rated as Minimally Acceptable or one or more items are rated as Unacceptable and an engineering determination concludes that the Unacceptable items would not prevent the segment / system from performing as intended during the next flood event.	One or more items are rated as Unacceptable and would prevent the segment / system from performing as intended, or a serious deficiency noted in past inspections (which had previously resulted in a minimally acceptable system rating) has not been corrected within the established timeframe, not to exceed two years.

H. Eligibility for PL84-99 Rehabilitation Assistance:

Inspected systems that are not operated and maintained by the Federal government may be Active in the Corps' Rehabilitation and Inspection Program (RIP) and eligible for rehabilitation assistance from the Corps as defined below:

If the Overall System Rating is Acceptable	If the Overall System Rating is Minimally Acceptable	If the Overall System Rating is Unacceptable
The system is active in the RIP and eligible for PL84-99 rehabilitation assistance.	The system is Active in the RIP during the time that it takes to make needed corrections. Active systems are eligible for rehabilitation assistance. However, if the sponsor does not present USACE with proof that serious deficiencies (which had previously resulted in a minimally acceptable system rating) were corrected within the established timeframe, then the system will become Inactive in the RIP.	The system is Inactive in the RIP, and the status will remain Inactive until the sponsor presents USACE with proof that all items rated Unacceptable have been corrected. Inactive systems are ineligible for rehabilitation assistance.

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall (NRN1) General Instructions Page 2 of 3

I. Reporting:

After the inspection, the Corps is responsible for assembling an inspection report (or a summary report if it was a Periodic Inspection) including the following information:

- a. All sections of the report template used during the inspection, including the cover and pre-inspection materials. (Supplemental data collected, and any sections of the template that weren't used during the inspection do not need to be included with the report.)
- b. Photos of the general system condition and noted deficiencies.
- c. A plan view drawing of the system, with stationing, to reference locations of items rated less than acceptable.
- d. The relative importance of the identified maintenance issues should be specified in the transmittal letter.
- e. If the Overall System Rating is Minimally Acceptable, the report needs to establish a timeframe for correction of serious deficiencies noted (not to exceed two years) and indicate that if these items are not corrected within the required timeframe, the system will be rated as Unacceptable and made Inactive in the Rehabilitation Inspection Program.

J. Notification:

Reports are to be disseminated as follows within 30 days of the inspection date.

If the Overall System Rating is Acceptable	If the Overall System Rating is Minimally Acceptable	If the Overall System Rating is Unacceptable
Reports need to be provided to the local sponsor and the county emergency management agency.	Reports need to be provided to the local sponsor, state emergency management agency, county emergency management agency, and to the FEMA region.	Reports need to be provided to the local sponsor, state emergency management agency, county emergency management agency, FEMA region, and to the Congressional delegation within 30 days of the inspection.

General Items for All Flood Damage Reduction Segments / Systems

	Rated Item	Rating		Rating Guidelines	Location/Remarks/Recommendations	
1	1. Operations and A A Maintenance Manuals			Levee Owner's Manual, O&M Manuals, and/or manufacturer's operating instructions are present.	Our current Operations and Maintenance Manual is kept in sponsor's office along with a digit copy kept on their server.	
		M Sponsor manuals are lost or missing or out of date; however, sponsor will obtain manuals prior to next scheduled inspection.				
			U	Sponsor has not obtained lost or missing manuals identified during previous inspection.		
2.	Emergency Supplies and Equipment	Supplies and	plies and		The sponsor maintains a stockpile of sandbags, shovels, and other flood fight supplies which will adequately supply all needs for the initial days of a flood fight. Sponsor determines required quantity of supplies after consulting with inspector.	The District's Emergency Supplies and Equipment are located at 933 Water St. Supplies consist of sand bags, shovels, sand for the sand bags, chain saws, flash lights,
	(A or M only)		М	The sponsor does not maintain an adequate supply of flood fighting materials as part of their preparedness activities.	barriers, a grip hoist, and other various flood fighting supplies.	
3	. Flood Preparedness and Training (A or M only)	Α		Sponsor has a written system-specific flood response plan and a solid understanding of how to operate, maintain, and staff the FDR system during a flood. Sponsor maintains a list of emergency contact information for appropriate personnel and other emergency response agencies.	Annual flood fighting training program conducted by the CA Department of Water Resources at the Napa Sheriff's Department each fall.	
				The sponsor maintains a good working knowledge of flood response activities, but documentation of system-specific emergency procedures and emergency contact personnel is insufficient or out of date.		

For use during all inspections of all Flood Damage Reduction Segments / Systems

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall General Items for All Flood Damage Reduction Segments / Systems Page 1 of 1

US Army Corps of Engineers®

For use during Initial and Continuing Eligibility Inspections of all floodwalls

Rated Item	Rating		Rating Guidelines	Location/Remarks/Recommendations
 Unwanted Vegetation Growth¹ 	A	A	A grass-only or paved zone is maintained on both sides of the floodwall, free of all trees, brush, and undesirable weeds. The vegetation-free zone extends 15 feet from both the land and riverside of the floodwall, at ground-level, to the centerline of the tree. Additionally, an 8-foot root-free zone is maintained around the entire structure, including the floodwall toe, heel, and any toe-drains. If the floodwall access easement doesn't extend to the described limits, then the vegetation-free zone must be maintained to the easement limits. Reference EM 1110-2-301 and/or Corps policy for regional vegetation variance.	
		М	Minimal vegetation growth (brush, weeds, or trees 2 inches in diameter or smaller) is present within the zones described above. This vegetation must be removed but does not currently threaten the operation or integrity of the floodwall.	
		U	Significant vegetation growth (brush, weeds, or any trees greater than 2 inches in diameter) is present within the zones described above. This vegetation threatens the operation or integrity of the floodwall and must be removed.	
2. Encroachments	Α	A	No trash, debris, unauthorized structures, excavations, or other obstructions present within the easement area. Encroachments have been previously reviewed by the Corps, and it was determined that they do not diminish proper functioning of the floodwall.	NRN1_2020_a_0005: Station_1 NA: Station_2 NA: landscaping anchors.: Monitor. (A) NRN1_2020_a_0006: Station_1 NA: City dock access.: No action required at this time. (A)
		М	Trash, debris, unauthorized structures, excavations, or other obstructions present, or inappropriate activities noted that should be corrected but will not inhibit operations and maintenance or emergency operations. Encroachments have not been reviewed by the Corps.	
		U	Unauthorized encroachments or inappropriate activities noted are likely to inhibit operations and maintenance, emergency operations, or negatively impact the integrity of the floodwall.	
3. Closure Structures (Stop Log Closures and Gates)	Α	A	Closure structure in good repair. Placing equipment, stoplogs, and other materials are readily available at all times. Components are clearly marked and installation instructions/ procedures readily available. Trial erections have been accomplished in accordance with the O&M Manual.	NRN1_2020_a_0003: Station_1 NA: Log closure area.: No action required at this time. (A)
(A or U only)		U	Any of the following issues is cause for this rating: Closure structure in poor condition. Parts missing or corroded. Placing equipment may not be available within the anticipated warning time. The storage vaults cannot be opened during the time of inspection. Components of closure are not clearly marked and installation instructions/ procedures are not readily available. Trial erections have not been accomplished in accordance with the O&M Manual.	
		N/A	There are no closure structures along this component of the FDR segment / system.	
4. Concrete Surfaces	A	A	Negligible spalling, scaling or cracking. If the concrete surface is weathered or holds moisture, it is still satisfactory but should be seal coated to prevent freeze/ thaw damage.	NRN1_2020_a_0007: Station_1 NA: Spalling was observed on concrete floor. Minor spall has no bearing on the integrity of the floodwall.: No action required at this time. (A)
		М	Spalling, scaling, and open cracking present, but the immediate integrity or performance of the structure is not threatened. Reinforcing steel may be exposed. Repairs/ sealing is necessary to prevent additional damage during periods of thawing and freezing.	

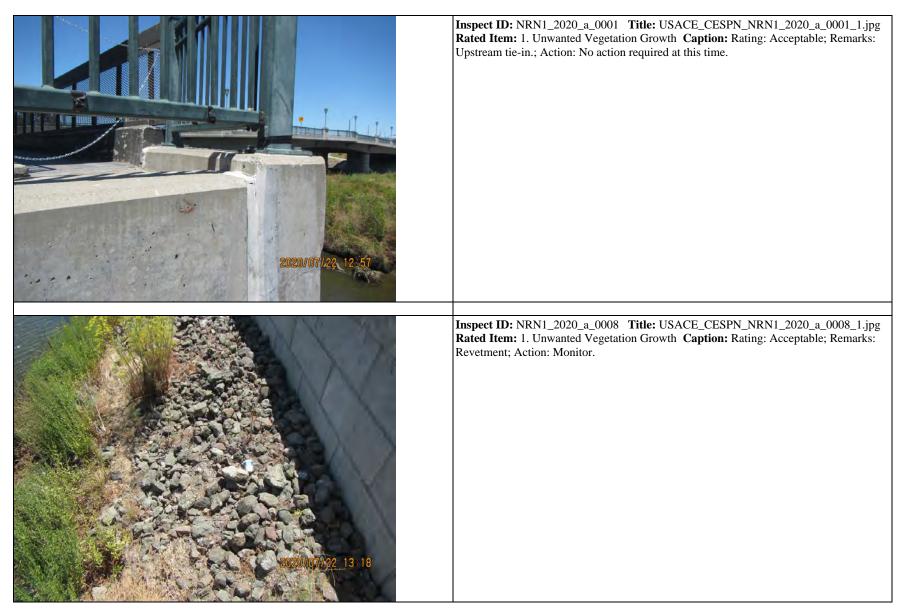
Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

For use during Initial and Continuing Eligibility Inspections of all floodwalls

Rated Item	Rating		Rating Guidelines	Location/Remarks/Recommendations
			Surface deterioration or deep cracks present that may result in an unreliable structure. Any surface deterioration that exposes the sheet piling or lies adjacent to monolith joints may indicate underlying reinforcement corrosion and is unacceptable.	
5. Tilting, Sliding or Settlement of	Α	A	There are no significant areas of tilting, sliding, or settlement that would endanger the integrity of the structure.	No tilting, sliding or settlement of concrete floodwall was observed during PI.
Concrete Structures ²			There are areas of tilting, sliding, or settlement (either active or inactive) that need to be repaired. The maximum offset, either laterally or vertically, does not exceed 2 inches unless the movement can be shown to be no longer actively occurring. The integrity of the structure is not in danger.	
			There are areas of tilting, sliding, or settlement (either active or inactive) that threaten the structure's integrity and performance. Any movement that has resulted in failure of the waterstop (possibly identified by daylight visible through the joint) is unacceptable. Differential movement of greater than 2 inches between any two adjacent monoliths, either laterally or vertically, is unacceptable unless it can be shown that the movement is no longer active. Also, if the floodwall is of I-wall construction, then any visible or measurable tilting of the wall toward the protected side that has created an open horizontal crack on the riverside base of a monolith is unacceptable.	
6. Foundation of Concrete	A	Α	No active erosion, scouring, or bank caving that might endanger the structure's stability.	No foundation concerns were observed during PI.
Structures ¹			There are areas where the ground is eroding towards the base of the structure. Efforts need to be taken to slow and repair this erosion, but it is not judged to be close enough to the structure or to be progressing rapidly enough to affect structural stability before the next inspection. For the purposes of inspection, the erosion or scour is not closer to the riverside face of the wall than twice the floodwall's underground base width if the wall is of L-wall or T-wall construction; or if the wall is of sheetpile or I-wall construction, the erosion is not closer than twice the wall's visible height. Additionally, rate of erosion is such that the wall is expected to remain stabile until the next inspection.	
			Erosion or bank caving observed that is closer to the wall than the limits described above, or is outside these limits but may lead to structural instabilities before the next inspection. Additionally, if the floodwall is of I-wall or sheetpile construction, the foundation is unacceptable if any turf, soil or pavement material got washed away from the landside of the I-wall as the result of a previous overtopping event.	
7. Monolith Joints	Α		The joint material is in good condition. The exterior joint sealant is intact and cracking/ desiccation is minimal. Joint filler material and/or waterstop is not visible at any point.	Expansion and construction joints were in good condition.
		М	The joint material has appreciable deterioration to the point where joint filler material and/or waterstop is visible in some locations. This needs to be repaired or replaced to prevent spalling and cracking during freeze/ thaw cycles, and to ensure water tightness of the joint.	

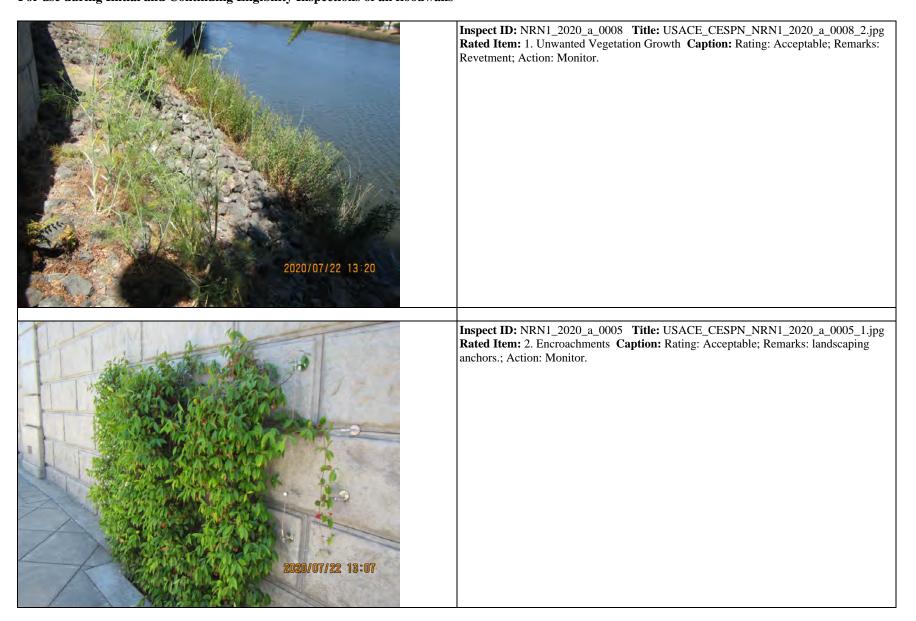
Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

	Rated Item	Rating		Rating Guidelines	Location/Remarks/Recommendations
			U	The joint material is severely deteriorated or the concrete adjacent to the monolith joints has spalled and cracked, damaging the waterstop; in either case damage has occurred to the point where it is apparent that the joint is no longer watertight and will not provide the intended level of protection during a flood.	
			N/A	There are no monolith joints in the floodwall.	
8.	Underseepage Relief Wells/ Toe Drainage Systems	Α	A	Toe drainage systems and pressure relief wells necessary for maintaining FDR segment / system stability during high water functioned properly during the last flood event and no sediment is observed in horizontal system (if applicable). Nothing is observed which would indicate that the drainage systems won't function properly during the next flood, and maintenance records indicate regular cleaning. Wells have been pumped tested within the past 5 years and documentation is provided.	The drain system was in good condition with no signs of corrosion, deterioration or any blockages to prevent water from landside floodwall to Napa River.
			М	Toe drainage systems or pressure relief wells are damaged and may become clogged if they are not repaired. Maintenance records are incomplete or indicate irregular cleaning and pump testing.	
			U	Toe drainage systems or pressure relief wells necessary for maintaining FDR segment / system stability during flood events have fallen into disrepair or have become clogged. No maintenance records. No documentation of the required pump testing.	
			N/A	There are no relief wells/ toe drainage systems along this component of the FDR segment / system.	
9.	Seepage	Α	Α	No evidence or history of unrepaired seepage, saturated areas, or boils.	No seepage concerns were observed douring PI
			М	Evidence or history of minor unrepaired seepage or small saturated areas at or beyond the landside toe but not on the landward slope of levee. No evidence of soil transport.	
			U	Evidence or history of active seepage, extensive saturated areas, or boils.	


¹ Inspectors must have as-built drawings available during the inspection so that the lateral distance to the heel and toe of the floodwalls can be determined in the field. ² The sponsor should be monitoring any observed movement to verify whether the movement is active or inactive.

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Floodwalls Page 3 of 8


For use during Initial and Continuing Eligibility Inspections of all floodwalls

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Floodwalls Page 4 of 8

Floodwalls For use during Initial and Continuing Eligibility Inspections of all floodwalls

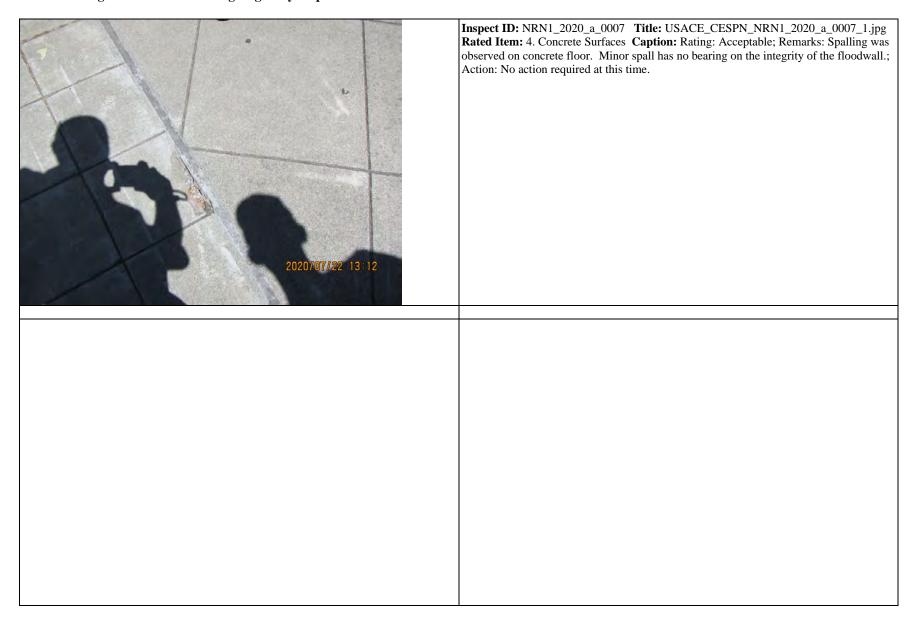
Floodwalls Page 5 of 8

Floodwalls

For use during Initial and Continuing Eligibility Inspections of all floodwalls

Floodwalls Page 6 of 8

Floodwalls


For use during Initial and Continuing Eligibility Inspections of all floodwalls

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Floodwalls Page 7 of 8

Floodwalls For use during Initial and Continuing Eligibility Inspections of all floodwalls

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Floodwalls Page 8 of 8

	s of interior drainage systems

Rated Item	Rated Item Rating Rating Guidelines			Location/Remarks/Recommendations	
1. Vegetation and Obstructions	М	No obstructions, vegetation, debris, or sediment accur channels or blocking the culverts, inlets, or discharge are free of grass and weeds.		Plantings that were observed on the PI were part of the original construction contract of the levee and have minimal risk the integrity of the levee.	
		A Obstructions, vegetation, debris, or sediment are mir capacity or blocked more than 10% of any culvert op limited volume of grass and weeds may be present in	benings, but should be removed. A		
		U Obstructions, vegetation, debris, or sediment have in blocked more than 10% of a culvert opening. Sedim establish flow capacity.			
2. Encroachments	A No trash, debris, unauthorized structures, excavations, or other obstructions present within th easement area. Encroachments have been previously reviewed by the Corps, and it was determined that they do not diminish proper functioning of the interior drainage system.		reviewed by the Corps, and it was	All landside structures have been approved and pose no threat to the floodwall.	
		A Trash, debris, unauthorized structures, excavations, or inappropriate activities noted that should be corrected maintenance or emergency operations. Encroachme	d but will not inhibit operations and		
		U Unauthorized encroachments or inappropriate activit and maintenance, emergency operations, or negative of the interior drainage system.			
3. Ponding Areas	NA	No trash, debris, structures, or other obstructions pre deposits do not exceed 10% of capacity.	sent within the ponding areas. Sediment		
		1 Trash, debris, excavations, structures, or other obstruthat will not inhibit operations and maintenance. See capacity.			
		U Trash, debris, excavations, structures, or other obstruactivities noted that will inhibit operations, maintena deposits exceeds 30% of capacity.			
		A There are no ponding areas associated with the interior	or drainage system.		
 Fencing and Gates¹ 	NA	Fencing is in good condition and provides protection Gates open and close freely, locks are in place, and t			
		A Fencing or gates are damaged or corroded but appea missing or damaged.	r to be maintainable. Locks may be		
		U Fencing and gates are damaged or corroded to the popotentially dangerous features are not secured.	int that replacement is required, or		
		A There are no features noted that require safety fencir	g		
5. Concrete Surfaces (Such as gate	A	Negligible spalling, scaling or cracking. If the concr moisture, it is still satisfactory but should be seal coa			

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Interior Drainage System Page 1 of 7

For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Rated Item	Rating	Rating Guidelines		Location/Remarks/Recommendations
wells, outfalls, intakes, or culverts)	the structure is not threatened. Reinforcing steel may be exposed. Repairs/ sealing is			
		U	Surface deterioration or deep cracks present that may result in an unreliable structure. Any surface deterioration that exposes the sheet piling or lies adjacent to monolith joints may indicate underlying reinforcement corrosion and is unacceptable.	
		N/A	There are no concrete items in the interior drainage system.	
6. Tilting, Sliding or Settlement of	Α	A	There are no significant areas of tilting, sliding, or settlement that would endanger the integrity of the structure.	No tilting, sliding or settlement of concrete floodwall was observed during PI.
Concrete and Sheet Pile Structures ² (Such as gate wells, outfalls,		М	There are areas of tilting, sliding, or settlement (either active or inactive) that need to be repaired. The maximum offset, either laterally or vertically, does not exceed 2 inches unless the movement can be shown to be no longer actively occurring. The integrity of the structure is not in danger.	
intakes, or culverts)		U	There are areas of tilting, sliding, or settlement (either active or inactive) that threaten the structure's integrity and performance. Any movement that has resulted in failure of the waterstop (possibly identified by daylight visible through the joint) is unacceptable. Differential movement of greater than 2 inches between any two adjacent monoliths, either laterally or vertically, is unacceptable unless it can be shown that the movement is no longer active. Also, if the floodwall is of I-wall construction, then any visible or measurable tilting of the wall toward the protected side that has created an open horizontal crack on the riverside base of a monolith is unacceptable.	
		N/A	There are no concrete items in the interior drainage system.	
7. Foundation of	Α	Α	No active erosion, scouring, or bank caving that might endanger the structure's stability.	No foundation concerns were observed during PI.
Concrete Structures ³ (Such as culverts, inlet and discharge structures, or		М	There are areas where the ground is eroding towards the base of the structure. Efforts need to be taken to slow and repair this erosion, but it is not judged to be close enough to the structure or to be progressing rapidly enough to affect structural stability before the next inspection. The rate of erosion is such that the structure is expected to remain stabile until the next inspection.	
gatewells.)		U	Erosion or bank caving observed that may lead to structural instabilities before the next inspection.	
		N/A	There are no concrete items in the interior drainage system.	
8. Monolith Joints	Α	A	The joint material is in good condition. The exterior joint sealant is intact and cracking/ desiccation is minimal. Joint filler material and/or waterstop is not visible at any point.	No monolith concerns were observed during PI.
		М	The joint material has appreciable deterioration to the point where joint filler material and/or waterstop is visible in some locations. This needs to be repaired or replaced to prevent spalling and cracking during freeze/ thaw cycles, and to ensure water tightness of the joint.	

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Interior Drainage System Page 2 of 7

For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Rated Item	Item Rating Rating Guidelines		Location/Remarks/Recommendations	
		U The joint material is severely deteriorated or the concrete adjacent to the monolith joints has spalled and cracked, damaging the waterstop; in either case damage has occurred to the point where it is apparent that the joint is no longer watertight and will not provide the intended level of protection during a flood.		
		N/A There are no monolith joints in the interior drainage system.		
9. Culverts/ Discharge Pipes ⁴	Α	A There are no breaks, holes, cracks in the discharge pipes/ culverts that would result in significant water leakage. The pipe shape is still essentially circular. All joints appear to be closed and the soil tight. Corrugated metal pipes, if present, are in good condition with 100% of the original coating still in place (either asphalt or galvanizing) or have been relined with appropriate material, which is still in good condition. Condition of pipes has been verified using television camera video taping or visual inspection methods within the past five years, and the report for every pipe is available for review by the inspector.	No culvert obstructions, breaks or cracks were observed during PI.	
		M There are a small number of corrosion pinholes or cracks that could leak water and need to be repaired, but the entire length of pipe is still structurally sound and is not in danger of collapsing. Pipe shape may be ovalized in some locations but does not appear to be approaching a curvature reversal. A limited number of joints may have opened and soil loss may be beginning. Any open joints should be repaired prior to the next inspection. Corrugated metal pipes, if present, may be showing corrosion and pinholes but there are no areas with total section loss. Condition of pipes has been verified using television camera video taping or visual inspection methods within the past five years, and the report for every pipe is available for review by the inspector.		
		 U Culvert has deterioration and/or has significant leakage; it is in danger of collapsing or as already begun to collapse. Corrugated metal pipes have suffered 100% section loss in the invert. HOWEVER: Even if pipes appear to be in good condition, as judged by an external visual inspection, an Unacceptable Rating will be assigned if the condition of pipes has not been verified using television camera video taping or visual inspection methods within the past five years, and reports for all pipes are not available for review by the inspector. 		
		N/A There are no discharge pipes/ culverts.		
 Sluice / Slide Gates⁵ 	NA	A Gates open and close freely to a tight seal or minor leakage. Gate operators are in good working condition and are properly maintained. Sill is free of sediment and other obstructions. Gates and lifters have been maintained and are free of corrosion. Documentation provided during the inspection.		
		M Gates and/or operators have been damaged or have minor corrosion, and open and close with resistance or binding. Leakage quantity is controllable, but maintenance is required. Sill is free of sediment and other obstructions.		
		U Gates do not open or close and/or operators do not function. Gate, stem, lifter and/or guides may be damaged or have major corrosion.		
		N/A There are no sluice/ slide gates.		

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Interior Drainage System Page 3 of 7

Rated Item	Rating	Rating Guidelines		Location/Remarks/Recommendations
11. Flap Gates/ Flap Valves/	Α	A	Gates/ valves open and close easily with minimal leakage, have no corrosion damage, and have been exercised and lubricated as required.	NRN1_2020_a_0002: Station_1 NA: Flap gate, sponsor relays that is exercised twice a year.: Monitor. (A)
Pinch Valves ¹		М	Gates/ valves will not fully open or close because of obstructions that can be easily removed, or have minor corrosion damage that requires maintenance.	NRN1_2020_a_0004: Station_1 NA: Flap gate in good working order. Exercised twice a year.: No action required at this time. (A)
		U	Gates/ valves are missing, have been damaged, or have deteriorated to the point that they need to be replaced.	
		N/A	There are no flap gates.	
12. Trash Racks (non-mechanical)	NA	Α	Trash racks are fastened in place and properly maintained.	
		М	Trash racks are in place but are unfastened or have bent bars that allow debris to enter into the pipe or pump station, bars are corroded to the point that up to 10% of the sectional area may be lost. Repair or replacement is required.	
		U	Trash racks are missing or damaged to the extent that they are no longer functional and must be replaced. (For example, more than 10% of the sectional area may be lost.)	
		N/A	There are no trash racks, or they are covered in the pump stations section of the report.	
13. Other Metallic Items	NA	А	All metal parts are protected from corrosion damage and show no rust, damage, or deterioration that would cause a safety concern.	
		М	Corrosion seen on metallic parts appears to be maintainable.	
		U	Metallic parts are severely corroded and require replacement to prevent failure, equipment damage, or safety issues.	
		N/A	There are no other significant metallic items.	
14. Riprap Revetments of Inlet/ Discharge	NA	A	No riprap displacement or stone degradation that could pose an immediate threat to the integrity of channel bank. Riprap intact with no woody vegetation present.	
Areas		М	Minor riprap displacement or stone degradation that could pose an immediate threat to the integrity of the channel bank. Unwanted vegetation must be cleared or sprayed with an appropriate herbicide.	
		U	Significant riprap displacement, exposure of bedding, or stone degradation observed. Scour activity is undercutting banks, eroding embankments, or impairing channel flows by causing turbulence or shoaling. Rock protection is hidden by dense brush, trees, or grasses.	
		N/A	There is no riprap protecting this feature of the segment / system, or riprap is discussed in another section.	
15. Revetments other than Riprap	NA	Α	No riprap displacement or stone degradation that could pose an immediate threat to the integrity of channel bank. Riprap intact with no woody vegetation present.	

For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Interior Drainage System Page 4 of 7

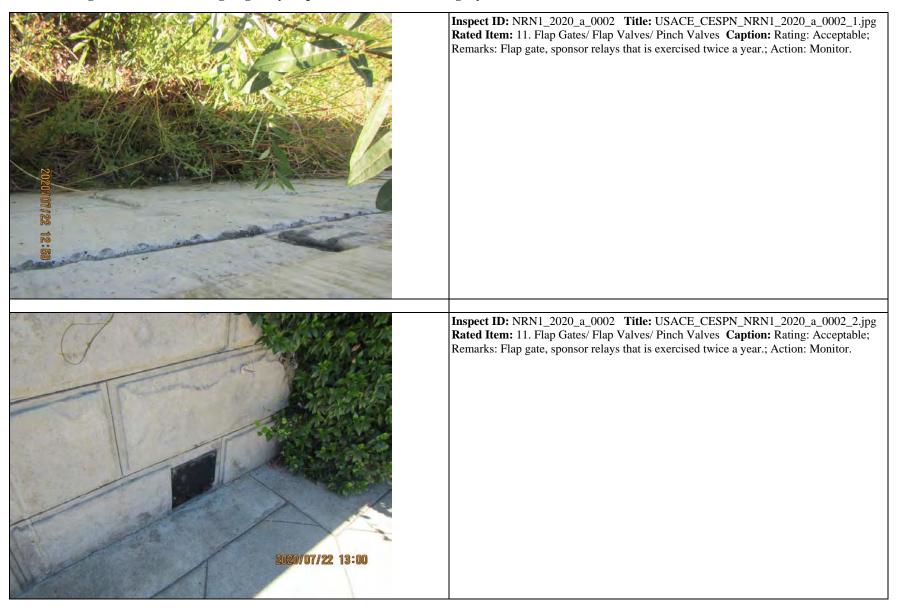
For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Rated Item	Rating		Rating Guidelines	Location/Remarks/Recommendations
		i	Minor riprap displacement or stone degradation that could pose an immediate threat to the integrity of the channel bank. Unwanted vegetation must be cleared or sprayed with an appropriate herbicide.	
			Significant riprap displacement, exposure of bedding, or stone degradation observed. Scour activity is undercutting banks, eroding embankments, or impairing channel flows by causing turbulence or shoaling. Rock protection is hidden by dense brush, trees, or grasses.	
		N/A	There are no such revetments protecting this feature of the segment / system.	

¹ Proper operation of this item must be demonstrated during the inspection.

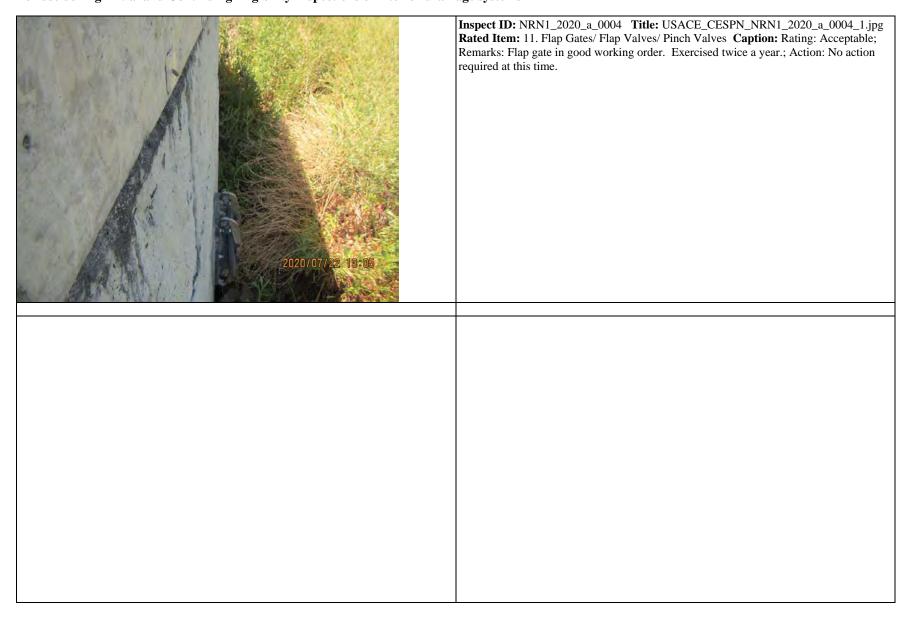
² The sponsor should be monitoring any observed movement to verify whether the movement is active or inactive.

³ Inspectors must have as-built drawings available during the inspection so that the lateral distance to the heel and toe of the floodwalls can be determined in the field.


⁴ The decision on whether or not USACE inspectors should enter a pipe to perform a detailed inspection must be made at the USACE District level. This decision should be made in conjunction with the District Safety Office, as pipes may be considered confined spaces. This decision should consider the age of the pipe, the diameter of the pipe, the apparent condition of the pipe, and the length of the pipe. If a pipe is entered for the purposes of inspection, the inspector should record observations with a video camera in order that the condition of the entire pipe, including all joints, can later be assessed. Additionally, the video record provides a baseline to which future inspections can be compared. ⁵ Proper operation of the gates (full open and closed) must be demonstrated during the inspection if no documentation is available. Be aware of both manual and electrical operators.

Key: A = Acceptable. M = Minimally Acceptable; Maintenance is required. U = Unacceptable. N/A = Not Applicable. FDR = Flood Damage Reduction

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Interior Drainage System Page 5 of 7


For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Interior Drainage System Page 6 of 7

Interior Drainage System For use during Initial and Continuing Eligibility Inspections of interior drainage systems

Flood Damage Reduction Segment / System Inspection Report Napa River, Hatt to 1st Street floodwall Interior Drainage System Page 7 of 7

2020 Levee Inspection

Napa River, below Napa Creek, California Pg. 1 of 1 Bank: Right

Legend

Point Features

Rating:

- Unacceptable
- Minimally Acceptable
- Acceptable
- N/A

Line Features

Rating:

- Unacceptable
- Minimally Acceptable
- Acceptable
- ---- Centerline

80 240 Feei

) 240 F

CREATED BY: Nathan DeLannoy LAST UPDATED BY: g4ecdnld MAP ID: MXD_NRN1_DDP:mxd DATE: 09/02/02 COORDINATE SYSTEM: GCS Nort

COORDINATE SYSTEM: GCS North American 19 Datum: North American 1983 DISCLAIMER Dis produced from decenatial inform

This product was produced from geosphala information by the U.S. Amy Cotps of ingineers. Geosphala data and products may be developed from sources of differing eccuracy, accurate only at certain scalas, based on modeling of interpretation, incomplete india being created or invited, eff... Using this product for process of the thran those for million that and the state of the

Appendix C

2005 Hatt Bldg to First Street Floodwall

Geotechnical Design Documentation Report

NAPA RIVER/NAPA CREEK FLOOD PROTECTION PROJECT NAPA, CALIFORNIA CONTRACT 2 WEST HATT BUILDING TO FIRST STREET

GEOTECHNICAL DESIGN DOCUMENT REPORT

Prepared by: Soil Design Section, Sacramento District U.S. Army Corps of Engineers

May 2005

Table of Contents

- 1. Introduction
 - 1.1. Project Delivery Team
 - 1.2. Area Description
 - 1.3. Major Contract Features
- 2. Geotechnical Explorations
 - 2.1. Subsurface Conditions Napa Mill
 - 2.2. Subsurface Conditions Fifth Street to First Street
- 3. Foundation Conditions of Nearby Structures
- 4. Channel Development
- 5. Liquefaction Evaluation
- 6. Floodwall Design
 - 6.1. Subsurface Profiles and Material Properties
 - 6.2. Soldier Pile Wall Design
 - 6.2.1. Tiebacks
 - 6.2.2. Pile Installation
 - 6.2.3. Preliminary Design
 - 6.2.4. Wall Loadings/Design
 - 6.2.5. Pile Design
 - 6.2.6. Wall Deflection/Settlement
 - 6.2.7. Drainage and Excavation/Backfill
 - 6.2.8. Pile Specification
 - 6.3. Upper Wall Design
 - 6.4. Global Stability
- 7. Terrace Excavation
- 8. Dewatering
- 9. Constructibility
- 10. Geotechnical Instrumentation
 - 10.1. Inclinometers
 - 10.2. Observation Wells
 - 10.3. Survey Monuments
 - 10.4. Beam Tiltmeters
 - 10.5. Vibration Monitors
- 11. References

List of Tables

- Table 1. Pile Design Loadings
- Table 2. Results of Slope Stability Analysis

List of Figures

Figures 1 through 3. Project MapFigure 4. Soil Boring Location MapFigures 5 through 16. Exploration LogsFigures 17 through 19. Geotechnical Profile of Wall No. 1

List of Appendices

- Appendix 1. Raney Geotechnical Boring Logs and CPT Data
- Appendix 2. Liquefaction Evaluation
- Appendix 3. Soil and Material Property Profiles
- Appendix 4. Unconfined Compression, Triaxial, and Consolidation Test Results
- Appendix 5. Pile Design Calculations
- Appendix 6. Deflection/Settlement Calculations
- Appendix 7. Bearing Capacity Calculations Upper Wall
- Appendix 8. Global Stability Failure Surfaces
- Appendix 9. Telephone Conversation Records

Napa River/Napa Creek Flood Protection Project Contract 2 West Hatt Building to First Street

Geotechnical Design Document Report

1. Introduction. The purpose of this report is to document the design process for preparing plans and specifications for the Napa River/Napa Creek Flood Protection Project, Contract 2 West, Hatt Building to First Street (also known as "Hatt to First"). This report is intended as a supplement to the Napa River Geotechnical Basis of Design, prepared in February 1998 as an appendix to the Final Supplemental General Design Memorandum (SGDM), dated October 1998 (Reference 1). This report presents information obtained and analyses performed since the SGDM, and discusses this portion of the flood control project in greater detail.

1.1. Project Delivery Team. The PDT for this contract was comprised of both Corps of Engineers and A/E personnel. The geotechnical design was performed by Corps of Engineers personnel. Structural and Civil design was performed by MGE Engineering, Inc., Sacramento, with oversight by Corps personnel. Landscape architecture and electrical design was performed by The HLA Group, Sacramento, with oversight by Corps personnel.

1.2. Area Description. The contract area, with the major project features, is shown on Figures 1 through 3. The contract area is on the west side of the Napa River in downtown Napa, extending from the Hatt Building (also known as the Napa Mill) on the south (downstream) to just south of First Street on the north (upstream.) The Napa Mill was originally constructed in the late 1800's to early 1900's and served as a grain mill. After being vacant for a number of years, it is being renovated and refurbished as a tourist destination with hotel rooms, restaurants, a general store, and patios (Photos 1 through 5). Fifth Street is immediately north of the Napa Mill. North of Fifth Street are vacant lots which are slated for development (the Channel Development) at a later date (Photos 6 and 7). The recently constructed Third Street Bridge is immediately north of the vacant lots (Photo 7). North of Third Street are Veterans Park (Photo 8), Downtown Joe's restaurant (Photo 9), a parking lot, and an existing concrete counterfort wall near the Semorile Building (location of the Bounty Hunter wine bar) at the north end of the project (Photo 10). The soldier pile wall in this contract will tie into the concrete counterfort wall.

1.3. Major Contract Features. The main contract feature is a vertical soldier pile retaining wall which extends from the Napa Mill to the existing concrete counterfort wall just south of First Street. At the Napa Mill, this wall functions as the 100-year floodwall. North of the Napa Mill, the top of the soldier pile wall lowers in elevation to allow for a pedestrian walkway (called the lower promenade), and a second, shorter wall (called the upper wall), which provides the 100-year flood protection north of the Napa

Mill. Another pedestrian walkway (called the upper promenade) is on the landside of the upper wall, at the finish grade elevation (slightly above the existing ground elevation in most places). The soldier pile wall and lower promenade dip underneath the Third Street Bridge, then rise in elevation and continue northward to tie into the existing concrete counterfort wall. The soldier pile wall (also referred to as the lower wall) provides 12-year flood protection at it's lowest point, underneath the Third Street Bridge. The lower wall provides greater flood protection over the remaining project area. Stairs and ramps provide access to the lower promenade at Fifth Street, Fourth Street, Third Street, Veterans Park, and the Semorile Building. As part of the contract, Veterans Park will be completely rebuilt into a small amphitheater.

2.0. Geotechnical Explorations. At the time of the SGDM preparation, Soil Design section had the following explorations in the Hatt to First contract area, from south to north: 2F-90-29, 2F-30 (just south of the Napa Mill); 2F-94-14 (just north of the Napa Mill); 2F-29, CPT-94-2, and 2F-94-15 (near the Third Street bridge). For plans and specifications, more subsurface information was needed, so the following deep explorations were conducted by the Corps: 2F-03-3, 2F-03-4, 2F-04-51 (from a barge in the Napa River near the Napa Mill); 2F-03-5, 2F-03-6, 2F-03-7 (between Fifth Street and Third Street); and 2F-03-8 (in the parking lot north of Downtown Joes). Numerous shallow exploration logs at the Napa Mill, many conducted for an environmental assessment, were obtained from Raney Geotechnical. Two boring logs for the construction of the Third Street Bridge (B-3 and B-4) were obtained from AGS, Inc. Locations of explorations are shown on Figure 4. Soil boring logs from the Corps of Engineers and AGS Inc. are shown on Figures 5 through 16. Soil boring logs from Raney Geotechnical are in Appendix 1.

2.1. Subsurface Conditions – Napa Mill. The land-based borings in the vicinity of the Napa Mill indicate a soil profile of silts and clays to a depth of about 20 feet, underlain by a dense, 20 to 25-foot thick clayey sand and gravel, underlain by 12 feet of clay, underlain by another dense clayey sand and gravel layer approximately 10 feet thick, underlain by a lean clay. The groundwater level varies on the borings logs, but is generally about 13 feet below ground surface, or 7 feet above the top of the upper dense sand and gravel layer. Borings 2F-03-3 and 2F-03-4, into the riverbed, were intended to be 70 feet in depth, but problems during drilling restricted the depths to 35 and 24 feet respectively. Drilling was very slow because the hollow-stem augers could not drill through the upper dense sand and gravel layer and extensive wood debris (believed to be remnants of boat docks constructed by the mill), and one hole was terminated due to hard material (most likely boulders or concrete rubble) which caused refusal. Due to the drilling problems in 2003, boring 2F-04-51 was drilled by mud rotary in the riverbed in 2004, successfully reaching full depth of 75 feet. The riverbed explorations indicate a subsurface profile of 5 to 10 feet of very soft silts, silty sands, and clays (river sediments), underlain by a 25-foot thick dense clayey sand and gravel, underlain by 25 feet of lean clay, underlain by 10 feet of dense clayey sand and gravel, underlain by lean clay.

2.2. Subsurface Conditions – Fifth Street to First Street. Soil borings between Fifth and First Streets indicate a soil profile of 20 to 22 feet of sandy clay, underlain by a dense clayey sand and gravel, underlain by sandy lean clay, underlain by another dense clayey sand and gravel layer, underlain by lean clay. The upper dense clayey sand and gravel layer is about 30 feet thick from Fifth Street to just south of Third Street, where it decreases to 8 to 10 feet thick. The underlying clay layer is 12 feet thick at Fifth Street, and increases to 36 feet thick just south of Third Street. Upstream of Third Street, this middle clay layer consists of about 19 feet of fat clay overlying about 17 feet of lean clay. The lower clayey sand and gravel layer is about 8 to 10 feet thick over the entire area. The groundwater level on the boring logs varies but is about 14 feet below ground surface between Fifth and Third Streets, and about 20 feet below ground surface upstream of Third Street. The groundwater level is about 2 to 6 feet above the top of the upper dense sand and gravel layer. Comparison of boring logs on land and in the river at both the Third Street Bridge and the Napa Mill indicate that the elevation of the top of the upper dense sand and gravel layer is several feet lower in the river than it is in the upland areas.

3. Foundation Conditions of Existing Structures. Foundation information was obtained for some of the existing structures in the contract area. The Napa River Inn Suites building at the Napa Mill has two rows of 30-foot deep piles on the east side of the building (closest to the soldier pile wall in this contract) and individual spread footings over the rest of the building. Foundation conditions of the main Napa River Inn building are not known. A portion of the building which overhangs the riverbank is founded on piles, but it is not known if the entire building has a pile foundation. The Third Street bridge abutment is founded on piles. Downtown Joe's has a shallow foundation. No foundation information is available on the Semorile Building. Because the Semorile building is a relatively light structure and the soils in the area have good bearing capacity, it is possible the building has a shallow foundation.

4. Channel Development. The Channel Development is a planned, private-sector development for the (currently) empty fields between Fifth and Third Streets. The project is in design concurrently with the Hatt to First project. Preliminary plans show two 3-story buildings with basement parking garages. The first story will be retail shops, and the upper stories will be offices and condominiums. A meeting was held in early 2004 between the Corps, MGE, HLA, the Channel landowners, and the Channel design A/E. Among other items, the location and elevations of a match line between the two projects was determined. Both the Corps and Channel design teams will design up to the match line. The Channel buildings will be no less than 37 feet from the lower wall of the Hatt to First project. Thirty-seven feet was chosen in 2003 after a preliminary wall design by the Corps of Engineers. The preliminary design assumed tiebacks would be used for the lower soldier pile wall, and 37 feet was chosen because it was beyond the anticipated tieback length, to avoid conflict between tiebacks and any below-ground foundation or parking garage that the Channel team would design. The Channel Development is not anticipated to impact the design of the lower and upper wall in this contract. While final plans for the Channel Development have not been produced, the

first floor of the Channel Development will likely be somewhere between 16 and 19 feet NGVD in elevation. The bottom of the lower wall is at elevation 1 foot NGVD between Fifth and Third Streets. It is anticipated that the below-ground parking garage will be at least 12 to 15 feet tall. Assuming the "worst-case" situation of a shallow foundation, the foundation will likely be several feet thick, so the bottom of the Channel Development will be at or below the bottom of the lower wall. The Channel Development is also outside the active failure wedges of both the upper and lower walls in this contract (see Appendix 7, first page). The schedules at this time indicate the Hatt to First contract will be constructed prior to the Channel Development. Assuming this is the case, the Channel contractor will have to vertical cut and shore the excavation for their foundation/parking garage construction. Vertical cut and temporary shoring causes a horizontal stress release in the surrounding soil, which can lead to deflection of the shoring and settlement of the soil behind the shoring. The lower wall of this contract is not anticipated to be affected due to the distance away and the 40-foot deep piles that the wall is founded upon. The upper wall of this contract will be a minimum of 24 feet from the Channel Development. The upper wall might be impacted as this wall is closer to the development and it has a shallow foundation. The upper wall should be monitored during Channel Development construction.

5. Liquefaction Evaluation. Most of the SPT N-values obtained in the sand and gravel layers are above 30, indicating the soils are extremely unlikely to liquefy during an earthquake. A few zones of lower SPT N-values do exist. A liquefaction analysis using the simplified procedure of Seed and Idriss (reference 11) was conducted. Results are given in Appendix 2. This analysis showed there is no potential for liquefaction in the sand and gravel layers in the project area.

6. Floodwall Design. In the SGDM, the vertical wall was identified as a soldier pile wall with tiebacks, and the shorter upper wall (north of Fifth Street) was identified as a standard, T-shaped cantilever floodwall.

6.1. Subsurface Profiles and Material Properties. Three soil profiles were provided to the structural engineers for the design of the floodwalls. These profiles were developed by examining the soil borings in the project area. One profile covers the Napa Mill area, another profile covers the area from Fifth Street to just south of Third Street, and the third profile covers the remaining area. The profiles are shown in Appendix 3. The sampling/laboratory testing plans for the deep soil borings drilled in 2003 included undisturbed sampling and triaxial shear strength testing of clay soils. Not all the planned undisturbed samples were actually collected, and some of the triaxial test results were not believeable (for example, drained cohesion of 1200 pounds/square foot). Therefore most of the properties of the clay soils shown in Appendix 3 are values developed in the SGDM. Unconfined compression, triaxial, and consolidation test results are given in Appendix 4. The SPT N-values were not used to determine the phi angles of the clayey sand and gravel layers because the presence of the gravels produces artificially high Nvalues. References 16 and 17 were used to determine the phi angles. Both references recommend using a phi angle greater than 34 degrees for a silty gravel (USCS classification GM) and a phi angle greater than 31 degrees for a clayey gravel (USCS

classification GC). References 16 and 17 also recommend phi angles of 33 and 31 degrees respectively for clayey sands (USCS classification SC). A phi angle of 33 degrees was used for this project. The shallow fat clay layer shown between 10 and 16 feet below ground surface in the Napa Mill profile does not appear to be continuous over the entire Mill area; it was logged in some explorations but not in others. The layer was included in the soil profile used for wall design for conservatism; fat clays in general have lower shear strengths than lean clays.

6.2. Soldier Pile Wall Design.

6.2.1. Tiebacks. Early in the design process, the feasibility of using tiebacks was examined. Since the preparation of the SGDM, a new building (Napa River Inn Suites) has been constructed at the Napa Mill. The soldier pile wall will be 10 feet from the eastern side of that building. As stated previously, the building has two rows of pile foundations closest to the soldier pile wall. It was decided that tiebacks could not be used at the Napa Mill and at Downtown Joes due to interference with the existing foundations (the decision was made long before foundation drawings of Downtown Joes were obtained). MGE designed the soldier pile so that tiebacks are not used anywhere along it's length.

6.2.2. Pile Installation. The method of pile installation was examined. Due to the presence of the hard sand and gravel layer, the potential presence of subsurface obstructions, and the closeness of operating private businesses (noise complaints and possible vibration damage), driving piles using either a drop or vibration hammer is not feasible. Jetting is also not feasible because jetting can cause unacceptable settlements in nearby structures. Cast-in-drilled-hole (CIDH) piles will be used over the entire contract area.

6.2.3. Preliminary Design. MGE's preliminary analysis, documented in their Wall Type Selection report (Reference 5) showed that the soldier pile wall from station 0+00 to station 2+48 (where the wall height is greater than 20 feet) will need to be on a footing with two, 2-foot diameter CIDH piles (called "Wall Type A"). Where the wall height is between 17 and 20 feet, a standard soldier pile design with 40-foot deep, 3-foot diameter CIDH soldier piles (called "Wall Type B") is adequate . Where the wall height is less than 17 feet, a standard soldier pile design with 40-foot deep, 2-foot diameter CIDH soldier piles (called "Wall Type C") is adequate.

6.2.4. Wall Loadings/Design. MGE submitted calculations of the wall loadings, design values, and deflections in each of their submittals. The final values are in the Structural Design Calculations (100% Submittal) report (reference 6). For hydraulic structures, EM 1110-2-2502 (Reference 3) recommends the use of the coefficient of earth pressure at rest (K_0) rather than the active earth pressure coefficient (K_A) for calculating horizontal soil pressures on retaining and flood walls. This is because hydraulic structures are often critical features, and since K_0 is greater than K_A , the calculated loadings will be higher, resulting in a more conservative design. For each wall type, the station with the greatest free wall height was chosen for design.

and water loadings were calculated for four different cases: end-of-construction, longterm with no flood, long-term with a flood, and long-term with an earthquake and no flood. The case which produced the highest loadings was selected for structural design purposes. The small passive wedge above the bottom of the soldier pile wall was ignored in all the calculations, simulating erosion at the toe of the wall. A rapid drawdown case was not examined because rapid drawdown conditions are highly unlikely to develop in this project. The 100-year hydrograph for the Napa River indicates the river level rises and falls relatively quickly (2 days). The vertical concrete wall faces, the pavements on the upper and lower promenade, and the trench drains will reduce water infiltration into the soils behind the retaining walls. The lower wall has a drainage system consisting of a geocomposite drainage net, gravelly sand structural backfill, and a collector pipe surrounded in gravel with weepholes about 1 foot above the mean high tide water level. Any excess water that infiltrates the backfill material will drain relatively quickly.

6.2.5. Pile Design. Four references (EM 1110-1-1905, Bearing Capacity of Soils, Reference 2; NAVFAC 7.2, Foundations and Earth Structures, Reference 7; Engineering Manual for Drilled Shafts, Virginia Tech, Reference 9; and the FHWA Drilled Shafts Manual, Reference 15) were used to determine the pile depth for the (originally planned) 2-pile foundation system between stations 0+00 and 2+48 using the maximum compression and tension loadings supplied by MGE at the 65% design submittal stage (327 kips and 149 kips respectively). The end bearing and skin friction were calculated using all four of the references, and those values were averaged for the final design value. Preliminary calculations are on file in the Soil Design Section; the final design calculation spreadsheet is given in Appendix 5. Once it was determined that seating the piles within the upper dense sand and gravel layer would not produce the needed design loads, it was desired to seat the piles in the upper 1 or 2 feet of the lower dense sand and gravel layer to take advantage of the increased end bearing value of that layer. However, the exact elevation of the top of that layer is not known because only one deep boring exists in the river, and the exact location of that boring is not known. (GPS coordinates taken at the time of drilling place the boring in the middle of the river, which according to the field geologist was not the actual location. The boring was located on the site map by the geologist from memory.) Therefore, to be conservative, the end bearing was calculated using the methods for clay soils, which produce a lower end bearing than the methods for granular soils. The construction specifications require the Contractor to drill small-diameter pilot holes every 24 lineal feet over the critical Wall Type A foundation area prior to production CIDH pile installation. The pilot holes will provide additional subsurface information prior to pile installation. Installing piles often causes changes in the density of the surrounding soils. The drilling process to be used in this project causes the density of granular soils to decrease. This decrease in density causes a decrease in skin friction. The calculated skin friction of the granular layers was multiplied by 0.7 (resulting in a decreased skin friction value) as per the references. Drilling does not significantly effect the density of cohesionless (clay) soils, so no multiplier was used to reduce the skin friction of the clay soils. Calculations showed the preliminary design produced loadings that were too high for the initial pile geometry. Difficult site conditions (nearby building, no equipment access by land, river

water, and soft river sediments) make performing a pile load test almost logistically impossible at this site. EM 1110-2-2906, Design of Pile Foundations (Reference 4) states minimum factors of safety (F.S.) for pile design are 2.0 if a pile load test will be conducted and 3.0 if a pile load test will not be conducted. After discussion with MGE, a new pile geometry was designed for Wall Type A. The new pile geometry consists of rows of three 2-foot diameter piles located 8 feet apart. A pile tip elevation of -70 feet NGVD was provided to MGE for inclusion on the plans and in quantities for the cost estimate. Sixty-foot deep piles will provide the required compression and tension loadings utilizing an F.S. of 3. The pile loadings are given in Table 1. MGE performed final design, including lateral seismic loading and deflection, using the LPILE computer program. The LPILE output is included in the Final Design Calculations (Reference 6).

Table 1. Pile Design Loading	oadings.	Design l	Pile	Table 1.
------------------------------	----------	----------	------	----------

Load Condition	Maximum Load (kips) (F.S. = 3)
Compression	86.87
Tension	60

6.2.6. Wall Deflection/Settlement. The force of the active soil wedge behind a retaining wall will cause the wall to deflect outward over time. The Corps of Engineers does not have a set requirement for retaining wall deflection (such as the maximum allowable deflection is x% of the wall height). Obviously, deflection of the retaining walls and the pile foundations must not be large enough to negatively impact the structural capacity of those elements. The maximum deflection which will not negatively impact the structural capacity will be determined by MGE. As the retaining wall deflects outward, it causes settlement of the soil behind the retaining wall, as the soil fills in the "gap" between the as-constructed wall and the deflected wall. The maximum settlement will be immediately behind the wall, and the settlement will taper off to zero at some distance away from the wall. Viewed in cross section, the area between the asconstructed and the deflected wall shapes is typically assumed to be equal to the area between the end-of-construction ground surface and the settled ground surface behind the deflected retaining wall. An extensive literature search showed that no recent data has been published on the deflection of cantilever retaining walls; all of the published data is for retaining walls with tiebacks or braced cuts. To estimate deflection, a chart published by Ralph Peck (Reference 14) was used. The chart showed, for the soil types at this site and assuming average workmanship, the settlement will taper to zero where the (distance from excavation divided by the depth of excavation) is about 2. For a free wall height of 24 feet (Wall Type A at the Napa Mill, the maximum for this project), that distance is 48 feet. Also according to the chart, the (settlement immediately behind the wall divided by the depth of excavation) will be about 1%. For a free wall height of 24 feet, that is 0.24 feet (2.9 inches) of settlement. The chart showed a slight curvature between the 2 endpoints, but it is almost a straight line and it is common in practice to use a straight line. MGE used the LPILE computer program to determine the deflection of the pile foundation for each wall type in this contract, and they also calculated the deflection of

the top of the wall for each wall type. Those calculations are documented in their final Structural Design Calculations report (reference 6). The total deflection at the top of the retaining wall is calculated as 0.89 inches for Wall Type A at the Napa Mill; 1.81 inches for Wall Type B, 1.75 inches for Wall Type C downstream of Third Street, and 3.41 inches for Wall Type C upstream of Third Street. Calculations conducted for Wall Type A (Appendix 6) indicate the deflected area behind the retaining wall is considerably less than the settlement area calculated using the Peck chart. This indicates that the retaining walls in this contract are very stiff and the anticipated settlement will likely be less than that estimated using the Peck chart. Except for Downtown Joes and possibly the Semorile Building, all of the structures adjacent to the new retaining walls in this contract are founded on piles. Given the low calculated deflections and the pile foundations, settlement of those structures is anticipated to be less than one inch. Downtown Joes is approximately 15 feet from Wall Type B, and the elevation of the bottom of their shallow foundation footings is several feet below the top of Wall Type B. Given the low deflection, the distance away from the new retaining wall, and the footing depth, settlement of Downtown Joes is also expected to be less than an inch. The deflection of the top of Wall Type C near the Semorile Building has been calculated at 3.41 inches. Foundation conditions of the Semorile Building are not known. Given the larger deflection of the retaining wall at this location and the unknown foundation conditions, this building may experience more settlement than the others, but an exact amount can not be accurately predicted. During construction, all existing structures in the project area will be monitored daily for settlement (see Geotechnical Instrumentation section). If the settlement of any structure exceeds 1 inch (or 0.75 inches for the old historic building at the Napa Mill), the Government will be notified and the Contractor must stop work and adjust his methods, equipment, and/or operations to prevent additional settlement.

6.2.7. Drainage and Excavation/Backfill. A geosynthetic wall drain with a collector pipe and weep holes located about 1 foot above the mean high tide water surface elevation will provide drainage to the retained soil behind the soldier pile wall. Granular material with 35 to 100% finer than the No. 4 sieve and no more than 5% finer than the #200 sieve is specified as structural backfill material. The sand backfill will assist in drainage behind the walls. Except at the Napa Mill and possibly at Downtown Joes, the excavation required to construct the walls will be cut back no steeper than a 1H:1V slope on the landside. After construction of the walls, the excavation will be backfilled with structural backfill material to ensure that the entire active wedge failure zone behind the walls is composed of the same soil type. At the Napa Mill, existing buildings located close to the wall do not permit sloping the excavation. Between stations 0+00 and approximate station 2+40, the soldier pile wall is a fill wall. Upstream of station 2+40, the soldier pile wall is a cut wall. For the fill wall segment, minor excavation is needed at the base of the wall, and the area between the constructed wall and the existing ground surface will be filled with structural backfill material. In the cut wall segment, temporary shoring, approximately 2 or 3 feet behind the back of the completed soldier pile wall, will be used to stabilize the excavation. The area between the completed soldier pile wall and the temporary shoring will be backfilled with structural backfill material. Design of the temporary shoring is the responsibility of the Contractor. The contract specifications require the Contractor to submit a temporary

shoring plan for Government approval prior to construction. Two possibilities for temporary shoring are a soldier pile wall with H-piles in drilled holes and wood lagging, or a soil nailed wall.

6.2.8. Pile Specification. Neither the Sacramento District nor the Unified Facilities Guide Specification (UFGS) databases include a guide specification for CIDH piles. After a review of all the concrete pile specifications, it was decided to modify the UFGS Drilled Foundation Caisson guide specification for this project. Based on the soil boring logs, groundwater is expected to infiltrate the pile borings, and caving sands were encountered in a few of the borings. The specification will require the Contractor to use temporary steel casings, concrete seal courses, and/or pumping (or any combination thereof) in the pile boreholes to prevent groundwater infiltration and sidewall caving. The specification will also require the drilling of small-diameter pilot holes every 24 lineal feet prior to the production pile drilling for Wall Type A. The purpose of the pilot holes is to obtain additional information about the subsurface soil conditions and the presence of any subsurface drilling obstructions prior to production CIDH pile drilling in this critical area.

6.3. Upper Wall Design. EM 1110-2-1905 (Reference 2) and EM 1110-2-2502 (Reference 3) were used to calculate the bearing capacity of the soils for the shallow foundation of the upper wall. Details are shown in Appendix 7. The drawing on the first page of Appendix 7 is a to-scale depiction of the anticipated construction conditions of the dual-wall system, with 1 foot of structural backfill below the shallow footing. Depending on the reference, the zone of influence for shallow foundation bearing capacity extends below the footing to a depth of 2 to 3 times the width of the footing. Therefore, structural backfill (granular), insitu sandy clay, and insitu dense sand and gravel will all exist within the bearing capacity zone of influence. Because of differing cohesion and phi values of the various soils, the soil types will have different bearing capacities, and the actual value will be somewhere in the middle. Calculations were conducted for the sandy clay and structural backfill soils. A value of 2,000 pounds/square foot was selected for the design of the upper wall. A bearing failure would likely "concentrate" in the sandy clay soil, as it is the weakest soil type. A value of 2,000 pounds/square foot is likely conservative, but not excessively so. A settlement analysis of the upper wall was not conducted because the settlement will be negligible. The concrete wall is replacing an equivalent volume of soil. While concrete has a higher unit weight than soil (150 pounds per cubic foot as opposed to 119 pounds per cubic foot), the resulting stress increase will be very small. The clay soils in Napa are slightly overconsolidated. The stress increase caused by the upper wall will produce a stress lower than the preconsolidation pressure. Below the preconsolidation pressure, the recompression coefficient (C_r) is used instead of the coefficient of consolidation (C_c) when calculating settlements. Since C_r is always at least one order of magnitude less than C_{c} and the stress increase is very small, settlement will be negligible.

6.4. Global Stability. The computer program UTEXAS4, developed by Dr. Stephen Wright, was used to evaluate the global stability of the dual-wall system upstream of Fifth Street. A "composite section", consisting of all the worst-case

conditions, was used in the analysis. The soil profile upstream of Third Street was used, as this profile contains only 8 feet of the upper dense (strong) clayey sand and gravel layer, in addition to two (weak) fat clay layers that are not present south of Third Street. The free wall height of the upper wall is relatively constant (6 to 6.5 feet) throughout the project area. The maximum free wall height of the lower wall (about 10 feet) occurs at the northern end of the project area, and the two maximum free wall heights were used. The river bottom elevations at Third Street were used, as the river bottom elevation at the northern end of the project is shallow (Napa Creek instead of the Napa River). Analyses were conducted for end-of-construction, long term with no flood, long term with a flood, and long term with an earthquake and no flood conditions. Rapid drawdown analysis was not conducted because rapid drawdown conditions will not develop in this project as stated in paragraph 6.2.4, Wall Loadings/Design. For the long term with earthquake analysis, a seismic coefficient of 0.15 was used as per the SGDM. Failure surfaces are shown in Appendix 8. Calculated factors of safety are given in Table 3. No Corps minimum requirements exist for global slope stability of retaining walls, but Table 2 lists the Corps minimum factors of safety for sliding stability at the base of inland floodwalls and for flood-control levees for comparison. For global stability, long term with an earthquake is the most critical situation.

Condition	F.S. (Calculated)	Minimum F.S. (Base Sliding)	Minimum F.S. (Flood Control
		(Dase Shamg)	Levee)
End of Construction	1.89	1.33	1.3
Long Term	2.65	1.5	1.4
Long Term w/Flood	4.80	1.5	1.4
Long Term	1.22	1.1	None Listed
w/Earthquake			(1.1 Typically Used)

 Table 2. Results of Slope Stability Analysis

Because the long term with earthquake is the most critical condition, that condition was used to evaluate the effect of the shallow-foundation surcharge of Downtown Joes on global stability. The long term with earthquake analysis was repeated to determine the maximum building surcharge that would result in a factor of safety of 1.1. A surcharge of 2,200 pounds per square foot produced a factor of safety of 1.10. According to MGE, a building of the size and type of Downtown Joe's would typically have a surcharge load of about 1,000 pounds per square foot (Appendix 9). The long-term analysis was also conducted with a 2,200 pounds per square foot building surcharge, resulting in a factor of safety of 2.11. Therefore the global stability of the dual-wall system is not a concern.

7. Terrace Excavation. A marsh plain terrace, with a slope varying between 6H:1V and 4H:1V, will be excavated on the riverside of the soldier pile wall. The terrace will be excavated out into the river until the excavation line intersects with the existing river bottom. The purpose of the terrace is to provide additional channel capacity for flood flows. Some excavated material will be used as fill during construction. The remaining

material will be placed in the Ghisletta disposal site. To protect the toe of the soldier pile wall from scour, riprap will be placed over the entire wall length.

8. Dewatering. Dewatering is a major concern for this project. Dewatering system design is the responsibility of the Contractor. The contract specifications require the Contractor to submit a dewatering plan for Government approval prior to construction. Based on the geotechnical explorations, groundwater will likely be encountered somewhere between elevations +1 and -2 feet NGVD. The water elevation of the Napa River varies from about +3.75 feet NGVD at high tide to about -2.84 feet NGVD at low tide. Upstream of approximate station 2+80 along the soldier pile wall layout line, the bottom of the lower wall is at elevation +1 foot NGVD. The only exception is at Downtown Joes, where the bottom of the lower wall is at elevation -4 feet NGVD for a distance of approximately 116 lineal feet due a depression in the existing ground surface in that area. It is anticipated limited dewatering measures will be required upstream of station 2+80. The marsh plane terrace is about 25 to 30 feet wide over most of this area. Dewatering in this area may be accomplished by temporarily piling excavated soil on the waterside end of the marshplane terrace to keep the river flows out, supplemented by the use of pumps and/or a seal course (a thin layer of concrete as per Caltrans standard specification 51-1.10) in the base of the excavation if necessary to control groundwater infiltration. Groundwater control for the CIDH pile boreholes is discussed in paragraph 6.2.8, Pile Specification. Downstream of station 2+80, dewatering will require a significant effort. A temporary cofferdam will likely be required to keep the river water out of the lower wall excavation. Possible methods for cofferdam construction are a sheet pile wall, a soldier pile wall with excavated H-piles and wooden lagging, or a deep soil mixed wall below ground with H-piles sticking above ground and wooden lagging between the piles. For construction of both the Third and First Street bridges, sheet pile cofferdams were used to construct the bridge piers. According to City of Napa Public Works personnel (Appendix 9), the contractors used vibratory hammers to install the sheet piles, except for a few piles at the First Street bridge where a diesel drop hammer had to be used after refusal with the vibratory hammer. It is well documented that vibratory hammers produce lower vibrations than drop hammers (References 12 and 13). According to several references (Figure 11 in Reference 8, Chapter 8 in Reference 12, and Figure 7 in Reference 13), cosmetic cracking in buildings typically will not occur if the peak particle velocities in the soil at the building site are less than 3 inches per second. Reference 12 discusses a British study where both sheet and H-piles were installed using both drop and vibratory hammers through a moderately dense sand laver only 1.6 feet away from a brick wall. The maximum particle velocity was measured as 2.6 inches per second at the brick wall and the wall was not damaged in any way. For this project, a temporary cofferdam on the waterside of the soldier pile wall will be about 25 feet away from the Napa Mill buildings. According to Reference 12, pile driving vibrations dissipate fairly quickly. The dewatering specifications will allow the use of vibratory hammers only to install sheet pile walls, and the particle velocities at the buildings must be kept below 1 inch per second. Unfortunately, vibrations typically become bothersome to humans at a velocity of about 0.3 inches per second, so the perception of people within the Napa Mill buildings of excessive vibrations will occur prior to any building damage occurring. While a sheetpile temporary cofferdam will

keep out water from the riverside, some groundwater infiltration from the landside will occur. Because the upper sand and gravel layer is so dense and has a high fines content, it's permeability will likely be low for that soil type, reducing groundwater infiltration. Pumps and/or seal courses may be sufficient to dewater the excavation from the landside. If not, a short sheetpile wall or shallow wellpoints may be required.

9. Constructability. Numerous constructability concerns exist for this contract. A major concern is the presence of debris and possible boulders in the subsurface. Some of the borings drilled in 2003 encountered refusal and had to be terminated or moved over 5 feet due to the obstacles. When drilling for the CIDH piles, a high-powered drill rig and a strong drill bit must be used. If refusal is encountered, a small-diameter test or pilot hole should be drilled through the object to determine exactly what the object is and how deep it extends. Very shallow obstacles can be excavated out and replaced with aggregate base course or concrete. Deeper obstacles, if encountered, will be assessed on a case-by-case basis. Objects can often be broken up with special equipment, such as down-the-hole hammers and churn drills (Reference 10). The Contractor must have equipment to perform these operations on-site or readily obtainable (within 36 hours to avoid long and costly construction delays). If an obstacle cannot be broken up and drilled through, the pile will have to be relocated along the wall alignment. This could entail replacing one pile with two piles, with the new piles on either side of the planned pile. Changing pile locations and/or number of piles would necessitate a redesign of the reinforcing bars that connect the pile to the structural concrete of the wall. The contract bid sheet contains one bid item for 24-inch CIDH piles and another bid item for 36-inch CIDH piles with the quantities (measured in length) as shown on the contract drawings. There are also optional bid items for additional length of 24-inch CIDH piles and additional length of 36-inch CIDH piles. These optional items can be exercised if unexpected conditions during construction necessitate a redesign of a portion of the foundation. Access is another major concern. Construction equipment cannot access the area behind the Napa Mill, so construction will have to be from a barge or a temporary platform constructed over the Napa River. Access is also limited at Downtown Joes. Heavy construction close to existing structures could cause excessive movements or vibrations that could lead to damage. Geotechnical instrumentation will be installed and monitored during construction to ensure that adjacent buildings and structures are not damaged (see Geotechnical Instrumentation section). The contract specifications require the Contractor to have a geotechnical engineer to monitor the geotechnical site conditions during construction. The Corps geotechnical designer will also make frequent site visits to monitor conditions. The Corps geotechnical designer will be on site all the time during the installation of the CIDH piles for Wall Type A, and will visit the site once or twice a week during installation of the remaining CIDH piles. The Corps will also have the structural designer under contract during construction to handle structural issues which arise during construction.

10. Geotechnical Instrumentation. Because heavy construction activities will occur very close to existing structures, geotechnical instrumentation is required to monitor the structures to prevent damage. The primary concern is settlement/tilting of the structures, with vibrations from construction equipment as a secondary concern. The following

structures will be monitored during construction: all the buildings and patios at the Napa Mill, the Third Street Bridge abutment, Downtown Joes, the Semorile building, and the counterfort concrete retaining wall. Due to access limitations and the fact that some of the structures are on pile foundations, monitoring for settlement/tilting will be conducted by the use of surveyed settlement monuments and/or beam tiltmeters. Some monuments will be installed in the ground near the structures, and some will be attached to the structures themselves. All instrumentation must be installed and an initial set of readings taken prior to the beginning of all other construction activities. Vibrations will be monitored daily while construction is occurring near a specific structure. Settlement/tilting will be monitored daily when construction is occurring near a specific structure and for a week afterwards, and once a week thereafter for 2 months. The contract specifications require the Contractor to submit an instrumentation plan for Government approval prior to construction.

10.1. Inclinometers. Due to limited space and access at most buildings inclinometers will most likely not be used to monitor ground movement due to excavation for the wall. Recommend that at least two inclinometers be installed along the slope between the Oberon Building and the River. Inclinometers should indicate any slope movement caused by excavation.

10.2. Observation Wells. Observation Wells should be installed adjacent to buildings at the Napa Mill where dewatering is anticipated. Dewatering can lower the groundwater table and induce settlement. Recommend that at least three observation wells be placed around each building in the dewatering area. At least two observation wells should be located on the slope between the building and river or one on each side of the building. At least one observation well should be installed along the other end of the building. This should provide a picture of groundwater elevations, and potential settlement, under the entire building.

10.3. Survey Monuments. Recommend survey monuments be placed on the abutment of the Third Street Bridge, Fourth Street, and the patio connecting the Angele Building and Napa River Inn Suites. The abutment should have at least one monument, Forth Street should have at least one monument, and the patio should have at least three monuments. In addition survey monuments can be placed on buildings to monitor structural movement. Recommend at least two monuments on each side of the building facing the river or one on each side the building adjacent to the wall of the building facing the river.

10.4. Beam Tiltmeters. Beam Tiltmeters may be used in addition or in place of survey monuments for structural rotation (vertical beam tiltmeters) or observation wells for settlement (horizontal tiltmeters). Recommend that two vertical beam tiltmeters be placed on each side the face of the building and one horizontal beam tiltmeter be placed at the side of the building facing the river.

10.5. Vibration Monitors. Recommend at least one vibration monitor be placed on each building.

11. References.

1. U.S. Army Corps of Engineers, Sacramento District, Napa River/Napa Creek Flood Protection Project, Final Supplemental General Design Memorandum, October 1998.

2. U.S. Army Corps of Engineers, Headquarters, Bearing Capacity of Soils, EM 1110-1-1905, 30 October 1992.

3. U.S. Army Corps of Engineers, Headquarters, Retaining and Flood Walls, EM 1110-2-2502, 29 September 1989.

4. U.S. Army Corps of Engineers, Headquarters, Design of Pile Foundations, EM 1110-2-2906, 15 January 1991.

5. MGE Engineering, Inc., Napa River/Napa Creek Flood Protection, Wall Type Selection, Contract 2 West (Hatt Building to First Street), June 2004.

6. MGE Engineering, Inc., Napa River/Napa Creek Flood Protection Project, Contract 2 West (Hatt Building to First Street), Structural Design Calculations (100% Submittal), March 2005.

7. Naval Facilities Engineering Command, Foundations and Earth Structures, NAVFAC 7.2, September 1986.

8. Naval Facilities Engineering Command, Soil Dynamics and Special Design Aspects, NAVFAC 7.3, April 1983.

9. Ooi, P.S.K. et al, Engineering Manual for Drilled Shafts, Virginia Polytechnic Institute and State University, May 1991.

10. Gerwick, Ben C., Pile Installation in Difficult Soils, American Society of Civil Engineers, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 5, May 2004.

11. Youd, T.L. and Idriss, I.M., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, American Society of Civil Engineers, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, April 2001.

12. Dowding, Charles H., Construction Vibrations, Prentice-Hall Inc., 1996.

13. Wiss, John F., Construction Vibrations: State-of-the-Art, American Society of Civil Engineers, Journal of the Geotechnical Engineering Division, Vol. 107, No. GT2, February 1981.

14. Duncan, J.M., and Tobin, C., CE 5534 – Foundation Engineering I, Reference Materials Part I, Virginia Polytechnic Institute and State University, August 1992.

15. Reese, Lymon C. and O'Neill, Michael W., Drilled Shafts: Construction Procedures and Design Methods, Federal Highway Administration, FHWA-HI-88-042, August 1988.

16. Carter, M. and Bentley, S.P., Correlations of Soil Properties, Pentech Press Ltd., 1991.

17. Duncan, J.M. et al, Shear Strength Correlations for Geotechnical Engineering, Virginia Polytechnic Institute and State University, August 1989.

PHOTOS

Photo 1. View of the southern end of the Napa Mill complex from across the Napa River.

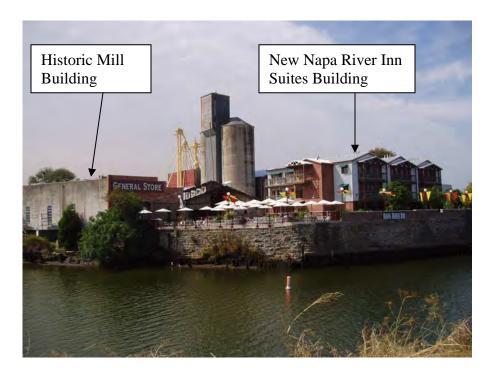


Photo 2. View of the Napa Mill complex from across the Napa River.

Photo 3. View of the southern end of the Napa Mill complex. The soldier pile wall will tie into existing ground (station 0+00) in this area.

Photo 4. View of the patio behind the Napa Mill complex.

Photo 5. View of cantilevered portion of the historic Napa Mill building. The soldier pile wall will be 10 feet to the left of this building wall.

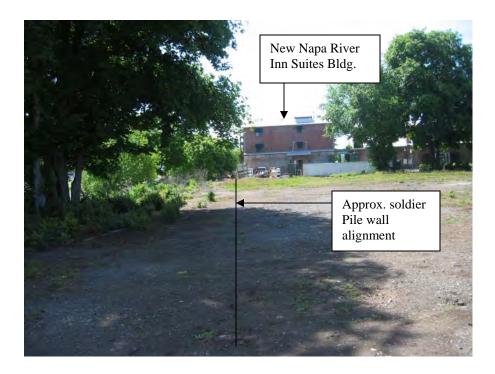


Photo 6. View of vacant lot from Fourth Street to the Napa Mill, looking south (downstream)

Photo 7. View of parking lot at Fourth Street, looking north (upstream) towards the Third Street Bridge (in background).

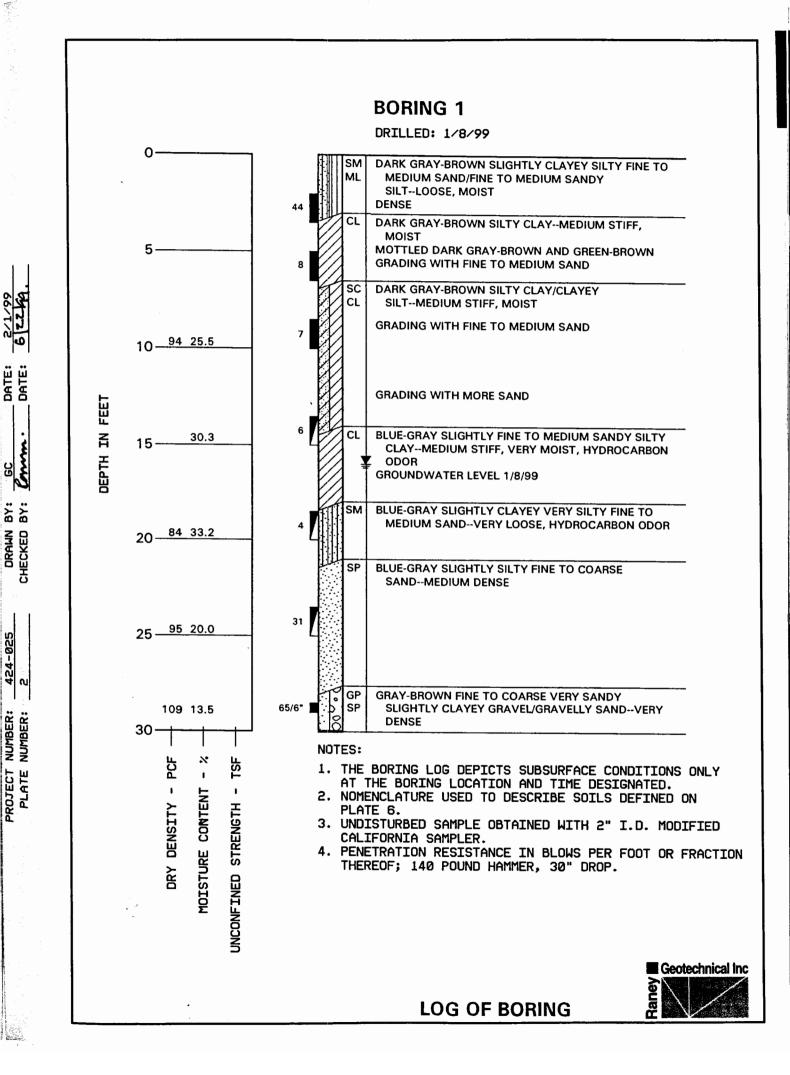
Photo 8. View of Veterans Park, looking north (upstream) towards Downtown Joes (in background).

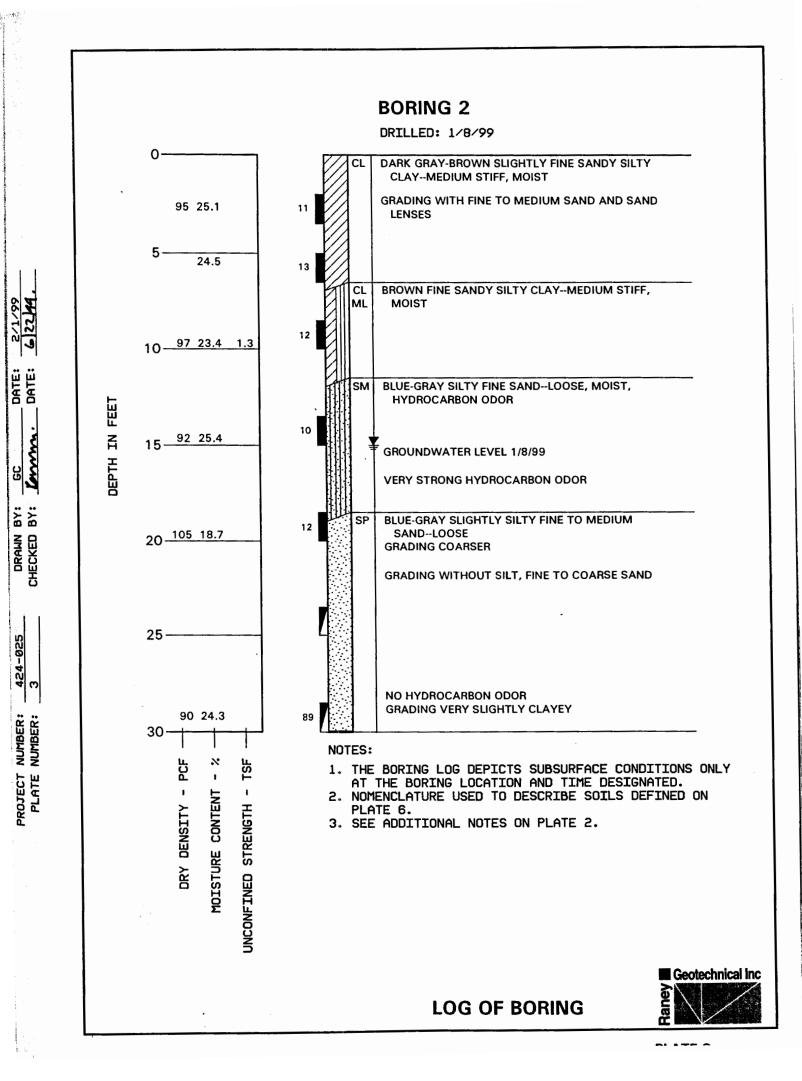
Photo 9. View of east wall of Downtown Joes, looking south. Soldier pile wall alignment is about 25 feet to the left of the building wall.

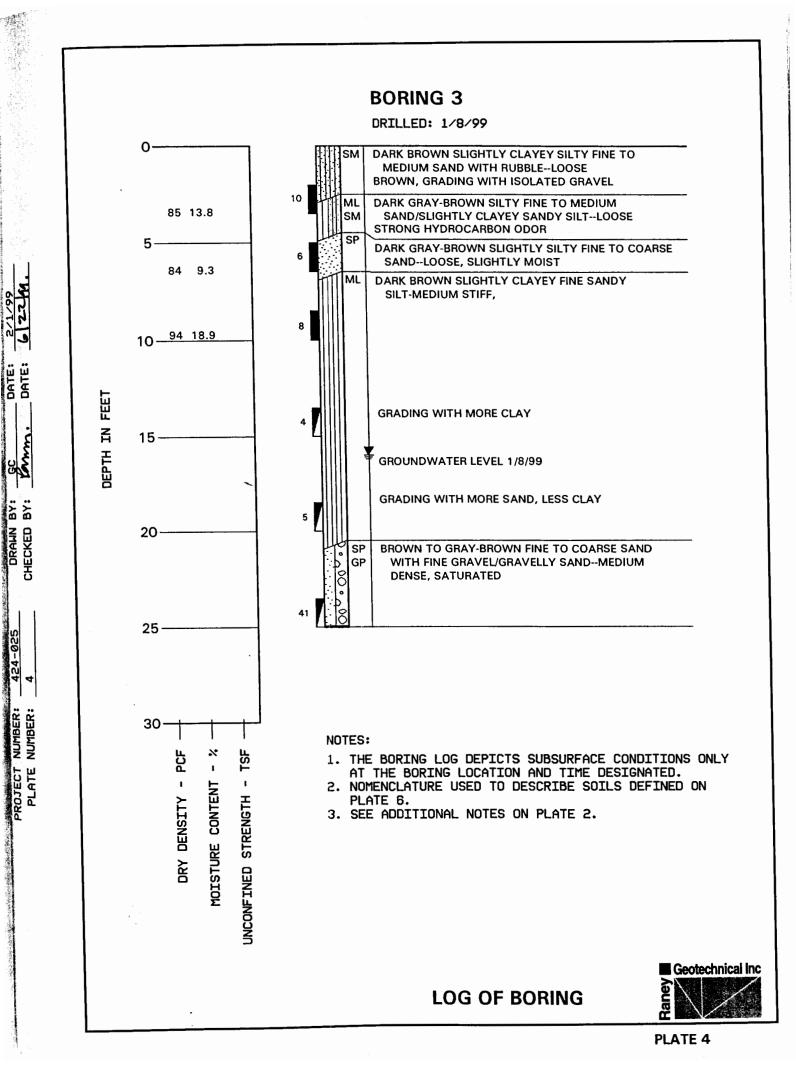
Photo 10. View of parking lot north of Downtown Joes, looking northeast. Upstream end of soldier pile wall ties into the corner near the center of the photograph.

FIGURES

APPENDIX 1: RANEY GEOTECHNICAL BORING LOGS AND CPT DATA


GRAPH	SYMBOL	DESCRIPTION	Major D	IVISIONS	
	GW	WELL GRADED GRAVELS, GRAVEL- SAND MIXTURES	CLEAN GRAVELS WITH	GRAVEL AND	
	GP	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES	LESS THAN 5% FINES	GRAVELLY SOILS	SIEVE
2000 00 00 00 00 00 00 00 00 00 00 00 00	GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES	GRAVELS WITH	MORE THAN 50%	200
	GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES	MORE THAN 12% FINES	OF COARSE FRAC- TION <u>RETAINED</u> ON NO. 4 SIEVE	VED S THAN
0 0 0 0	sw	WELL GRADED SANDS, GRAVELLY SANDS	CLEAN SANDS WITH	SANDS AND	L R
	SP	POORLY GRADED SANDS, GRAVELLY SANDS	LESS THAN 5% FINES	SANDY SOILS	THAN
	SM	SILTY SANDS, SAND-SILT MIXTURES	SANDS WITH	More than 50% Of coarse frac-	MORE
	sc	CLAYEY SANDS, SAND- CLAY MIXTURES	MORE THAN 12% FINES	TION <u>PASSING</u> NO. 4 SIEVE	
	ML	INORGANIC SILTS, ROCK FLOUR, OR CLAYEY SILTS WITH SLIGHT PLASTICITY			SIEVE
	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	LIQUID LIMIT <u>LESS</u> THAN 50	SILTS AND CLAYS	200
	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY			NED SOILS R THAN NO.
	мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTS, ELASTIC SILTS			FINE GRAINED 50% SMALLER TH
	сн	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	LIQUID LIMIT <u>GREATER</u> THAN 50	SILTS AND CLAYS	
	он	ORGANIC CLAYS AND ORGANIC SILTS OF MEDIUM TO HIGH PLASTICITY			MORE THAN
	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENT	HIGHLY OF	RGANIC SOILS	


UNIFIED SOIL CLASSIFICATION SYSTEM



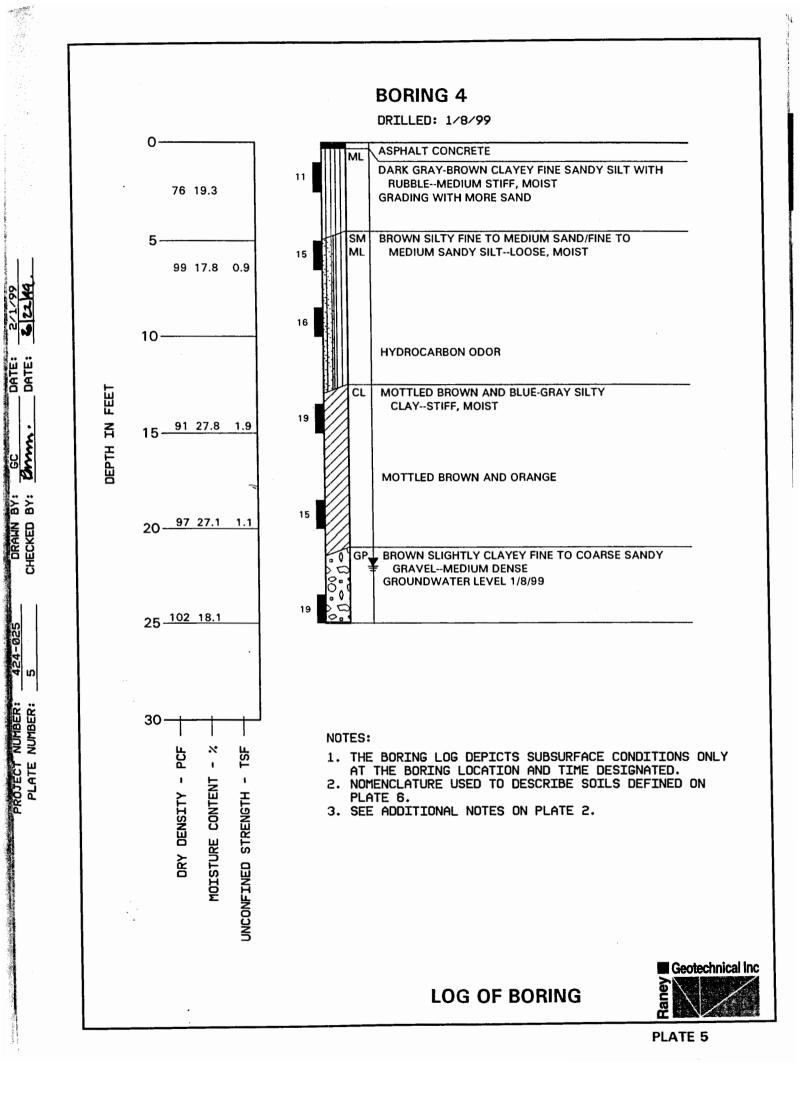
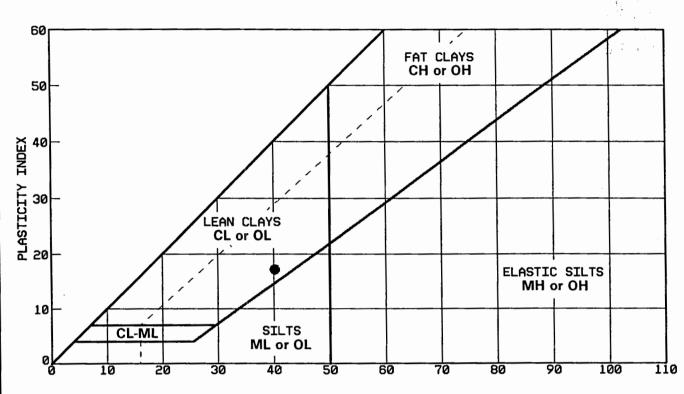

PROJECT NUMBER: 424-025 PLATE NUMBER: 8

PLATE 6

424-025 7

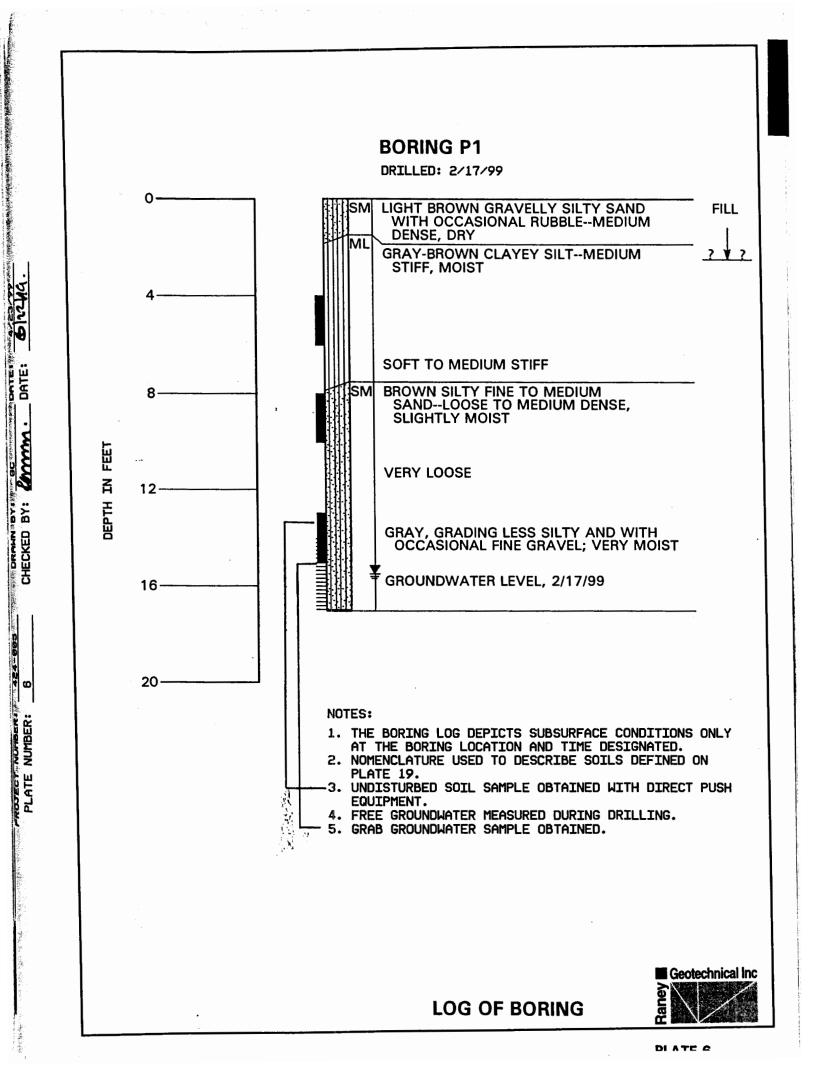

Hand Ball

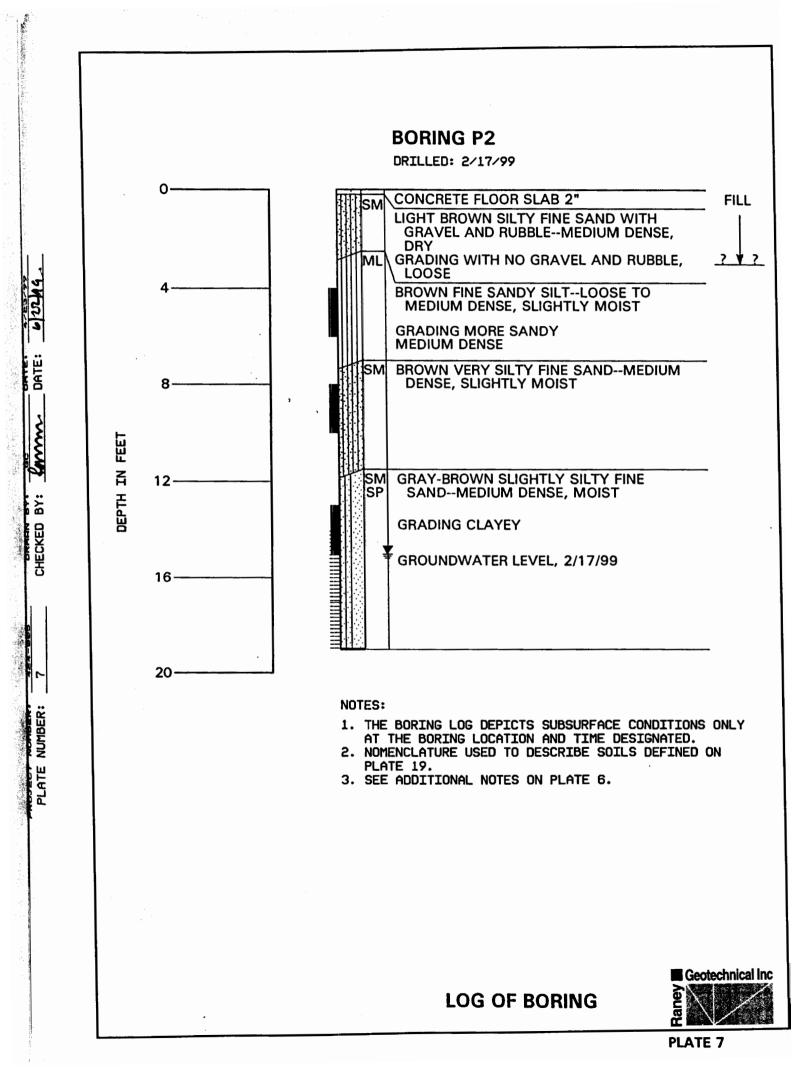
の語を記を言う

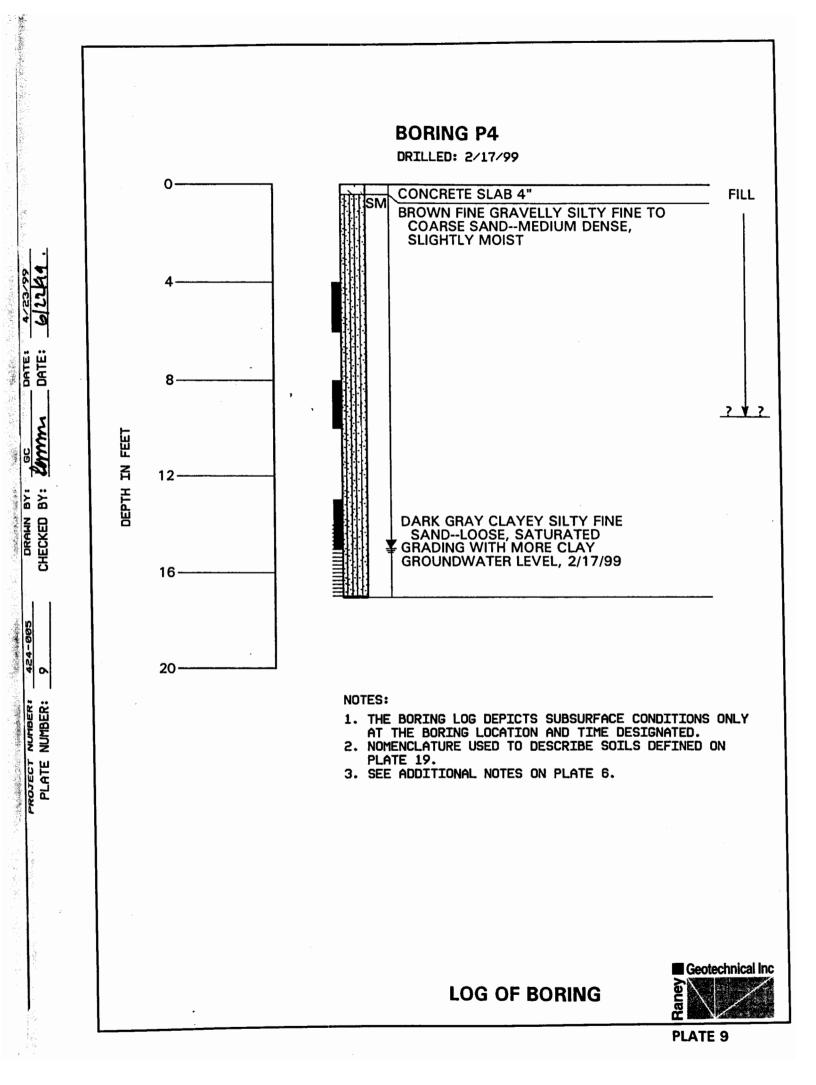
	NUMBER	NUMBER:
	PROJECT	PLATE
Ľ.		

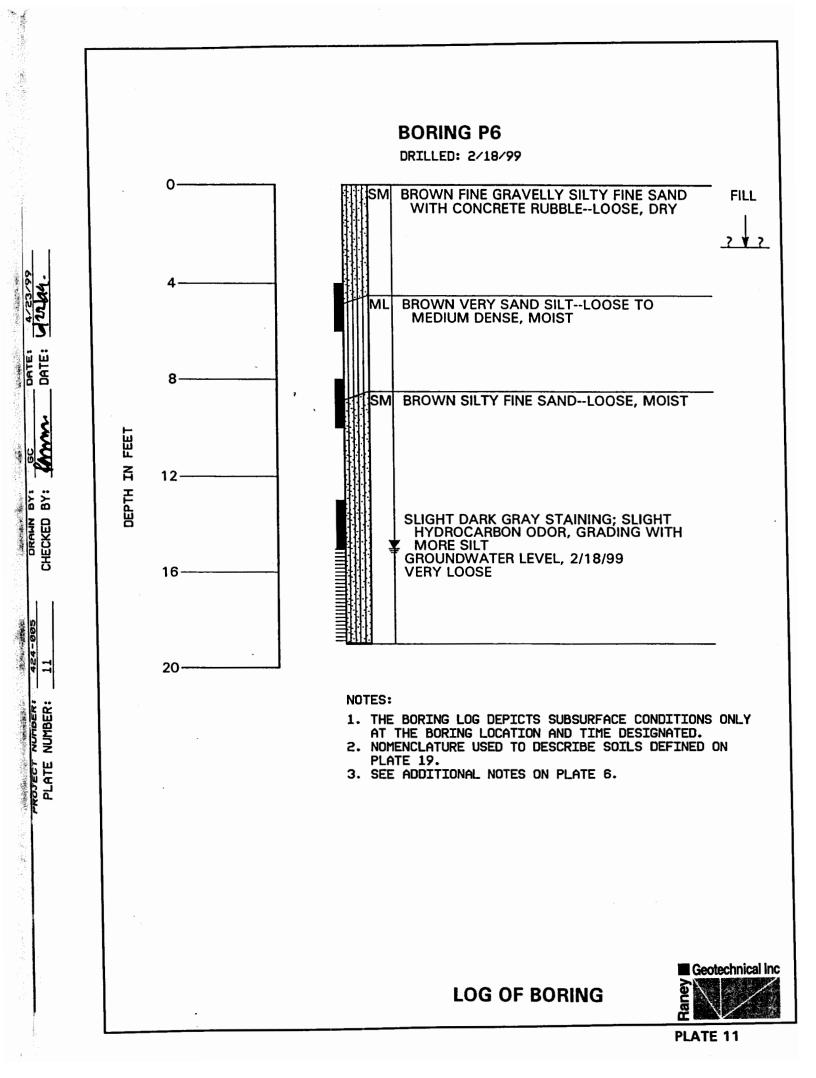
「「「「「「「」」」」

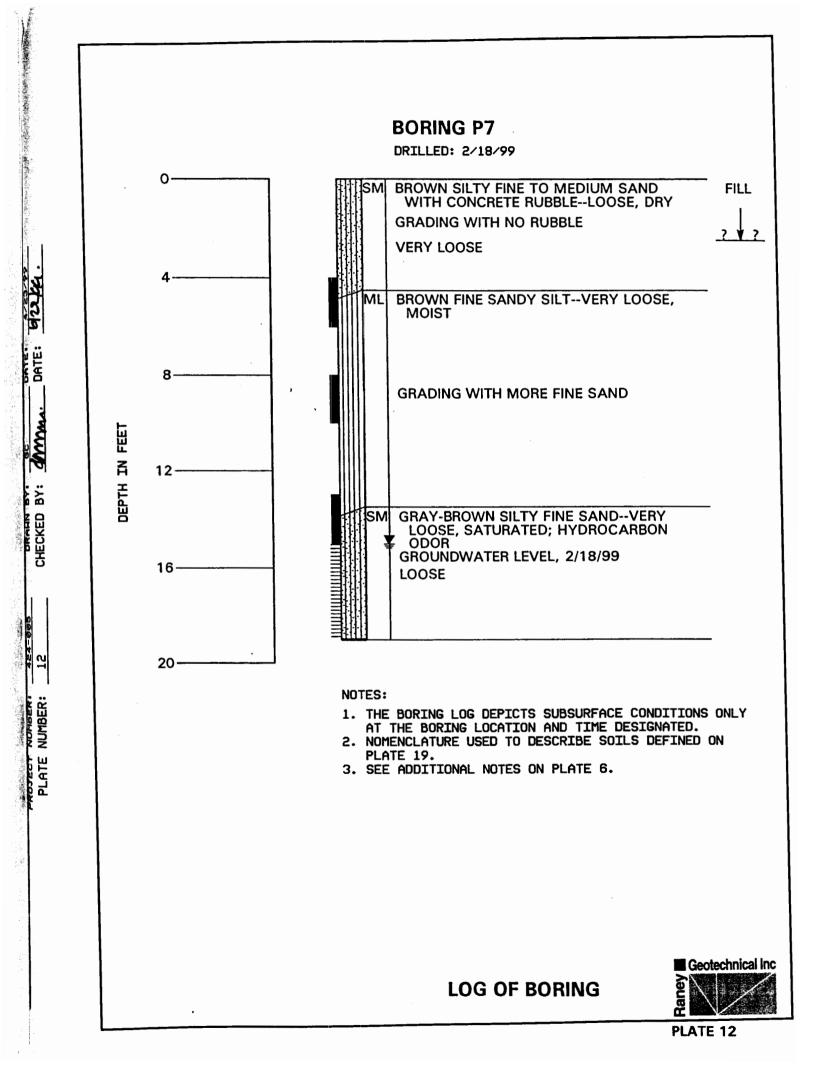
.

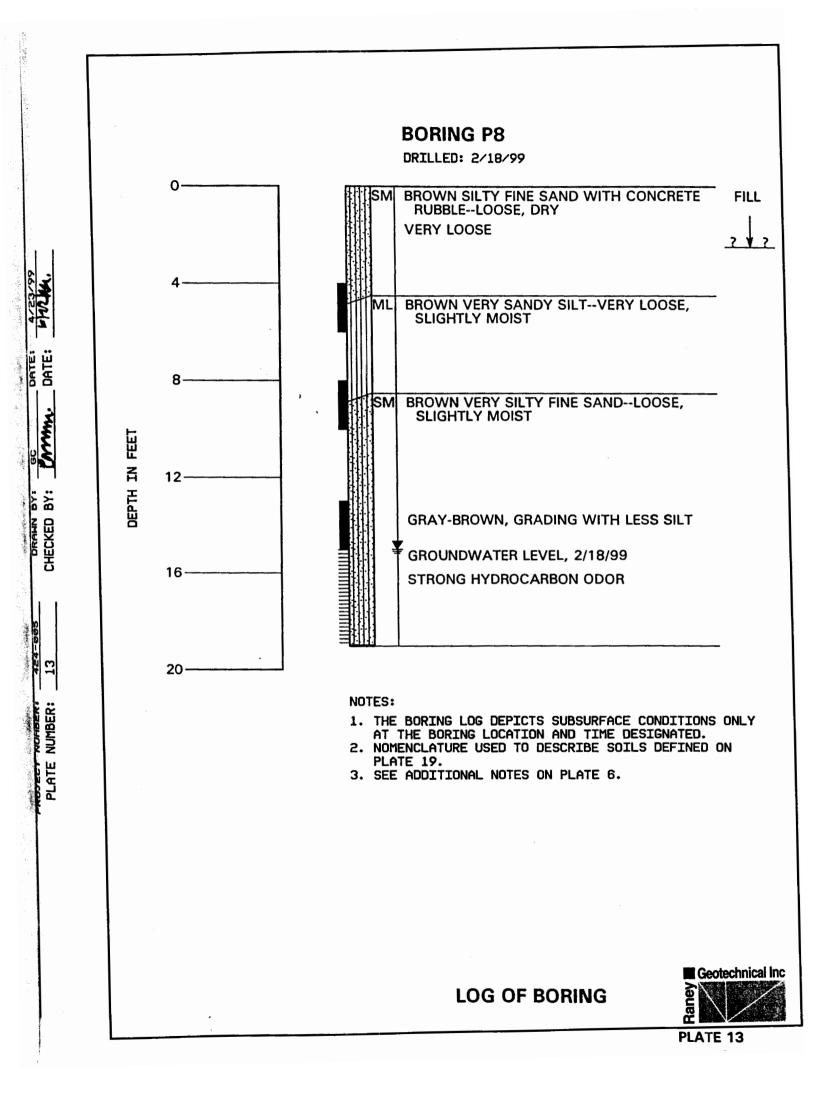


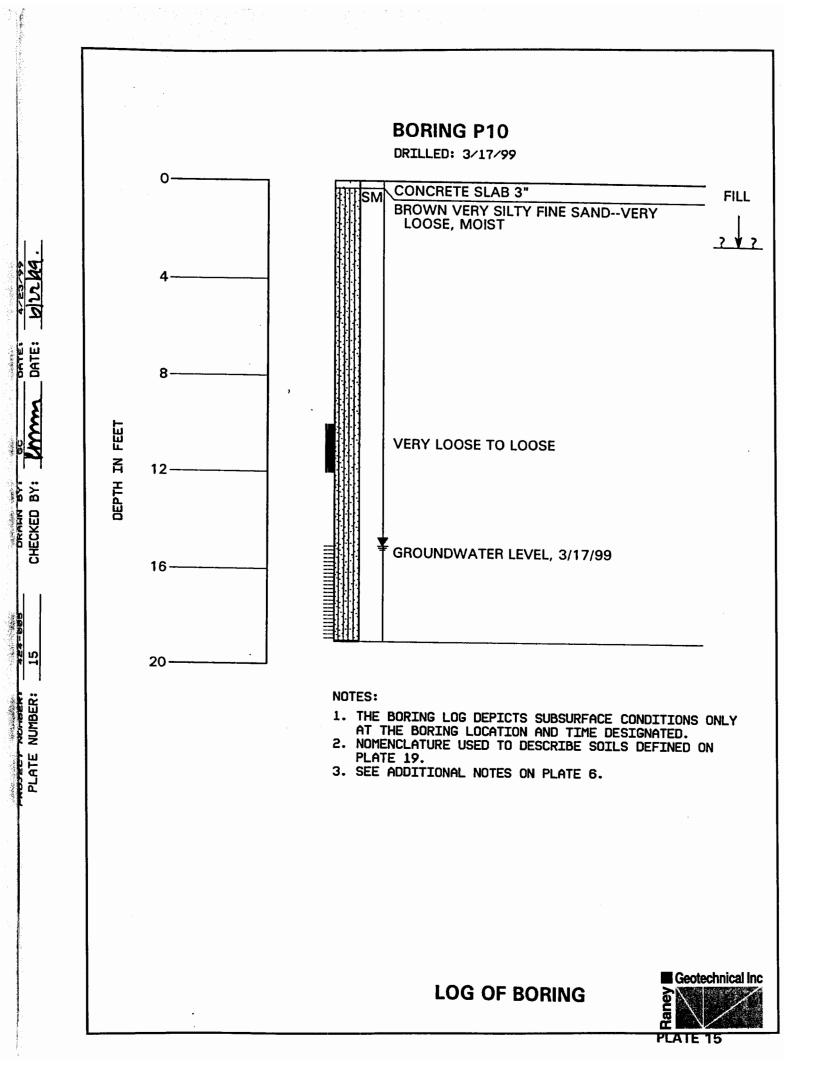

LIQUID LIMIT

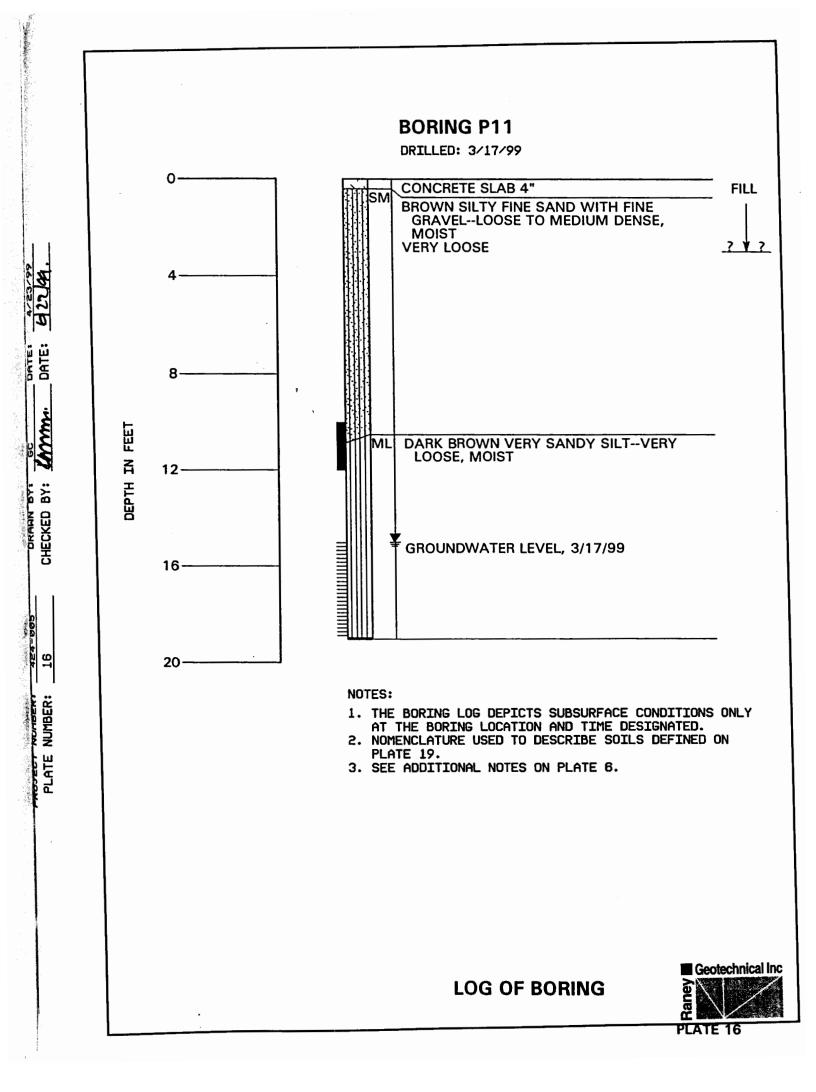

	CLASSIFICATION TEST RESULTS													
SYMBOL	SAMPLE LOCATION	DEPTH FEET	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	SOIL CLASSIFICATION								
•	BORING 2	6.0	40	23	17	CL								

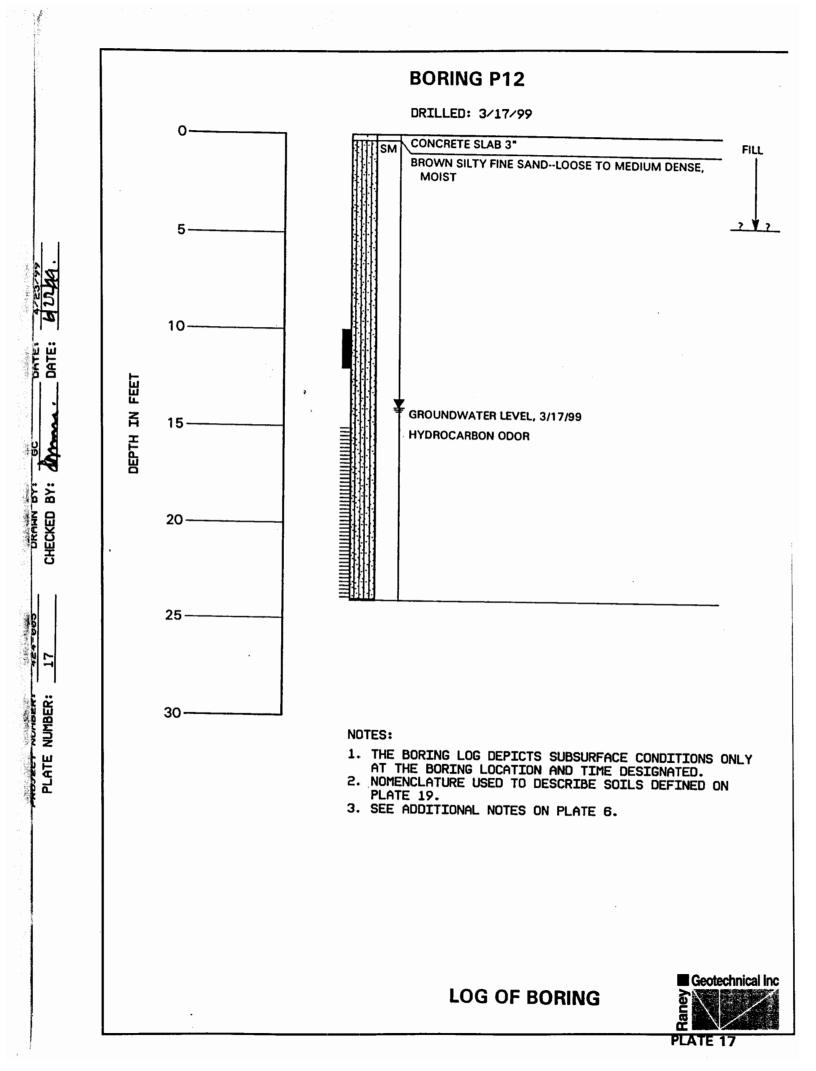

ATTERBERG LIMIT DATA

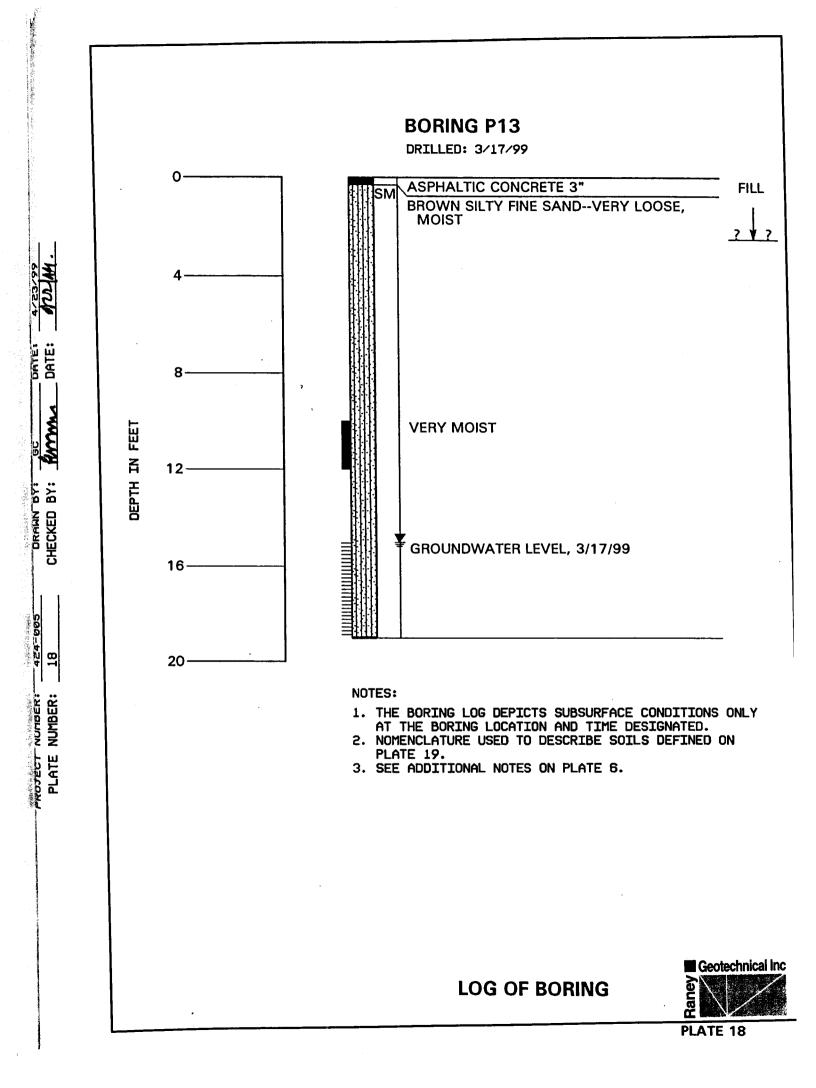


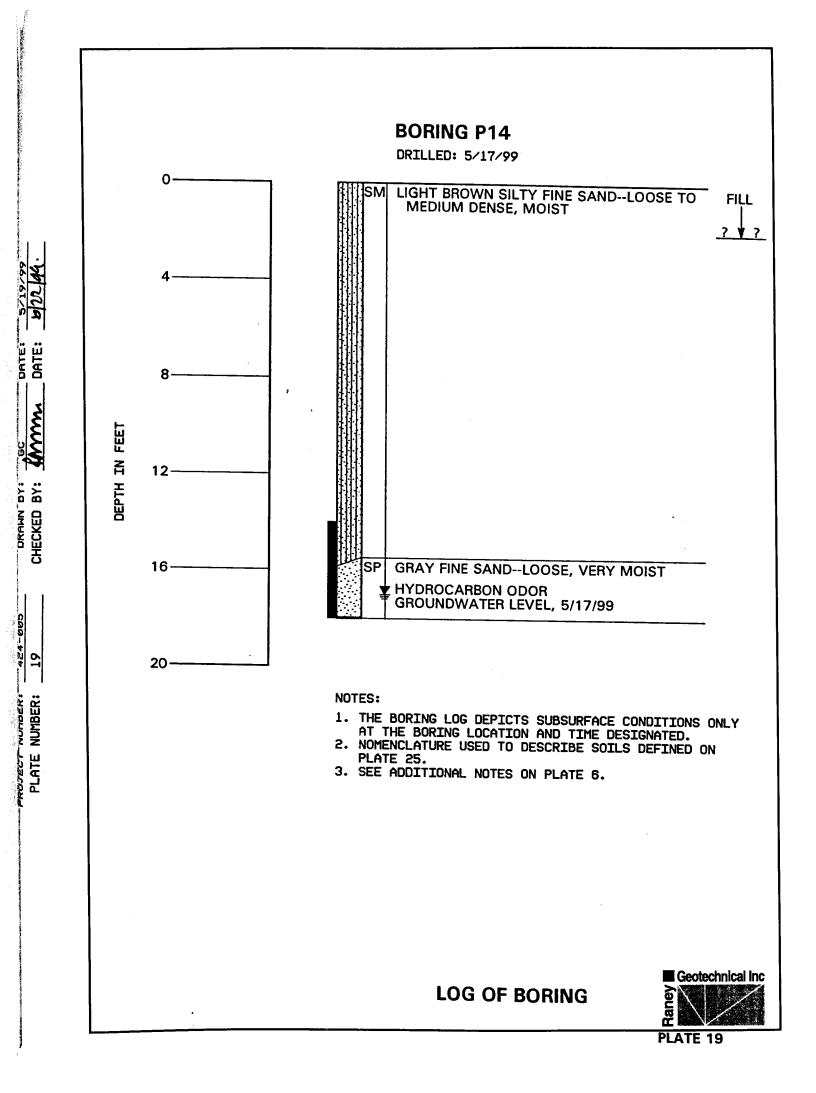


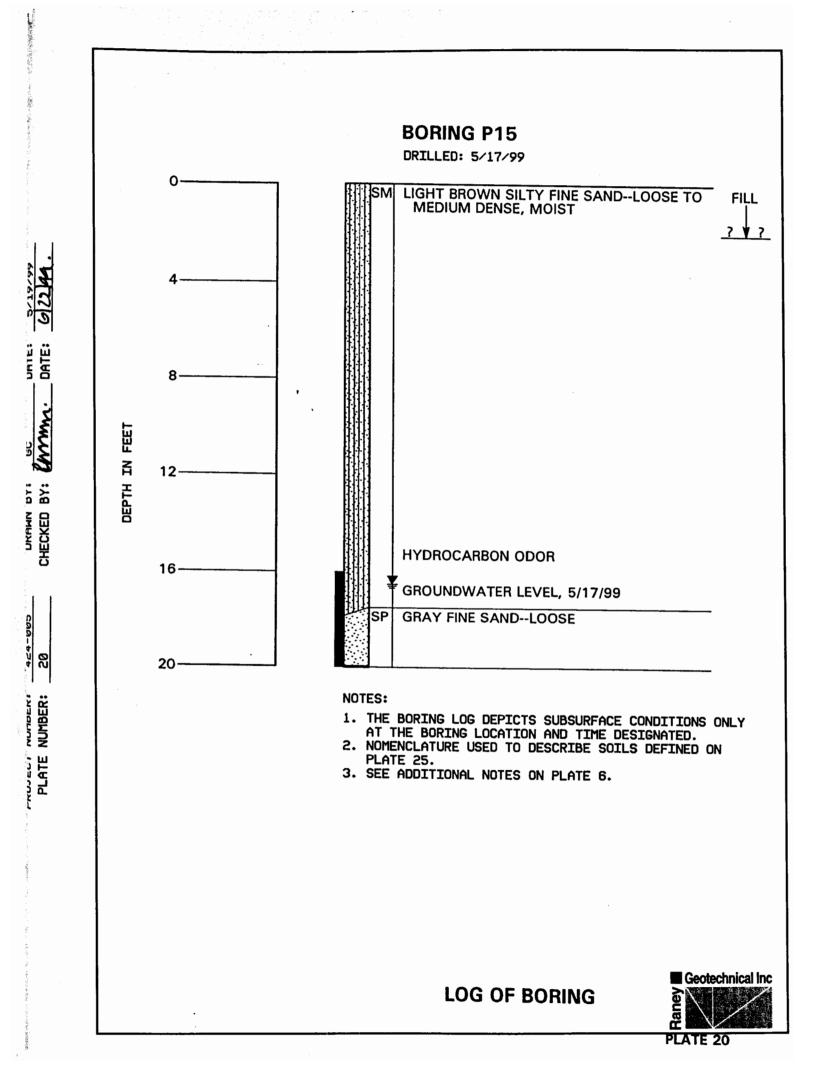


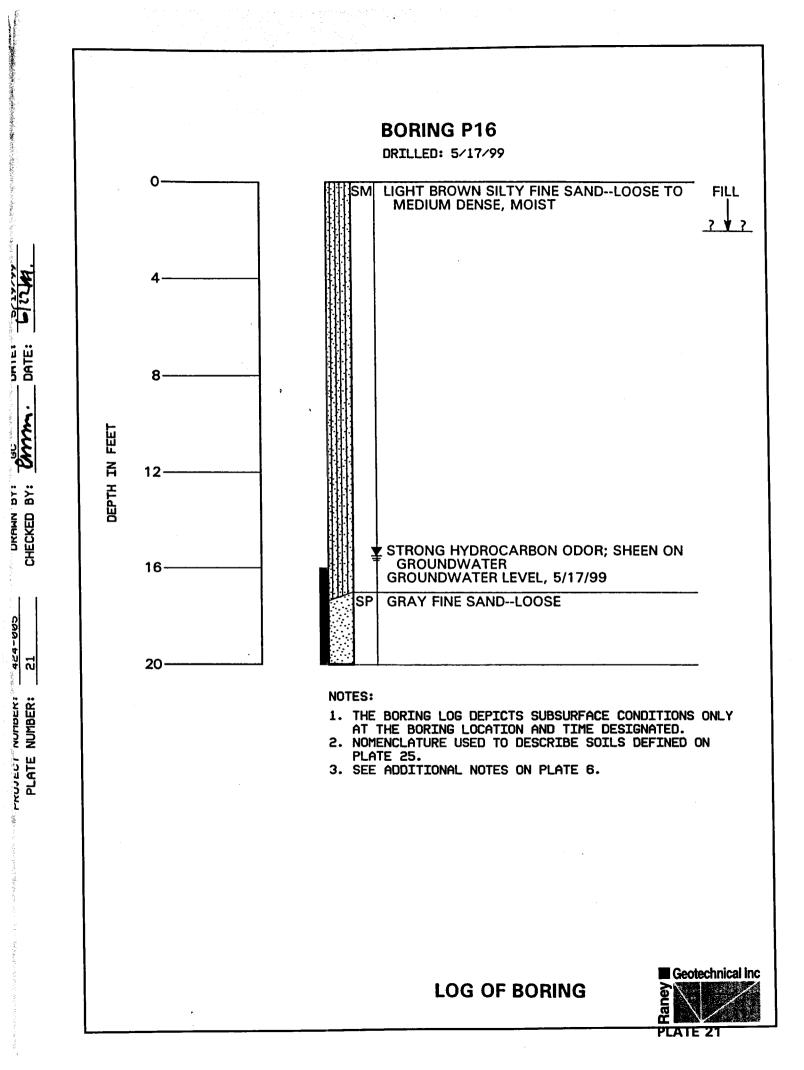


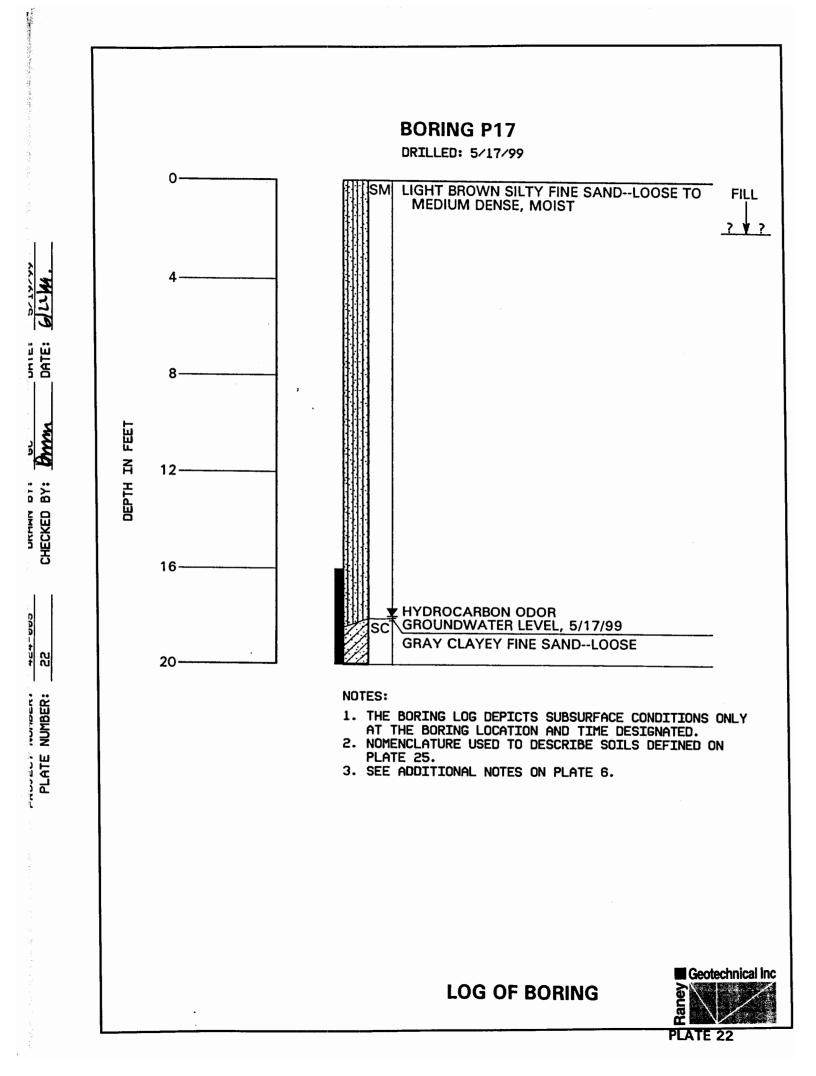


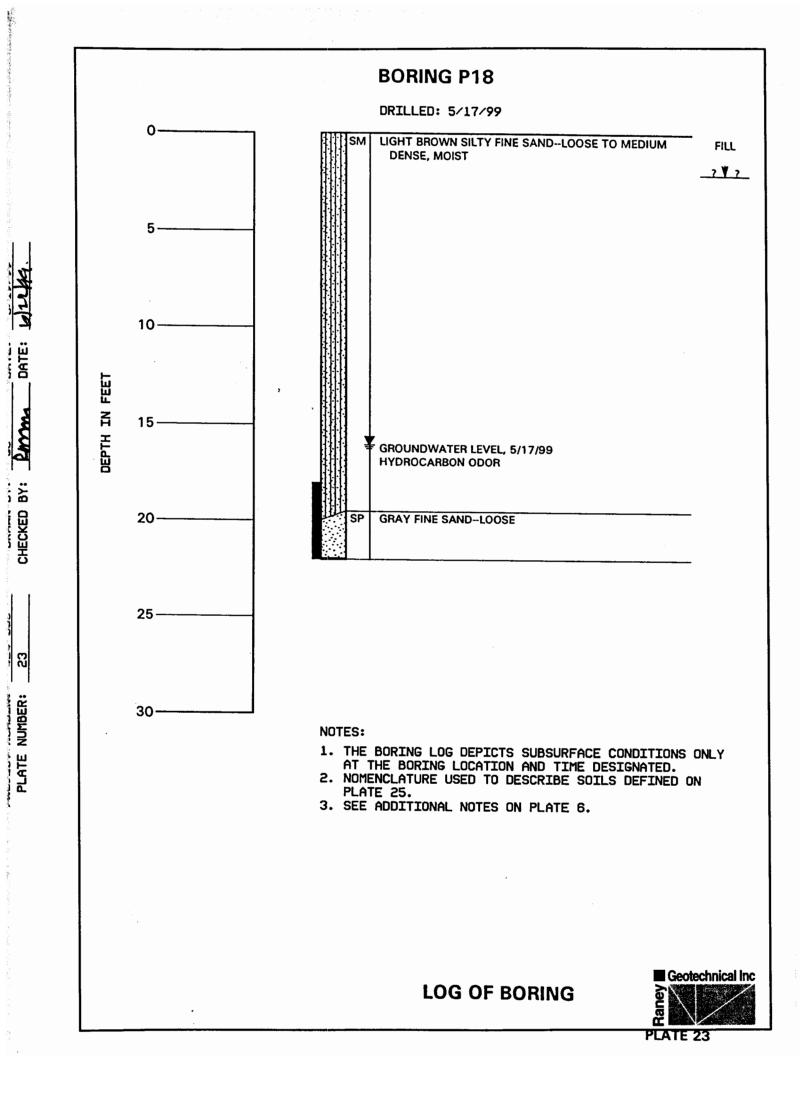


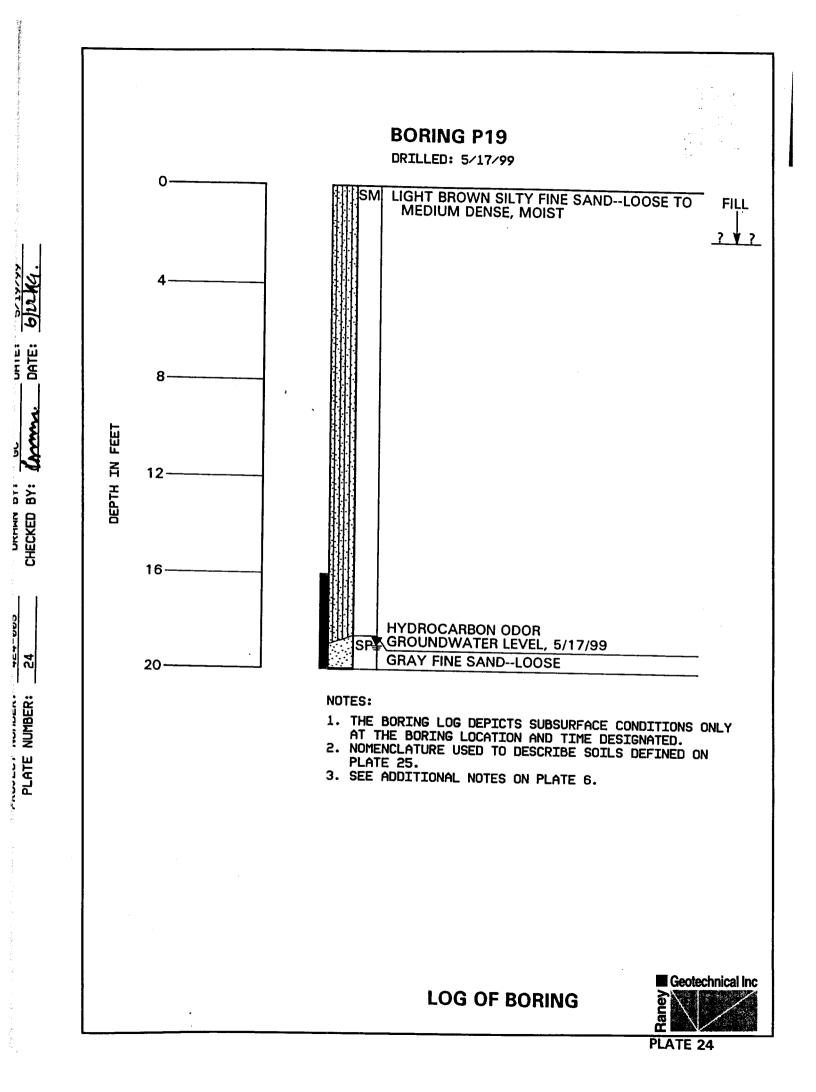






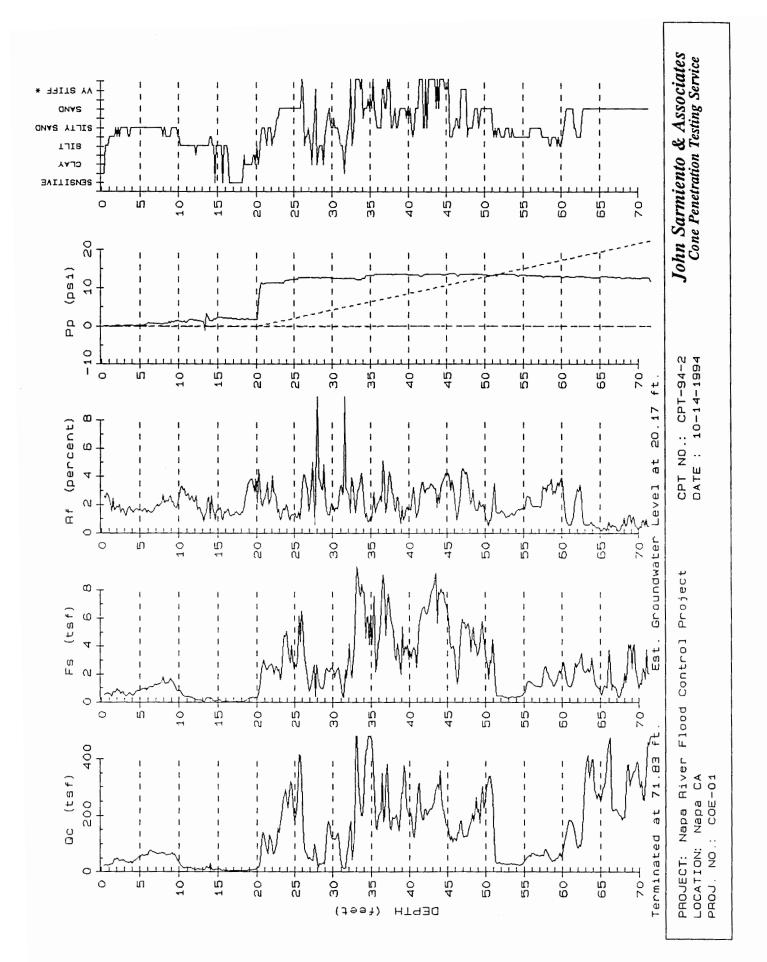






ROJ_ NO	N: Napa CA D.: COE-01			-	CT 1047-5	DATE	10-14-	1994	1 of 3
				6	STIMATED	WT DEPTH:	20.17	feet	
DEPTH	Qc	Fs	Rf	SPT	TotHzStr		รบ	SOIL BEHAVIOR	DENSITY RAN
(feet)	(tsf)	(tsf)	(%)	(N)	(ksf)	(deg.)	(ksf)	TYPE	(pcf)
1.00	24.70	0.67	2.7	12	0.12		2.90		
1.50	28.90	0.42	1.5	12	0.18		3.39	Clayey SILT to Silty CLA Sandy SILT to Clayey SILT	/ 11 11
2.00	45.39	0.76	1.7	18	0.25		5.33		130-140
2.50 3.00	41.39 45.09	0.82	2.0	17	0.32		4.85		11
3.50	34.79	0.75 0.52	1.7	15	0.38	45		Silty SAND to Sandy SIL1	
4.00	38.19	0.61	1.5 1.6	12 15	0.45 0.51	44		14	120-130
4.50	41.79	0.66	1.6	14	0.57		4.46	Sandy SILT to Clayey SILT	' II
5.00	54.89	0.86	1.6	18	0.63	43 44		Silty SAND to Sandy SILT	
5.50	63.49	0.96	1.5	21	0.70	44		11	11
6.00	63.39	0.89	1.4	21	0.76	44		14	130-140
6.50	78.39	1.11	1.4	26	0.83	44			120-130
7.00	70.99	1.27	1.8	24	0.89	44			170-170
7.50	67.09	1.29	1.9	22	0.96	43		14	130-140
8.00	67.69	1.85	2.7	27	1.03	····	7.90	Sandy SILT to Clayey SILT	
8.50	61.49	1.39	2.3	20	1.10	42		Silty SAND to Sandy SILT	11
9.00	65.49	1.72	2.6	26	1.16		7.64	Sandy SILT to Clayey SILT	11
9.50 10.00	65.59	1.25	1.9	22	1.23	42	····	Silty SAND to Sandy SILT	11
10.50	37.79 18.70	0.84	2.2	13	1.30	38		11	11
11.00	16.30	0.63 0.42	3.3 2.6	9	1.36		2.12	Clayey SILT to Silty CLAY	120-130
11.50	16.20	0.37	2.3	8 8	1.42 1.49	••••	1.83		11
12.00	11.90	0.26	2.2	6	1.54		1.82	11	11
12.50	12.40	0.20	1.6	6	1.60		1.31 1.36		110-120
13:00	10.40	0.14	1.4	5	1.64		1.13		100-110
13.50	9.90	0.13	1.3	5	1.69		1.07		90-100
14.00	13.50	0.34	2.5	9	1.75		1.49	Silty CLAY to CLAY	
14.50	7.50	0.13	1.8	4	1.80		0.78	Clayey SILT to Silty CLAY	110-120 90-100
15.00	9.70	0.15	1.6	5	1.85	•	1.03		100-110
15.50	8.60	0.15	1.8	4	1.90		0.90	11	100-110
16.00	6.90	0.10	1.5	3	1.95		0.70		90-100
16.50	4.70	0.08	1.7	2	2.00	••••	0.44		11
7.00	5.50	0.07	1.3	3	2.05	•	0.5 0	Sensitive Fine Grained	11
8.00	6.10 5.30	0.09	1.5	3	2.09	••••	0.56	11	
8.50	5.01	0.07 0.10	1.3	3 3	2.14		0.47		
9.00	8.50	0.29	2.0 3.4	3 9	2.19		0.46	Silty CLAY to CLAY	
9.50	9.50	0.36	3.8	10	2.24 2.30		0.82	CLAY	110-120
20.00	10.20	0.39	3.8	10	2.36		0.93 1.00	11	
20.50	41.20	1.39	3.4	27	2.43		4.70	Silty CLAY to CLAY	170 4/0
1.00	135.58	3.02	2.2	54	2.49		15.80	Sandy SILT to Clayey SILT	130-140
1.50	66.10	2.39	3.6	26	2.56	•	7.63		
2.00	105.89	2.74	2.6	42	2.63	····	12.30		11
2.50	83.69	2.37	2.8	33	2.70		9.69	11	
3.00	138.18	2.34	1.7	46	2.77	41		Silty SAND to Sandy SILT	
3.50	252.05	3.68	1.5	63	2.83	44	• - · •	SAND to Silty SAND	
4.00 4.50	255.05	5.03	2.0	51	2.90	44		SAND	
5.00	316.23 185.37	2.80	0.9	63	2.96	45	•	11	120-130
5.50	304.34	2.34	1.3	37	3.03	42		11	130-140
6.00	321.73	3.33 6.46	1.1 2.0	61	3.09	44	• •		120-130
6.50	69.40	2.78	4.0	64 35	3.16	45		11	130-140
7.00	53.30	0.81	1.5	18	3.23 3.29	37		SAND to Clayey SAND *	• •
7.50	43.10	2.14	5.0	29	3.36	35	/ 97	Silty SAND to Sandy SILT	120-130
8.00	44.50	2.68	6.0	45	3.43		4.87	Silty CLAY to CLAY	130-140
8.50	27.31	1.01	3.7	14	3.49		4.75 3.01		
9.00	28.41	1.36	4.8	28	3.56		2.96	Clayey SILT to Silty CLAY	
9.50	179.17	2.24	1.3	60	3.63	41	2.90	CLAY Silty SAND to Sandy SILT	
0.00	118.78	2.48	2.1	40	3.70	39		SILLY SAND to Sandy SILT	11
0.50	120.48	2.19	1.8	40	3.76	39		11	
1.00	47.0 0	1.52	3.2	19	3.83		5.30	Sandy SILT to Clayey SILT	
1.50	13.41	0.39	2.9	5	3.89		1.35	in the state of the state stat	120-130
2.00	98.19	2.80	2.9	49	3.96		11.32	Clayey SILT to Silty CLAY	130-140

John Sarmiento & Associates Cone Penetration Testing Service


	N: Napa CA 0.: COE-01	1		rol Pro		DATE	D.: CPT- : 10-14-	1994 · · · · · · · · · · · · · · · · · ·	2 of 3
				E	STIMATED	WT DEPTH	: 20.17	feet	
DEPTH (feet)	Qc (tsf)	Fs (tsf)	Rf (%)	SPT (N)	TotHzStr (ksf)	PHI (deg.)	SU (ksf)	SOIL BEHAVIOR TYPE	DENSITY RAN (pcf)
32.50	44.90	1.74		22	4.03		5.05		
33.00 33.50	515.48	7.04	1.4	172	4.10	46		Silty SAND to Sandy SILT	
		7.89		128	4.17	42		SAND to Clayey SAND *	>140
34.00	242.15 433.40	7.82		121	4.24	42		11	11
35.00	556.53	6.00 6.19	1.4	87	4.30	45		SAND	130-140
35.50	259.03	7.50	1.1 2.9	111 130	4.37	46			11
36.00	195.76	4.14	2.1	49	4.44 4.51	42		SAND to Clayey SAND *	
36.50	345.68	7.64	2.2	115	4.57	41 43		SAND to Silty SAND	1.1
37.00	329.81	4.75	1.4	66	4.64	43		Silty SAND to Sandy SILT	
37.50	159.87	6.90	4.3	80	4.71	39		SAND to CLOUD +	11
38.00	189.26	5.06	2.7	63	4.78	40		SAND to Clayey SAND *	>140
38.50	169.76	4.17	2.5	57	4.85	39		Silty SAND to Sandy SILT	130-140
39.00	278.63	1.96	0.7	56	4.91	42	••••	SAND	
39.50	348.58	3.99	1.1	70	4.98	43		11	120-130 130-140
40.00	193.16	3.02	1.6	39	5.04	40			150-140
40.50	138.47	3.65	2.6	46	5.11	38		Silty SAND to Sandy SILT	11
41.00	223.45	2.47	1.1	45	5.17	41	•	SAND	120-130
42.00	218.65 219.05	5.95	2.7	73	5.24	40		Silty SAND to Sandy SILT	130-140
42.50	219.05	6.79	3.1	110	5.31	40		SAND to Clayey SAND *	>140
43.00	234.44	6.52 7.93	3.1	105	5.38	40		11	130-140
43.50	296.82	9.15	3.4 3.1	117 148	5.45	41	••••	• •	>140
44.00	356,68	7.63	2.1	71	5.52	42	•••••		
4.50	211.65	7.79	3.7	106	5.59 5.66	43		SAND	1 30-1 40
5.00	161.97	6.55	4.0	81	5.73	40		SAND to Clayey SAND *	>140
5.50	126.58	3.81	3.0	42	5.79	38 37			11
6.00	118.68	3.23	2.7	40	5.86	36		Silty SAND to Sandy SILT	130-140
6.50	139.17	1.85	1.3	35	5.93	37			11
7.00	137.97	5.92	4.3	138	6.00		15.88	SAND to Silty SAND	11
7.50	125.98	5.17	4.1	126	6.07		14.46	Very Stiff Fine Grained *	>140
8.00	164.86	5.00	3.0	66	6.14		19.03	Sandy SILT to Clayey SILT	170 1/0
8.50	179.55	5.31	3.0	60	6.20	38		Silty SAND to Sandy SILT	130-140
9.00	211.84	3.29	1.6	53	6.27	39	····	SAND to Silty SAND	11
9.50	266.90	5.07	1.9	67	6.34	40		II	11
0.00	243.53	3.92	1.6	49	6.41	40		SAND	
0.50	334.59	1.64	0.5	67	6.47	41		11	120-130
1.00 1.50	267.32	4.45	1.7	53	6.54	40	• •		130-140
2.00	31.21 31.82	0.47	1.5	6	6.60	30		• •	120-130
2.50	27.92	0.45 0.39	1.4	13	6.66		3 .3 5	Sandy SILT to Clayey SILT	
3.00	27.72	0.32	1.4 1.2	9	6.72	30		Silty SAND to Sandy SILT	• •
3.50	29.12	0.40	1.4	9 12	5.78 5.84	30	7	11	110-120
4.00	26.92	0.39	1.4	11	6.91		3.02	Sandy SILT to Clayey SILT	120-130
4.50	26.02	0.43	1.6	10	6.97		2.76	11	
5.00	36.72	0.65	1.8	15	7.03	· · · · · ·	2.65		
5.50	57.31	1.48	2.6	23	7.10		3.91		
5.00	67.20	1.42	2.1	22	7.17	31	6.32		130-140
5.50	61.50	1.17	1.9	21	7.23	31		Silty SAND to Sandy SILT	
7.00	59.41	1.11	1.9	20	7.30	30			
2.50	58.31	1.93	3.3	23	7.37		6.43		
8.00	72.60	2.13	2.9	29	7.44		8.10	Sandy SILT to Clayey SILT	11
8.50	45.51	1.61	3.5	18	7.50		4.91		
2.00	39.82	1.20	3.0	16	7.57		4.24		
2.50	56.81	2.03	3.6	28	7.64		6.23	Clayey SILT to Silty CLAY	11
.00	64.00	2.48	3.9	32	7.71		7.08		11
.50	134.77	1.65	1.2	45	7.77	35		Silty SAND to Sandy SILT	
.00	181.84	1.13	0.6	36	7.83	37	····	SAND	120-130
.50	154.66	1.80	1.2	31	7.89	36		11	
.00	86.89	2.70	3.1	35	7.96	•	9.75	Sandy SILT to Clayey SILT	130-140
	123.77	3.49	2.8	50	8.03		14.09		130-140
	363.25	2.14	0.6	91	8.09	41		SAND to Silty SAND	120-130
	331.37	2.11	0.6	66	8.15	40		SAND	120-150
	398.04	2.56	0.6	80	8.22	41		11	

John Sarmiento & Associates Cone Penetration Testing Service

DEPTH	Qc	Fs	Rf	SPT	TotHzStr	PHI	su	SOIL BEHAVIOR	DENSITY RAN
(feet)	(tsf)	(tsf)	(%)	(N)	(ksf)	(deg.)	(ksf)	TYPE	(pcf)
64.50	258.11	1.14	0.4	52	8.28	39			
65.00	248.21	0.71	0.3	50	8.34	38			
65.50	301.29	1.21	0.4	60	8.40	39		11	11
66.00	460.01	3.73	0.8	92	8.47	42			
66.50	217.53	1.31	0.6	44	8.53	38		11	11
67.00	219.52	0.78	0.4	44	8.59	38			11
67.50	200.94	0.62	0.3	40	8.65	37		17	11
68.00	194.34	2.07	1.1	39	8.72	37			
68.50	379.35	4.12	1.1	76	8,78	41		• •	11
69.00	335.37	2.41	0.7	67	8.84	40		11	11
69.50	367.35	2.35	0.6	73	8.90	40		11	11
70.00	314.88	0.98	0.3	63	8.97	39		11	11
70.50	256.41	2.42	0.9	51	9.03	38			11
71.00	388.34	3.79	1.0	78	9.09	41			11
71.50	514.44	6.84	1.3	103	9.16	42			130-140
			() in						
	Sampling			cnes)					
	Tip beari							Penetration Test*	
	Sleeve fr		esista	nce			Stress using e		
	Tip/Sleev		651510		Phi	= Soil f	riction angle* ned Soil Stren		

References: * Robertson and Campanella, 1 ** Olsen, 1989

> John Sarmiento & Associates Cone Penetration Testing Service

i

i

SO	UND)ING	DAT	AIN	FILE	24w≘1	6 12	2-09-04 1	0:26		,
OPI	ERA	ITOR	: A	lbert	o De i	Leon	L.(CATION :	CPT	-1 N 38° 17.	303
` C O	NE	ID	• : н	08367	С		J	B No. :	CPT	W122°/6. -04-01	
VB:	I It	4-ST	TU TE	STING					١	J 1,870,036	,
39:	111	√. (]	apito	1 (47e.	, W.Sa	crame <i>i</i>	nto, L	14 95691 1		U 1,870,036 E 6,480,50	\mathcal{O}
		_								E of to t	
	PTH :		TIP Qc tsf	CORR TIP Gt tsf		FR RATIO Fs/Qc %	PORE PR Pw psi	DIFF P P RATIO (Pw-Ph)/Qc K	INC 1 oeg	INTERPRETED SDIL TYPE	N SPT
	line		-7.2		0.32		-24.3	····· 	-1.3		-
22.52					0102		2112				
	0.05	0.2		8. 7	-0.02	-2. Ø	-0.1	-1.4	-1.3	5	2
	0.10	Ø.3		1.0	ð. 07	6.7	-2.3	-1.8		sandy silt to clayey silt	4
	0.15	0.5		28.1	0. 0 4	Ø . 1	v. 2	Ø. 1		silty sand to sandy silt	9
	0.23	Ø.7		59.0	0.10	0.2	-0.2	-0.0	-1.3	sand to silty sand	11
	0.25	0.8		56.8	0.11	8. 2		-0.0		sand to silty sand	14
	0.30	1.0		61.0	Q. 10	0.2	-8,2	-ù. d		sand to silty sand	12
	0.35	1.1		37.3	0.10	Ø. 3	-12.4	-0.1	-1.3	,	11
	0.40	1.3		37.6	0.07	Ø.2		-0.0		silty sand to sandy silt	11
	Ø.45	1.5		33.0	0.09	Ø.3		-0.0		silty sand to sandy silt	11
	8,50	1.6		29.6	0.11	0.4		-0.0		silty sand to sandy silt	10
	0.55	1.8		31.8	0.09	0.3		-d. d		silty sand to sandy silt	12
	0.60	2.0		51.4	0.42	0.8		Ø. Ø	-1.3		16
	0.65	2.1		111.5	0.61	6.5		Ø. Ø	-1.3	•	21
	0.70	2.3		96, 8	0.46	0.5		-0.0	-1.3	•	22
	0.75	2.5			0.42	Ø. 6		Ŭ. Ŭ	-1.3	•	18
	0.80	2.6			0.31	0.5			-1.3	sand to silty sand	14
	0.85	2.8		50.3	0.42	0.8				silty sand to sandy silt	17
	0.90	3.0			Ø. 43	0.8				silty sand to sandy silt	14
	0.95	3.1			0.43	i.4				silty sand to sandy silt	12
	1.00	3.3			0.43	1.4				sandy silt to clayey silt	12
•	1.05	3.4		30.6	0. 43	1.4	-0.5		-1,3	sandy silt to clayey silt	
	1.10	3.6			0.43	1.4			-1.3	sandy silt to clayey silt	12
	1.15	3.8			0.44	1.4			-1.3	sandy silt to clayey silt	12
	1.20	3.9			8.44	1.5			-1.3	sandy silt to clayey silt	12
	1.25	4.1			0,55	1.8			-1.3	sandy silt to clayey silt	12
	1.30	4.3		30.1	0.74	2.5			-1.3	sandy silt to clayey silt	13
	1.35	4.4			0.29	0.7			-1.3	silty sand to sandy silt	11
	1.40	4.6			0.26	Ø.7			-1.3	silty sand to sandy silt	12
	1.45	4.8			ð.17	8. 4			-1.3	silty sand to sandy silt	12
	1.50	4.9			0.40	1.2			-1.3	silty sand to sandy silt	11
	1.55	5.1			0.49	1.6			-1.3	sandy silt to clayey silt	12
	1.60	5.2			8.90	3.0			-1.3	sandy silt to clayey silt	13
	1.65	5.4			0.73	1.9			-1.3	sandy silt to clayey silt	12
	1.70	5.6			0.88	3.3			-1.3	sandy silt to clayey silt	12
	1.75	5.7			0.92	3.3				clayey silt to silty clay	12
	1.80	5.9				4,5			-1.3	silty clay to clay	14
	1.85	6.1				5.7			-1.3	clay	15
	1.90	6.2	11.3	11.8	0.60	5 . i			-1.3	clay	12
	1.95	6.4	12.5	12.5	0. 57	4.6			-1.3	clay	12
	2.00	6.6	12.4	12.4	0.55	4.4	Ø.7	0.4	-1.3	clay	11

DEPTH		TIP					DIFF P P RATIO	inc	INTERPRETED	N
seters	feet	Qc tsf	üt tsf	Fs tsf	Fs/Qc %	Pw psi	(Pw−Pn)/Qc ≯	I deg	SOIL TYPE	5PT
2.05	6.7	9.9	9.9	0. 47	4, 8	0. 7	0.5	-1.3	clay	10
2.10	6.9	9.9	9,9	Ø. 47	4.7	0.6	0.5	-1.3	clay	10
2.15	7.1	12.1	12.1	0.63	5.2	-0.2	-0.1	-1.3	clay	13
2.20	7.2	17.9	17.8	8, 90	5.1	-1.7	-0.7	-1.3	clay	17
2,25	7.4	23.2	23.2	1.11	4.8	-4.2	-1.3	-1.3	clay	21
2.30	7.5	24.2	24.2	1.05	4.4	-2,8	-N.S	-1.3	clay	23
2.35	7.7	23.3	23.2	1.07	4.6	-1.8	-0.6	-1.3	clay	22
2.40	7.9	20.6	20.8	1.64	5.0	-3.0	-1.0	-1.3	clay	20
2.45	8.0	19.8	19.8	0.98	5.0	-4.4	-1.ò	-1.3	clay	19
2.50	8.2	19.3	19.3	0, 83	4.3	-4.3	-1.6	-1.3	clay	18
2.55						-4,5	-1.9	-1.3	clay	17
2.60				0.73				-1.3	clay	16
2.65			15.5	0.74				-1.3	clay	15
2.70	8.9	14.8	14.8	0.64	4.3	-2.4		-1.3	clay	13
2.75			11.8		5.1			-1.3	ciay	12
2.30	9. 2	10.4	10.4	0.48	4.6			-1.3	clay	10
2.85			9.3	0.38			-1.5	-1.3	clay	10
2.90								-1.3	silty clay to clay	8
2.95							-0.1	-1.3	clayey silt to silty clay	7
3.00	9.8	19.2	19.2	0.54			-0.1	-1.3	clayey silt to silty clay	9
3.05						-0.4	-0.1		clayey silt to silty clay	9
3,10									sandy silt to clayey silt	7
3.15								-1.3	sandy silt to clayey silt	7
3.20	10.5	i 17.0	17.0					-1.3	clayey silt to silty clay	8
3,25	10.7	14.2	14.2	0.29	2.0	-0.3	-0.2	-1.3	clayey silt to silty clay	7
3.30	i 0. 8) 12.2	12.2	0,29				-1.3	clayey silt to silty clay	7
3.35								-1.3	clayey silt to silty clay	7
3.40		13.9	13.9	0.43			-0.1	-1.3	silty clay to clay	9
3.45								-1.3	silty clay to clay	7
3.50									clay	9
3.55									ciay	7
3.60									silty clay to clay	4
3.65									silty clay to clay	3 2
3.72									sensitive fine grained	
3.75									sensitive fine grained	2
3.80									sensitive fine grained	2
3.85									sensitive fine grained	2
3,90									sensitive fine grained	5
3.95									sensitive fine grained	2
4.00									sensitive fine grained	2
4.05									sensitive fine grained	2
4.12									sensitive fine grained	2
4.15									_	2
4.20									sensitive fine grained	5
4.25									-	2
4.38									-	2
4.35									_	2
4.40									sensitive fine grained	2
4.45									-	2
4.50	14.6	8 4.() 4. č	2 0.03	3 Ø. i	B 1 0.	7 19.2	-1.1	sensitive fine grained	2

	5 55 7.)		0008 715	TRICICN		6895 60	DITE D D 00110	inc	INTERPRETED	Ń
DEPTH		TIP Qc tsf	CURR HIP Qt tsf	FRICTION Fs tsf		Рике Рк Ри рзі	DIFF P P RATIO (Pw-Ph)/Qc %	I deg	SOIL TYPE	SPT
meren.2	1660	GC (5)	QL (5)	F5 (5)		ra har		1 Org		2
4.55	14.9	4.2	4.4	Ø. Ø3	0.8	11.0	18.7	-1.1	sensitive fine grained	2
4.60								-1.1	sensitive fine grained	2
4.65	15.3	4.3	4.5	0.05	1.2	11.6	19.2	-1.1	sensitive fine grained	Ê
4.70	15.4	4.6	4.8	0.05	1.0	11.8	18.6	-1.1	sensitive fine grained	2
4.75	15.6	4.3	4.5	Ŵ. Ø4	1.0	12.3	20.4	-1.1	sensitive fine grained	2
4.80								-1.1	sensitive fine grained	È
4.85								-1.1	sensitive fine grained	2
4.90								-1.1	sensitive fine grained	2
4.95 5.40								-1.1	sensitive fine grained	3
5.00								-1.1	-	3 3
5.05 5.10									sensitive fine grained	
5.15									clayey silt to silty clay clayey silt to silty clay	4 4
5.20									clayey silt to silty clay	
5.25									clayey silt to silty clay	4
5.30								-1.0	silty clay to clay	5
5.35								-2.9		5
5.40									clayey silt to silty clay	4
5.45									clayey silt to silty clay	4
5.50	18.0	8.9) 9.2	2 0.14	1.8	5 23.3	18.9	-0.9	clayey silt to silty clay	4
5,55	19.4	8.9	9.8	ð.13	5 1.4	4 23.6	5 19.1	-0.9	clayey silt to silty clay	4
5.60	18.4	9.0	9.3	8 0.11	1.8				clayey silt to silty clay	4
5.65									clayey silt to silty clay	5
5.70									clayey silt to silty clay	5
5.75									sandy silt to clayey silt	4
5.80									clayey silt to silty clay	6
5.85									clayey silt to silty clay	7
5.90									sandy silt to clayey silt sandy silt to clayey silt	8 9
5.95 6.00									sandy silt to clayey silt	8
6,05									sandy silt to clayey silt	6
6,10									sandy silt to clayey silt	
6.15									clayey silt to silty clay	Ď
6.20										7
6.25		5 10.4					3 -2.0	-1.3	silty clay to clay	ß
6.30									clayey silt to silty clay	9
6.3									clayey silt to silty clay	12
6.40									sandy silt to clayey silt	11
6.45									clayey silt to silty clay	10
6.50									clayey silt to silty clay	8
6.5									clayey silt to silty clay	6
6.6									clayey silt to silty clay	5 4
6.63 6.70									clayey silt to silty clay sensitive fine grained	4
6.75									-	4
6.8									clayey silt to silty clay	4
6.8									clayey silt to silty clay	6
6.90									clayey silt to silty clay	7
6.9									clayey silt to silty clay	8
7.0									clayey silt to silty clay	10

: 12-03-04 10:28

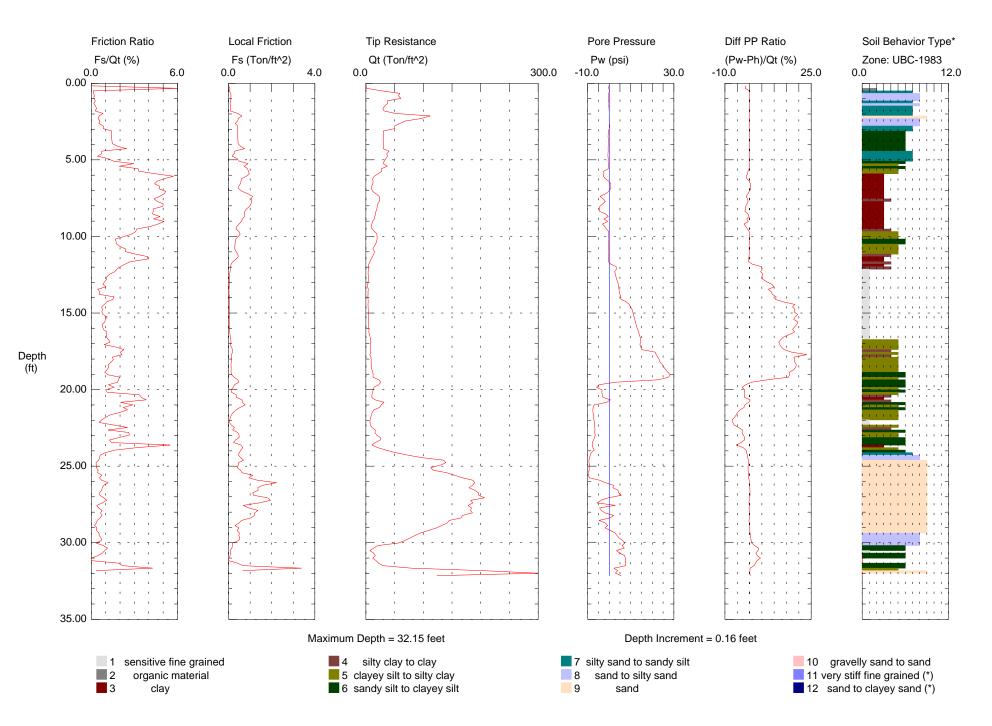
PAGE

З

04w216 : CPT-1

ZH+W21	Ë ;	CPT-1			: ii-	@/] (214.	10:26	FAGE	4	
DEPTH		TIP Do tsf	CORR TIP Wt tsf	FRICTION Fs tsf	FR RATIO Fs/Qc %	PORE PR PW psi	DIFE P P RATIO (Pw-Pn)/Qc %	INC 1 deg	INTERPRETED SOIL TYPE	N SPT
mever s	,	uc v31	uv (2)	12 631	15/30 /	6 6 451		1 048	JOIL HIPL	1,10
7.05 7.10	23.1 23.3		25.3 25.3		1.9 1.3		-1.9 -2.1		sandy silt to clayey silt sandy silt to clayey silt	9 9
QUIT for	Inc									
7.25	THE	10.0		-0.00		-7.1		-1.5		
/120		10/0		0700		/•1		1.0		
7.15	23.5	16.5	16.4	Ø.23	1.4	-7.8	-3.4	-1.4	clayey silt to silty clay	â
DUIT for	Inc									
7.30	• // 2	33.2		0.56		-7.3		-1.5		
7.20									clayey silt to silty clay	8
7.25									clayey silt to silty clay	11
7.30									sandy silt to clayey silt	14
7.35									silty sand to sandy silt	17
7.40									sand to silty sand	18
7.45					Ø.6		-0.7		sand to silty sand	24
7.50							-0.3		sand	24
7.55 7.60									sand	26
7.60									sand	24
7.70									sand	23
7.75									sand	24 26
7.80									sand	20 30
7.85									sand sand	32
7.90									sand	35 35
7.95									sand	36
8.00									sand	35
8.05									sand	35
8,10							0,2		sand	36
8.15									sand	37
6.20	26.9	196.5							sand	38
8.25	27.1	206.7	206.7	1.81	0.9	-0.5	-0.0	-i.3	sand	37
8.30	27.2	182.7	182.7	1.94	i.1	-3.9	-0.2	-1.3	sand	37
8.35	27.4	186.4	186.3	1.43	0.8	-5.6	-0.2	-1.4	sand	35
5.40									sand	35
8.45									sand	35
8.50									sand	35
8.55									sand	34
8.60									sand	33
8.65									sand	31
8.70									sand	29
8.75									sand	27
8.80									sand	25
8.85									sand	23
8.90									sand sand to silty cond	21 27
8.95 9.00										23 21
9.00 9.05										21 18
9,10										16
2720			51.1	0,70		0.0		1.1	sand to strey sand	

DEPTH	DEPTH	TIP	CORR TIP	FRICTION	FR RATIO	PORE PR	DIFF P P RATIO	INC	INTERPRETED	Ν
asters	feet	Qe taf	Qt tsf	Fs t sf	Fs/Qc X	Pw psi	(Pw-Ph)/@e ≯	i deg	SOIL TYPE	SPT
9.15	30.0	56.9	57.0	0.18	0, 3	7.2	0.3	-1.2	sand to silty sand	12
3.20	30.2	21.0	21.1	0.18	0.8	6.0	2.1	-1.2	silty sand to sandy silt	10
9,25	30.3	13.6	13.7	0.15	1.1	7.0	3.7		sandy silt to clayey silt	5
9.30	30.5	7.0	7.0	0.07	0.3	3.4	3.5	-1.2	sandy silt to clayey silt	4
9,35	30.7	13.4	13.4	0.10	0, 8	4. 8	2.6	-1.2		5
3.42	30.8	16.4	18.5	ê, 08	0.5	7.2	3.2	-1.2	sandy silt to clayey silt	5
9.45	31.0	11.5	11.9	-0.02	-0, 2	7.4	4.5	-1.1	sandy silt to clayey silt	6
3.50	31.2	17.8	17.9	-0.00	-0. Ø	7.5	3.0	-1.1	sandy silt to clayey silt	7
QUIT for	Qc Ra	te								
9.65		174.7		Ø. 62		5.7		-1.2		
9,55	31.3	21.8	21.9	0.41	1.9		2.5	-1.1	sandy silt to clayey silt	9
9.60	31.5	29.9	30.0	0,65	2,2	7.6	1.8	-1.1	clayey silt to silty clay	21
9,65	51.7	73.0	79.1	3.37						25
9.70	31.8	202.7	202.8	Ø.57	Ø.3	3.9	0.1	-1.2	?	?
9.75	32.0	337.7	337.8	?	?	2.3	0.1	-i.2	2	2
9.80	32.2	123.6	123.7	?	?	5.8	0.3	-1.2	- -	?


: 12-09-04 10:26 PAGE 5

WRITE NUMBER OF RODS USED ____

04w216 : CPT-1

VBI In-Situ Testing

Operator: Alberto De Leon Sounding: 04w216 Cone Used: HO836TC CPT Date/Time: 12-09-04 10:26 Location: CPT-1 Job Number: CPT-04-01

APPENDIX 2: LIQUEFACTION EVALUATION

Napa
Contract
Ν
West
Vertical
Wall

Liquefaction Potential - Napa Mill Magnitude 6.5 Earthquake

										1	
2F-94-14	2F-90-29	2F-90-29	2F-90-29		Location						
40	38	36	31	24	21	19	39	29	24	(feet)	Depth
12.19	11.58	10.97	9.45	7.32	6.40	5.79	11.89	8.84	7.32	(meters)	Depth
48	55	53	35	7	17	61	66	<u>छ</u>	28		N ₆₀
3468	3320.8	3173.6	2805.6	2290.4	2069.6	1922.4	3100	2364	1996	(psf)	σ' _{vo}
166.05	159.00	151.95	134.33	109.66	99.09	92.04	148.43	113.19	95.57	(kPa)	α' _{vo}
0.78	0.79	0.81	0.86	0.95	1.00	1.04	0.82	0.94	1.02		C _N
1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05		င္မ
-1		-		0.95	0.95	0.95	-		0.95		Ċ
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		Сs
47	55	54	38	8	20	76	68	<u>з</u> б	34		(N ₁) ₆₀
7			21		7			12			% Fines

1 psf = 0.04788 kPa C_N maximum = 1.7 C_B = 1.0 for borehole C_B = 0.75 for rod lend

 $C_B = 1.0$ for borehole diameter less than 6"; 1.05 for 6"; 1.15 for 8"

C_R = 0.75 for rod length < 10'; 0.8 for 10-13'; 0.85 for 13-19.7'; 0.95 for 19.7-32.8'; 1.0 for 32.8-98.4'

Boring 2F-90-29 2F-90-29	Depth (feet) 24 29	Depth (meters) 7.32 8.84	a _{max} (g) 0.42 0.42	0.65(a _{max} /g) 0.2730 0.2730	σ' _{vo} (kPa) 95.57 113.19	σ _{vo} (psf) 2819 3499	α _{vo} (kPa) 134.97 167.53	0.9	г _а 944039 93238	
2F-90-29 2F-90-29	29 39	8.84 11.89	0.42 0.42	0.2730 0.2730	113.19 148.43	3499 4859	167.53 232.65		0.93238 0.856612	0.93238 1.44 0.856612 1.44
2F-94-14	19	5.79	0.42	0.2730	92.04	2266	108.50		0.955697	
2F-94-14	21	6.40	0.42	0.2730	99.09	2538	121.52		0.951034	0.951034 1.44
2F-94-14	24	7.32	0.42	0.2730	109.66	2946	141.05			0.944039
2F-94-14	31	9.45	0.42	0.2730	134.33	3898	186.64			0.921717
2F-94-14	36	10.97	0.42	0.2730	151.95	4578	219.19	-		0.881026
2F-94-14	38	11.58	0.42	0.2730	159.00	4850	232.22			0.86475
2F-94-14	40	12.19	0.42	0.2730	166.05	5122	245.24			0.848474

Boring	Depth (feet)	Depth (meters)	N ₆₀	σ' _{vo} (psf)	σ' _{vo} (kPa)	C₂	CB	С _я	Cs	(N ₁) ₆₀	% Fines
2F-03-05	17	5.18	1	2009.6	96.22	1.02	-	0.95	1.2	13	
2F-03-05	19	5.79	16	2156.8	103.27	0.98		0.95	1.2	1 8	
2F-03-05	21	6.40	25	2304	110.32	0.95		0.95	1.2	27	
2F-03-05	23	7.01	20	2451.2	117.36	0.92		0.95	1.2	21	
2F-03-05	25	7.62	23	2598.4	124.41	0.90	-	0.95	1.2	24	•
2F-03-05	27	8.23	29	2745.6	131.46	0.87	-	0.95	1.2	29	
2F-03-05	31	9.45	23	3040	145.56	0.83	-	-	1.2	23	9
2F-03-05	33	10.06	29	3187.2	152.60	0.81	-	-	1.2	28	
2F-03-05	35	10.67	39	3334.4	159.65	0.79	-	-	1.2	37	
2F-03-05	37	11.28	45	3481.6	166.70	0.77	-	-	1.2	42	œ
2F-03-05	39	11.89	45	3628.8	173.75	0.76	_	-	1.2	41	
2F-03-05	43	13.11	71	3923.2	187.84	0.73	-	-	1.2	62	
2F-03-05	45	13.72	65	4070.4	194.89	0.72	-	-	1.2	56 56	9
2F-03-05	47	14.33	61	4217.6	201.94	0.70	-	-	1.2	52	
2F-03-05	49	14.94	72	4364.8	208.99	0.69	-	-	1.2	60	

Napa Contract 2 West Vertical Wall

Liquefaction Potential - Boring 2F-03-05 Magnitude 6.5 Earthquake

1 psf = 0.04788 kPa C_N maximum = 1.7

 $C_B = 1.0$ for borehole diameter less than 6"; 1.05 for 6"; 1.15 for 8"

 $C_{R} = 0.75$ for rod length < 10'; 0.8 for 10-13'; 0.85 for 13-19.7'; 0.95 for 19.7-32.8'; 1.0 for 32.8-98.4'

Boring	Depth	Depth	a _{max}	0.65(a _{max} /g)	α' _{vo} '	α _{vo}	α _{vo}	۲ď	MSF	CSR
	(feet)	(meters)	(g)		(kPa)	(psf)	(kPa)			
2F-03-05	17	5.18	0.42	0.2730	96.22	2072	99.21	0.960361	1,44	0
2F-03-05	19	5.79	0.42	0.2730	103.27	2344	112.23	0.955697	1.44	0
2F-03-05	21	6.40	0.42	0.2730	110.32	2616	125.25	0.951034	1.44	0
2F-03-05	23	7.01	0.42	0.2730	117.36	2888	138.28	0.94637	1.44	0
2F-03-05	25	7.62	0.42	0.2730	124.41	3160	151.30	0.941707	1.44	0
2F-03-05	27	8.23	0.42	0.2730	131.46	3432	164.32	0.937044	1.44	0
2F-03-05	31	9.45	0.42	0.2730	145.56	3976	190.37	0.921717	1.44	0
2F-03-05	33	10.06	0.42	0.2730	152.60	4248	203.39	0.905441	1.44	0
2F-03-05	35	10.67	0.42	0.2730	159.65	4520	216.42	0.889164	1.44	0
2F-03-05	37	11.28	0.42	0.2730	166.70	4792	229.44	0.872888	1.44	0
2F-03-05	39	11.89	0.42	0.2730	173.75	5064	242.46	0.856612	1.44	0.227
2F-03-05	43	13.11	0.42	0.2730	187.84	5608	268.51	0.824059	1.44	0
2F-03-05	45	13.72	0.42	0.2730	194.89	5880	281.53	0.807783	1.44	0
2F-03-05	47	14.33	0.42	0.2730	201.94	6152	294.56	0.791506	1.44	0
2F-03-05	49	14.94	0.42	0.2730	208.99	6424	307.58	0.77523	1.44	0

Napa
Contract 2
West
Vertical
Wall

Liquefaction Potential - Boring 2F-03-06 Magnitude 6.5 Earthquake

2F-03-06	2F-03-06	2F-03-06	2F-03-06	2F-03-06	2F-03-06	2F-03-06		Boring								
49	47	45	43	41	39	37	35	<u>з</u> з	31	29	27	25	15	13	(Teet)	Depth
14.94	14.33	13.72	13.11	12.50	11.89	11.28	10.67	10.06	9.45	8.84	8.23	7.62	4.57	3.96	(meters)	Depth
48	72	51	45	60	31	45	37	27	59	39	36	21	-	ω	ŝ	N ₆₀
4031	3883.8	3736.6	3589.4	3442.2	3295	3147.8	3000.6	2853.4	2706.2	2559	2411.8	2264.6	1636.8	1513.6	(pst)	α' _{vo}
193.00	185.96	178.91	171.86	164.81	157.76	150.72	143.67	136.62	129.57	122.52	115.48	108.43	78.37	72.47	(KPa)	α' _{vo}
0.72	0.73	0.75	0.76	0.78	0.80	0.81	0.83	0.86	0.88	0.90	0.93	0.96	1.13	1.17		CN
-	-	-	-	-	-	-	-		_	-	-	-	-	-		CB
-	-	-	-	-	-	-	-	-	-	-	0.95	0.95	0.85	0.85		C _R
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		Cs
41	63	46	41	56	30	44	37	28	62 22	42	38 38	23	-	4		(N ₁) ₆₀
		9				10						1		31		% Fines

1 psf = 0.04788 kPa C_N maximum = 1.7

 $C_B = 1.0$ for borehole diameter less than 6"; 1.05 for 6"; 1.15 for 8"

C_R = 0.75 for rod length < 10'; 0.8 for 10-13'; 0.85 for 13-19.7'; 0.95 for 19.7-32.8'; 1.0 for 32.8-98.4'

Boring	Depth (feet)	Depth (meters)	a _{max}	0.65(a _{max} /g)	α' _{vo}	σ _{vo}	(kPa)	۲d	MSF	CSR
	(feet)	(meters)	(g)		(kPa)	(psf)	(kPa)			
2F-03-06	13	3.96	0.42	0.2730	72.47	1576	75.46	0.969688	1.44	0.1
2F-03-06	15	4.57	0.42	0.2730	78.37	1824	87.33	0.965024	1.44	0.204
2F-03-06	25	7.62	0.42	0.2730	108.43	3076	147.28	0.941707	1.44	0.2
2F-03-06	27	8.23	0.42	0.2730	115.48	3348	160.30	0.937044	1.44	0.2
2F-03-06	29	8.84	0.42	0.2730	122.52	3620	173.33	0.93238	1.44	0.2
2F-03-06	31	9.45	0.42	0.2730	129.57	3892	186.35	0.921717	1.44	0.2
2F-03-06	33 33	10.06	0.42	0.2730	136.62	4164	199.37	0.905441	1.44	0.2
2F-03-06	35	10.67	0.42	0.2730	143.67	4436	212.40	0.889164	1.44	0.2
2F-03-06	37	11.28	0.42	0.2730	150.72	4708	225.42	0.872888	1.44	0.2
2F-03-06	39	11.89	0.42	0.2730	157.76	4980	238.44	0.856612	1.44	0.2
2F-03-06	41	12.50	0.42	0.2730	164.81	5252	251.47	0.840335	1.44	0.2
2F-03-06	43	13.11	0.42	0.2730	171.86	5524	264.49	0.824059	1.44	0.2
2F-03-06	45	13.72	0.42	0.2730	178.91	5796	277.51	0.807783	1.44	0.2
2F-03-06	47	14.33	0.42	0.2730	185.96	6068	290.54	0.791506	1.44	0.2
2F-03-06	49	14.94	0.42	0.2730	193.00	6340	303.56	0.77523	1.44	0.2

.

Napa
Contract 2
West
Vertical
Wall

Liquefaction Potential - Boring 2F-03-07 Magnitude 6.5 Earthquake

													1	
2F-03-07		Boring												
51	49	47	45	43	41	39	37	33	31	29	27	25	(Teet)	Depth
15.54	14.94	14.33	13.72	13.11	12.50	11.89	11.28	10.06	9.45	8.84	8.23	7.62	(meters)	Depth
55	61	36	23	45	24	47	49	23	28	37	33	63		N 60
4297.2	4150	4002.8	3855.6	3708.4	3561.2	3414	3266.8	2972.4	2825.2	2678	2530.8	2383.6	(pst)	a, vo
205.75	198.70	191.65	184.61	177.56	170.51	163.46	156.41	142.32	135.27	128.22	121.17	114.13	(KPa)	a v
0.70	0.71	0.72	0.74	0.75	0.77	0.78	0.80	0.84	0.86	0.88	0.91	0.94		C _N
-	-	-	-	-	-	-	-	-	-	_	_	<u> </u>		င္မ
-	-	-	-	-	-	-	-	-	-	-	0.95	0.95		Сд
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		င္စ
46	52	31	20	41	22	44	47	23	29	39	34	67		(N ₁) ₆₀
	10		19			10		8			9			% Fines

1 psf = 0.04788 kPa C_N maximum = 1.7

 $C_B = 1.0$ for borehole diameter less than 6"; 1.05 for 6"; 1.15 for 8"

 $C_R = 0.75$ for rod length < 10'; 0.8 for 10-13'; 0.85 for 13-19.7'; 0.95 for 19.7-32.8'; 1.0 for 32.8-98.4'

Boring Depth Depth Cleft (meters) (g) of company of comp
1Depth (meters) a_{max} 0.65(a_{max}/g) σ'_{vo} σ_{vo} σ_{vo} σ_{vo} r_d MSF7.620.420.2730114.133070146.990.9417071.448.230.420.2730121.173342160.010.9370441.449.450.420.2730128.223614173.040.9217171.4411.280.420.2730142.324158199.090.9054411.4413.110.420.2730156.414702225.130.8728881.4413.720.420.2730170.515246251.180.8403351.4414.330.420.2730191.656062290.250.7915061.4414.940.420.2730191.656062290.250.7915061.4415.540.420.2730191.656066316.300.7589541.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
) σ'_{vo} σ_{vo} σ_{vo} r_{d} MSF (kPa) (psf) (kPa) 114.13 3070 146.99 0.941707 1.44 121.17 3342 160.01 0.937044 1.44 135.27 3886 186.06 0.921717 1.44 142.32 4158 199.09 0.905441 1.44 156.41 4702 225.13 0.872888 1.44 163.46 4974 238.16 0.856612 1.44 177.56 5518 264.20 0.824059 1.44 191.65 6062 290.25 0.791506 1.44 198.70 6334 303.27 0.77523 1.44 205.75 6606 316.30 0.758954 1.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
σ _{vo} r _d MSF (kPa) 146.99 0.941707 1.44 160.01 0.937044 1.44 173.04 0.921717 1.44 186.06 0.921717 1.44 199.09 0.905441 1.44 225.13 0.872888 1.44 238.16 0.856612 1.44 251.18 0.840335 1.44 257.23 0.807783 1.44 277.23 0.807783 1.44 290.25 0.791506 1.44 303.27 0.77523 1.44 316.30 0.758954 1.44
r _d MSF 0.941707 1.44 0.937044 1.44 0.921717 1.44 0.905441 1.44 0.872888 1.44 0.872888 1.44 0.86612 1.44 0.866612 1.44 0.824059 1.44 0.827783 1.44 0.791506 1.44 0.791506 1.44 0.758954 1.44
1.444 MSF
CSR 0.230 0.239 0.239 0.239 0.239 0.237 0.237 0.237 0.235 0.237 0.232 0.232 0.232 0.2221

Napa
Contract 2
2 West
Vertical
Wall

Liquefaction Potential - Third Street to First Street Magnitude 6.5 Earthquake

			2F-03-08	2F-03-08	2F-03-08	2F-03-08		2F-94-15	2F-94-15	2F-94-15		Location
			31	29	27	25		26	24	22	(feet)	Depth
0.00	0.00	0.00	9.45	8.84	8.23	7.62	0.00	7.92	7.32	6.71	(meters)	Depth
			24	39	33	28		50	38	23		N ₆₀
			3371.2	3224	3076.8	2929.6		2678	2531	2384	(psf)	σ'vo
0.00	0.00	0.00	161.41	154.37	147.32	140.27		128.24	121.19	114.15	(kPa)	σ' _{vo}
#DIV/0!	#DIV/0!	#DIV/0!	0.79	0.80	0.82	0.84	#DIV/0!	0.88	0.91	0.94		C _N
								1.15	1.15	1.15		Св
			-	-	0.95	0.95		0.95	0.95	0.95		Ся
			1.2	1.2	1.2	1.2		1.2	1.2	1.2		Cs
#DIV/0!	#DIV/0!	#DIV/0!	23	38	31	27	#DIV/0!	58	45	28		(N ₁) ₆₀
			10 to 15	10 to 15	10	10 to 15		15	15	16		% Fines

1 psf = 0.04788 kPa C_N maximum = 1.7 C_B = 1.0 for borehole

 C_B = 1.0 for borehole diameter less than 6"; 1.05 for 6"; 1.15 for 8"

C_R = 0.75 for rod length < 10'; 0.8 for 10-13'; 0.85 for 13-19.7'; 0.95 for 19.7-32.8'; 1.0 for 32.8-98.4'

	2F-94-15	2F-94-15	2F-94-15	0	2F-03-08	2F-03-08	2F-03-08	2F-03-08	0	0	0	0	0
(feet)	22	24	26	0	25	27	29	3	0	0	0	0	0
(meters)	6.71	7.32	7.92	0.00	7.62	8.23	8.84	9.45	0.00	0.00	0.00	0.00	0.00
a _{max} (g)	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
0.03(a _{max} /y)	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730	0.2730
ں (kPa)	114.15	121.19	128.24	0.00	140.27	147.32	154.37	161.41	0.00	0.00	0.00	0.00	0.00
0 _{vo} (psf)	2634	2906	3178		2992	3264	3536	3808					
uv₀ (kPa)	126.12	139.14	152.16	0.00	143.26	156.28	169.30	182.33	0.00	0.00	0.00	0.00	0.00
ď	0.948702	0.944039	0.939375		0.941707	0.937044	0.93238	0.921717					
NI T	1.44	1.44	1.44	#DIV/0!	1.44	1.44	1.44	1.44	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Lev L	0.199	0.205	0.211	#DIV/0!	0.182	0.188	0.194	0.197	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

APPENDIX 3: SOIL AND MATERIAL PROPERTY PROFILES

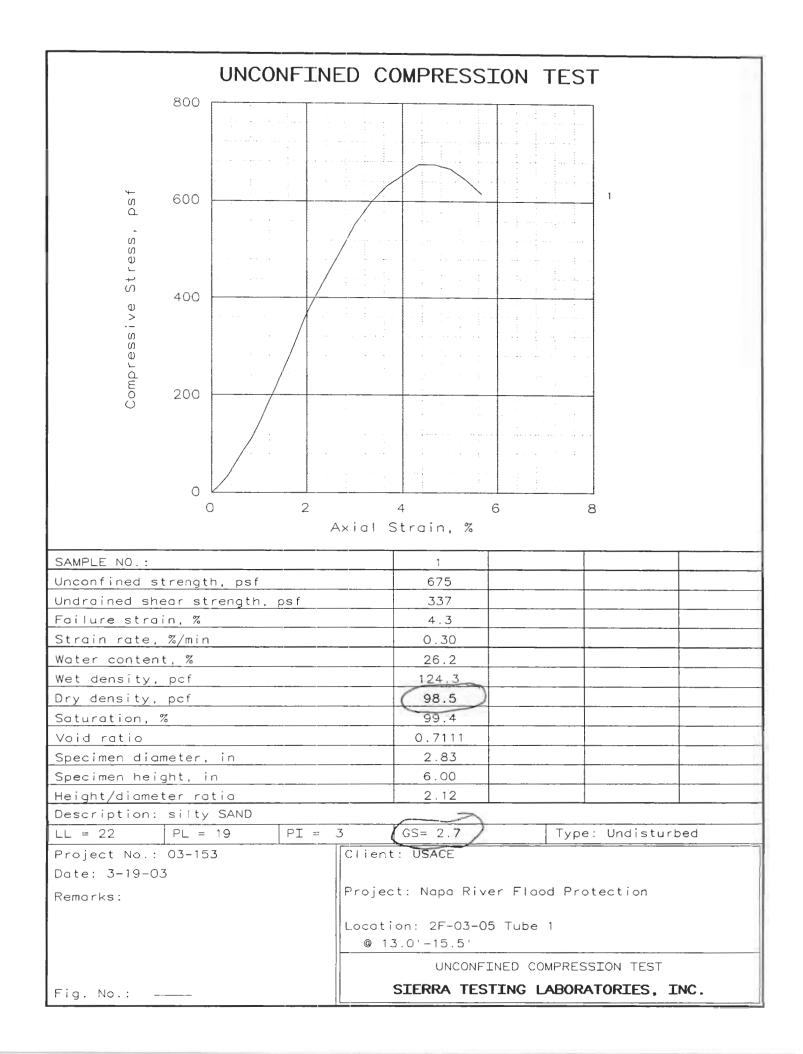
Napa Contract 2 West Vertical Wall

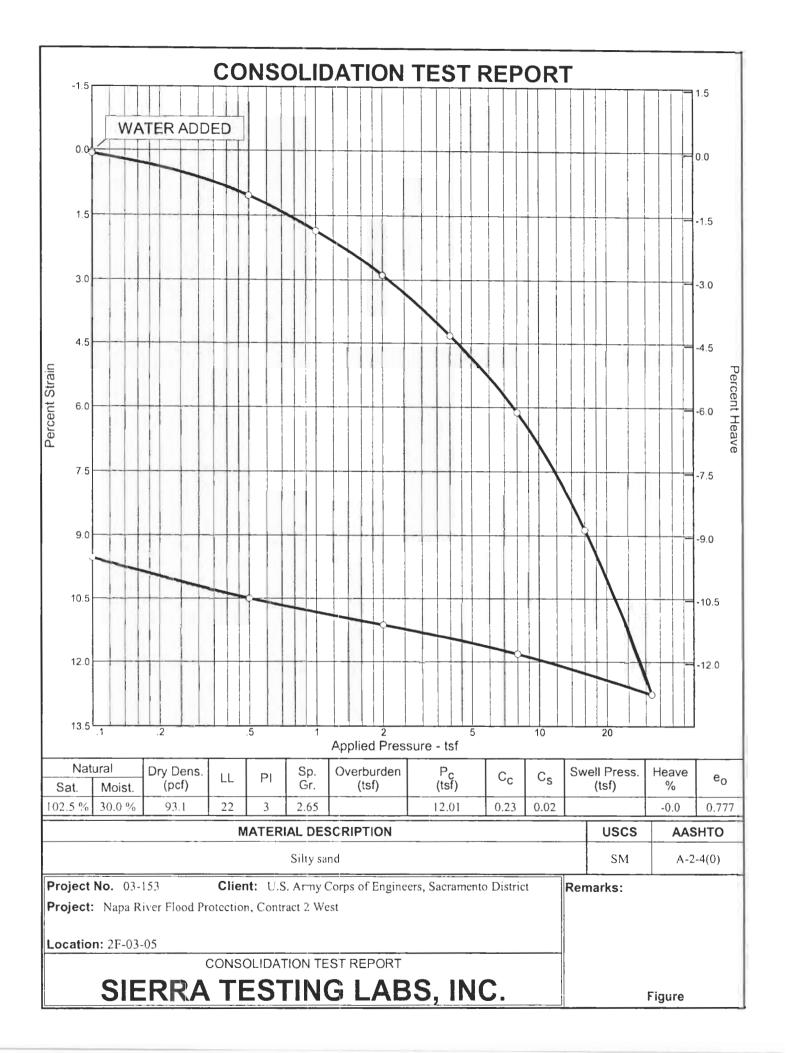
Station 2+00 to 4 +75 Soil Profile (Napa Mill Cut Wall Section)

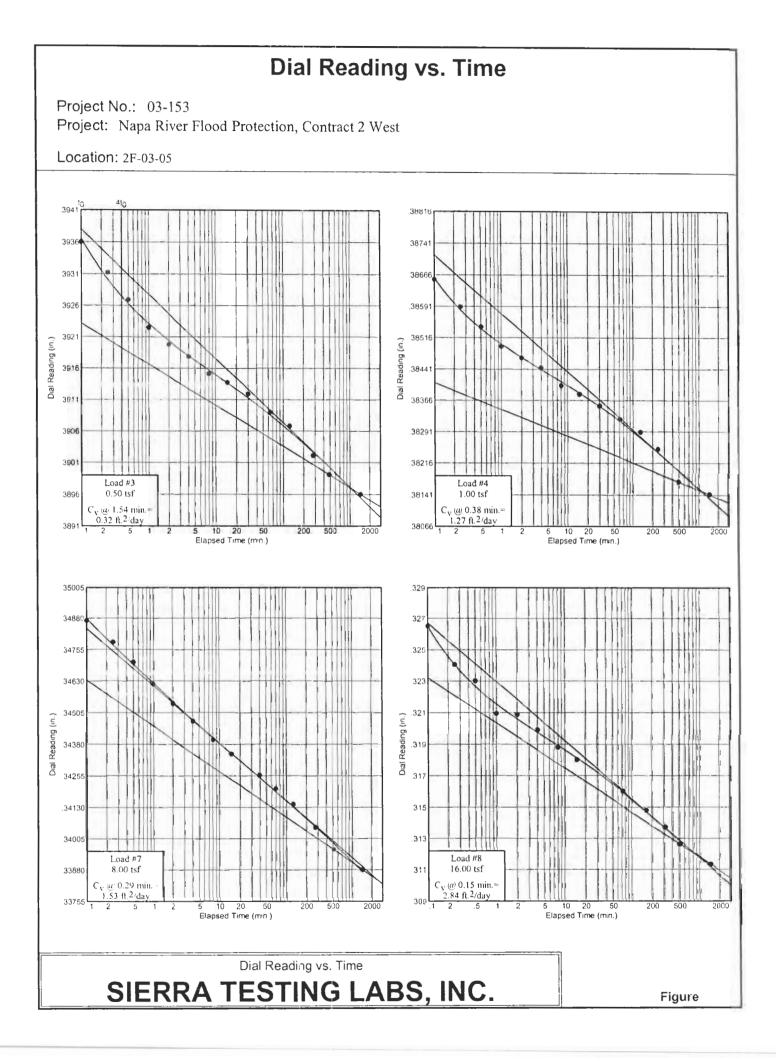
Depth	Thickness	Soil type	Unit Weights	Undrained Shear	Drained Shear R Strength	Drained Shear S strength	FLIF
0'	11'	Sandy Clay	Moist = 115 pcf Sat = 120 pcf	C = 1400 psf Phi = 0	C = 250 psf Phi = 15	C = 0 psf Phi = 32	-61.15
10'	6'	Fat Clay	Moist = 112 pcf	C = 500 psf Phi = 10	C = 500 psf Phi = 10	C = 0 psf Phi = 27	-EL. 4
16'	4'	GWT 13' Sandy Clay	Sat = 120 pcf Moist = 115 Sat = 120 pcf	C = 1200 Phi = 0	C = 250 psf Phi = 15	C = 0 psf $Phi = 32$	EL
20'	20'	Clayey Sand & Gravel	Moist = 128 pcf Sat = 136 pcf	C = 0 Phi = 33	C = 0 Phi = 33	C = 0 Phi = 33	
40'	12'	Fat Clay	See above	See above	See above	See above	EL26
52'	12'	Clayey Sand & gravel	Moist = 128 pcf Sat = 136 pcf	C = 0 Phi = 33	Phi = 33	Phi = 33	-EL3
64' 70'	6'	Lean Clay	Moist = 115 Sat = 120 pcf	C = 1200 Phi = 0	C = 250 psf Phi = 15	C = 0 psf Phi = 32	EL -57

Napa Contract 2 West Vertical Wall

Station 4+75 to 9+30 Soil Profile (Fifth Street to Third Street)

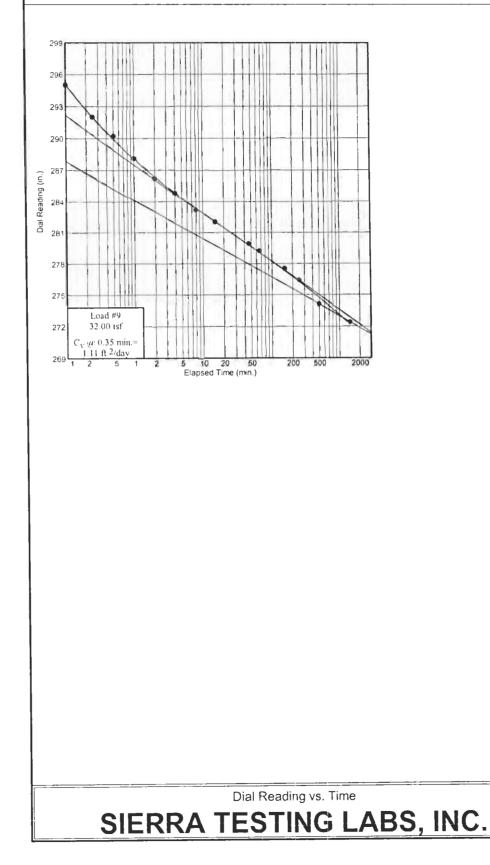

Depth	Thickness	Soil Type	Unit Weights	Undrained Shear	Drained Shear R strength	Drained Shear S Strength	EL. 16
0'			Moist = 121 pcf	C = 1400 psf	C = 220 psf	C = 0 psf	EL. IV
	20'	Sandy Clay	Sat = 124 pcf	Phi = 0	Phi = 18	Phi = 32	
		GWT 14'					
20'							EL4
			Moist = 128 pcf	C = 0	C = 0	C = 0	
	30'	Clayey Sand & Gravel	Sat = 136 pcf	Phi = 33	Phi = 33	Phi = 33	
							EL34
50'			Moist = 115	C = 1200 psf	C = 250 psf	C = 0 psf	TER, C I
	12'	Sandy Clay	pcf Sat = 120 pcf	Phi = 0	Phi = 15	Phi = 32	
62'			Moist = 128	C = 0	C = 0	C = 0	EL-40
	13'	Clayey Sand & Gravel	pcf Sat = 136 pcf	Phi = 33	Phi = 33	Phi = 33	
75'	5'	Lean Clay	Moist = 115 pcf Sat = 120 pcf	C = 1200 psf	C = 500 psf	C = 0 psf	EL59
80'				Phi = 0	Phi = 15	Phi = 28	EL64

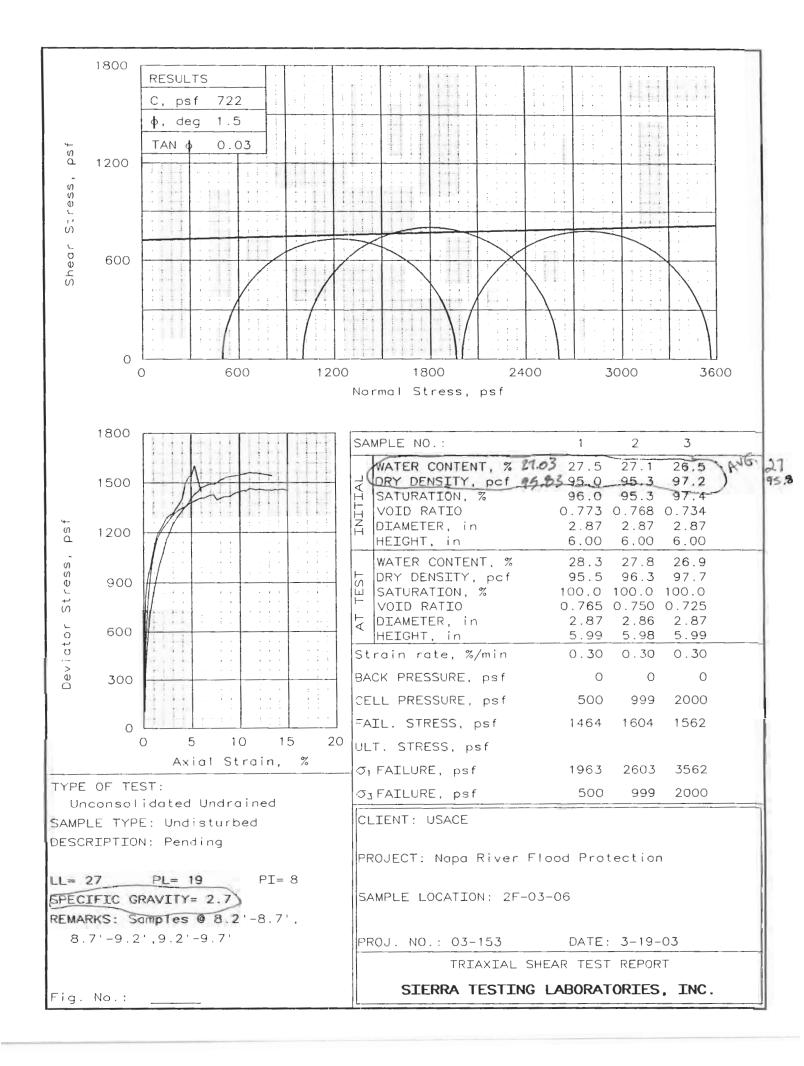

Napa 2 West Vertical Wall

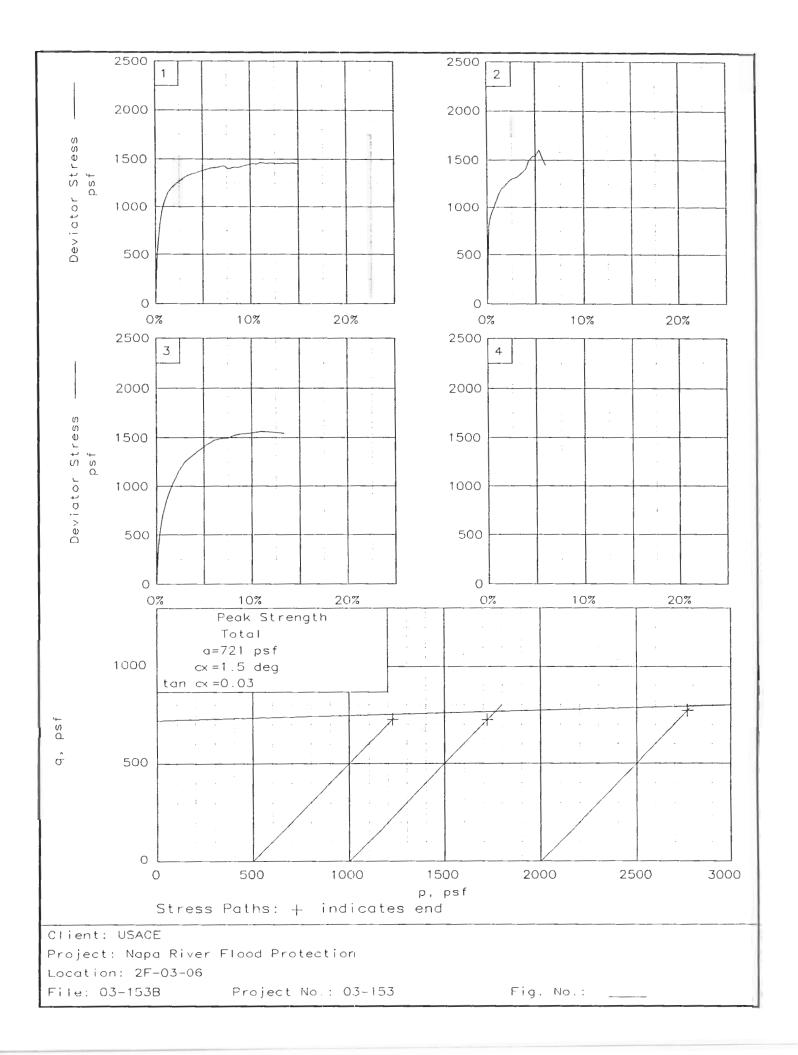

Station 9+30 to U/S End of Wall (Third Street to First Street)

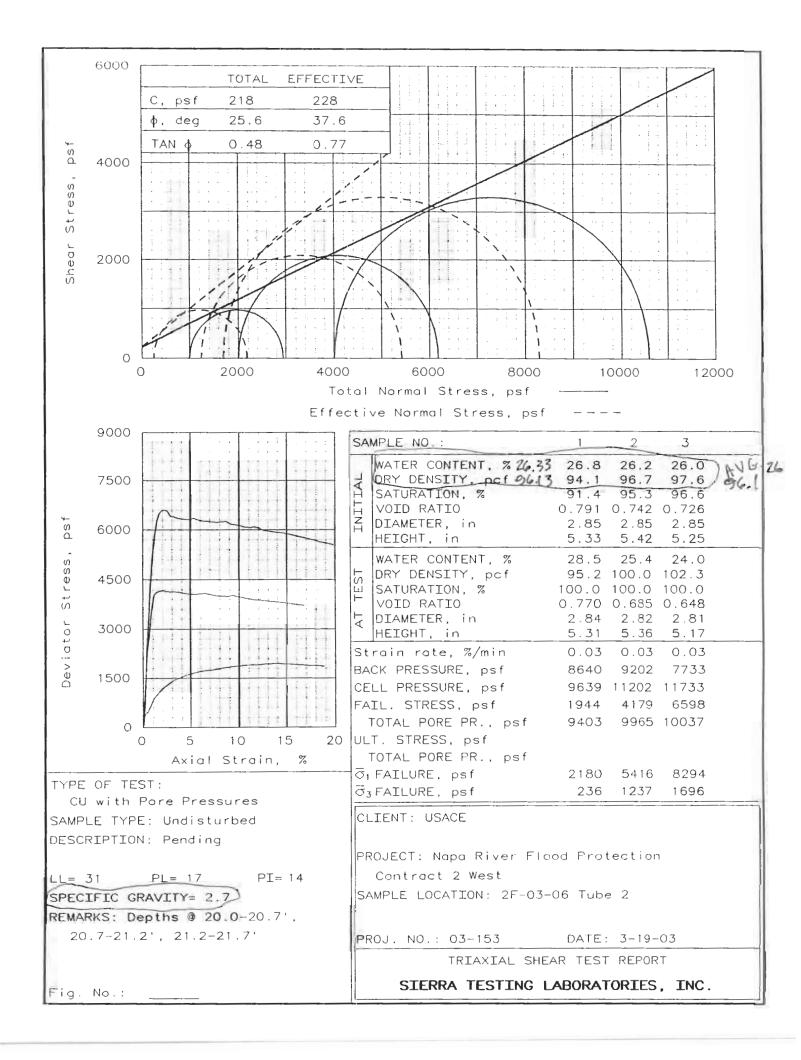
Depth	Thickness	Soil Type	Unit Weights	Undrained Shear	Drained Shear R Strength	Drained Shear S Strength	EL.17
0'			Moist = 119 pcf	C = 800 psf	C = 100 psf	C = 0 psf	5.6
	22'	Sandy Clay ***	Saturated = 123 pcf	Phi = 0	Phi = 15	Phi = 30	
		GWT 20'					EL5
22'	8'	Clayey Gravel & Sand	Moist = 128 pcf Sat = 136 pcf	C = 0 Phi = 33	C = 0 Phi = 33	C = 0 Phi = 33	- EL 13
30'							EL. 15
	19'	Fat Clay	Moist = 121 pcf Saturated = 125 pcf	C = 600 psf Phi = 0	C = 500 psf Phi = 10	C = 0 psf Phi = 27	
49'							EL33
	17'	Lean Clay	Moist = 122 pcf	C = 1200 pcf	C = 500 psf	C = 0 psf	
		Econology	Saturated = 125 pcf	Phi = 0	Phi = 15	Phi = 28	
66'			-				EL49
	9'	Clayey gravel & Sand	Moist = 128 pcf Sat = 136 pcf	C = 0 Phi = 33	C = 0 Phi = 33	C = 0 Phi = 33	EL58
75' 80'	5'		See above	See above	See above	See above	EL-63

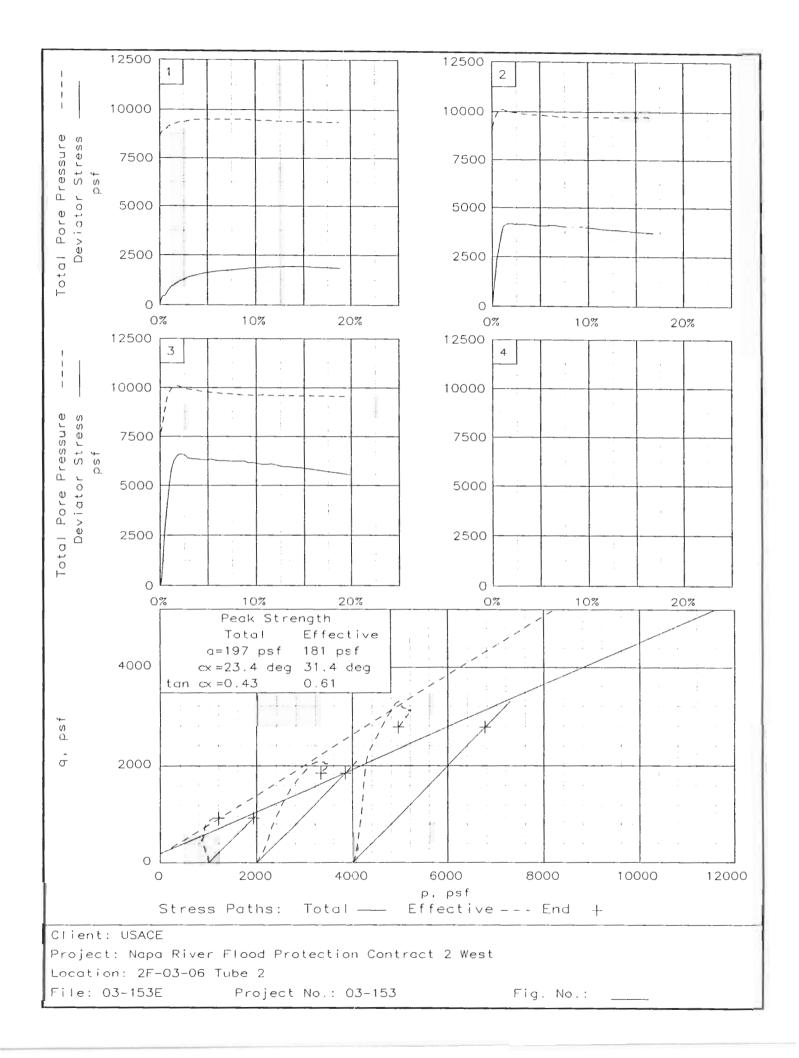
APPENDIX 4: UNCONFINED COMPRESSION, TRIAXIAL, AND CONSOLIDATION TEST RESULTS

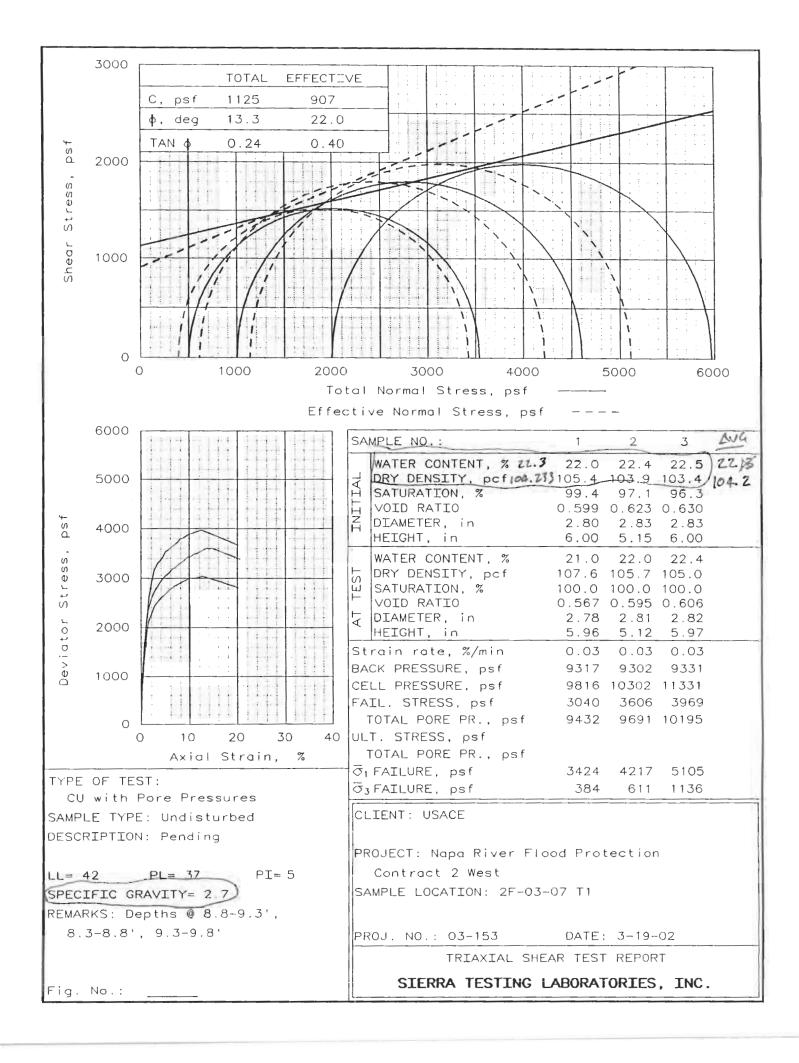


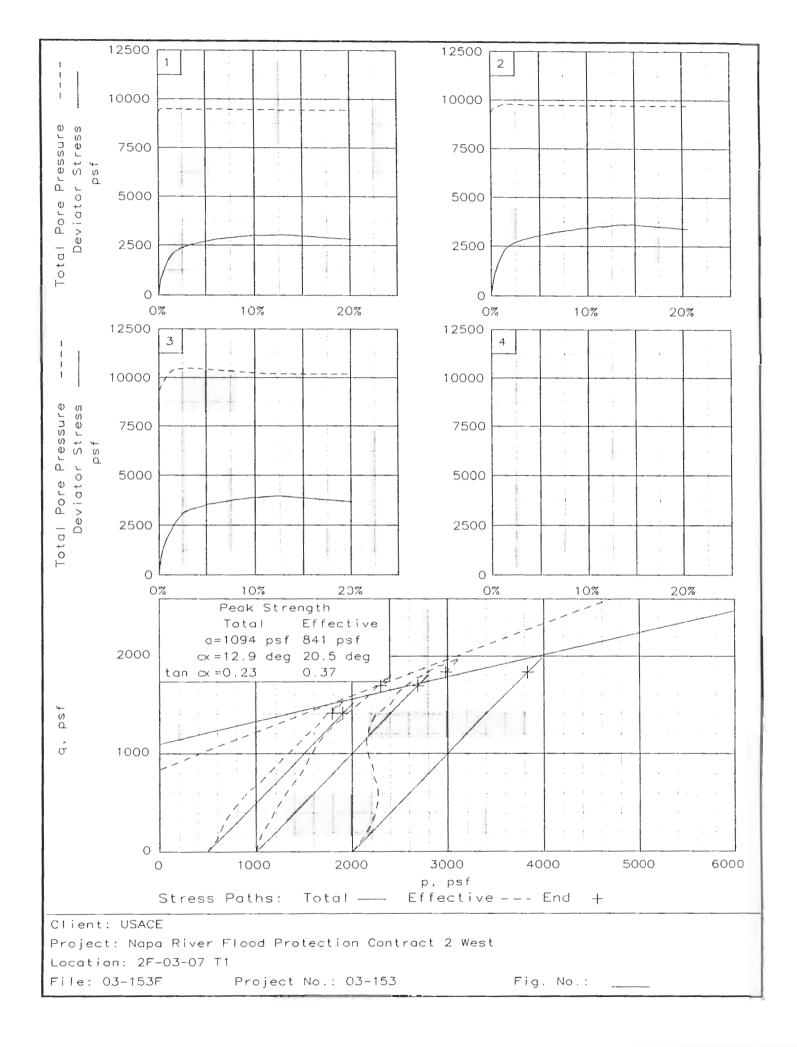

Dial Reading vs. Time

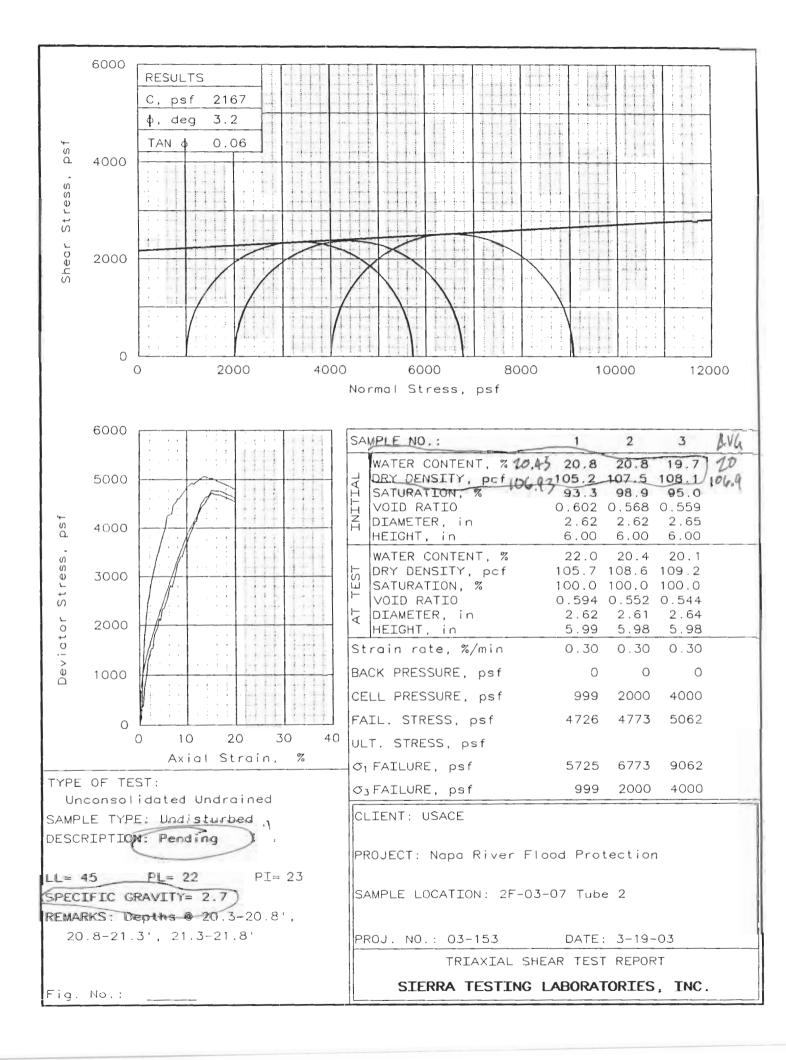

Project No.: 03-153 Project: Napa River Flood Protection, Contract 2 West

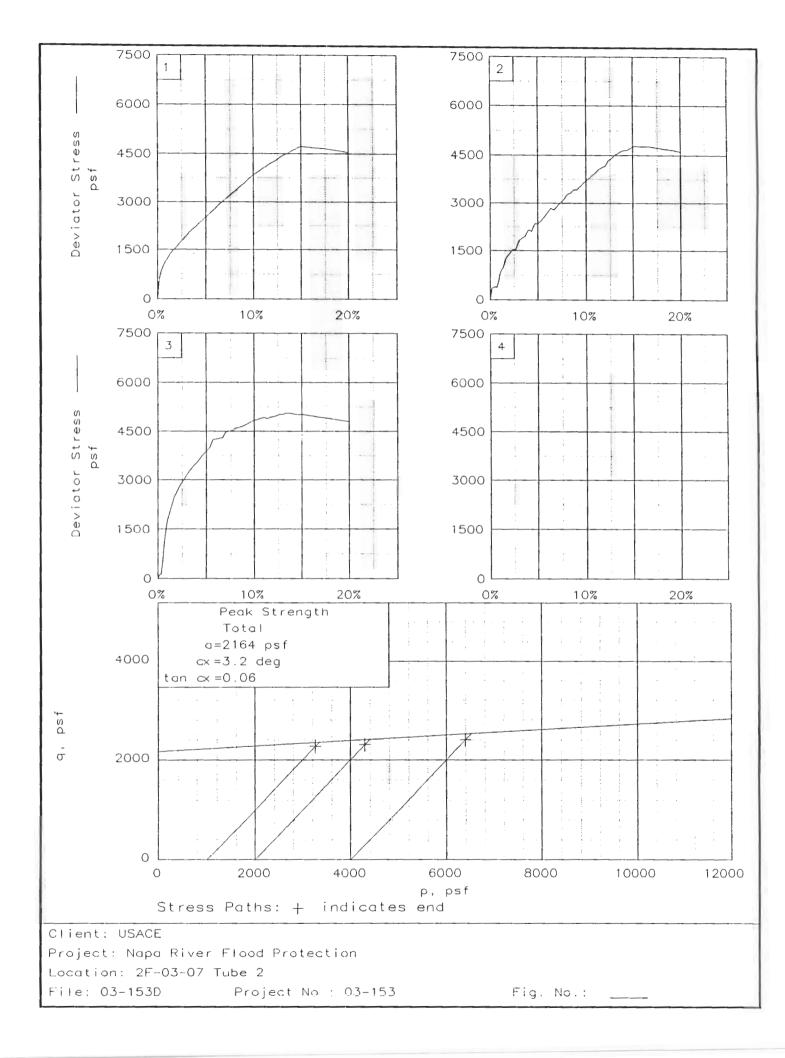

Location: 2F-03-05

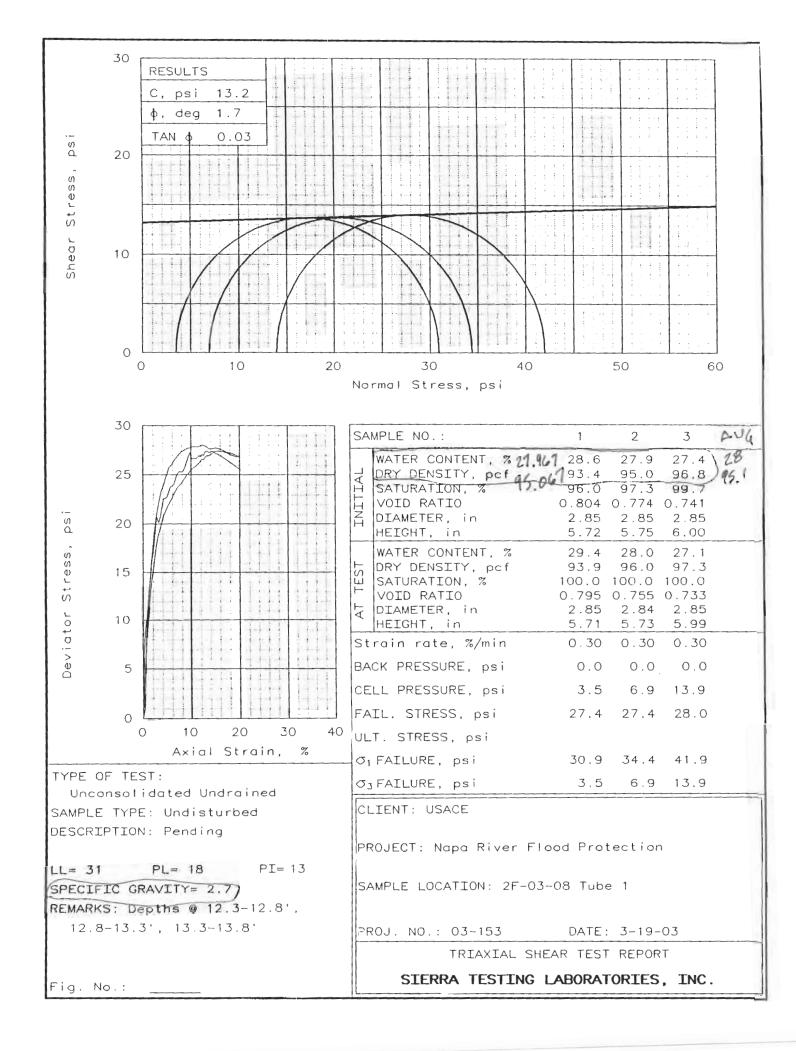


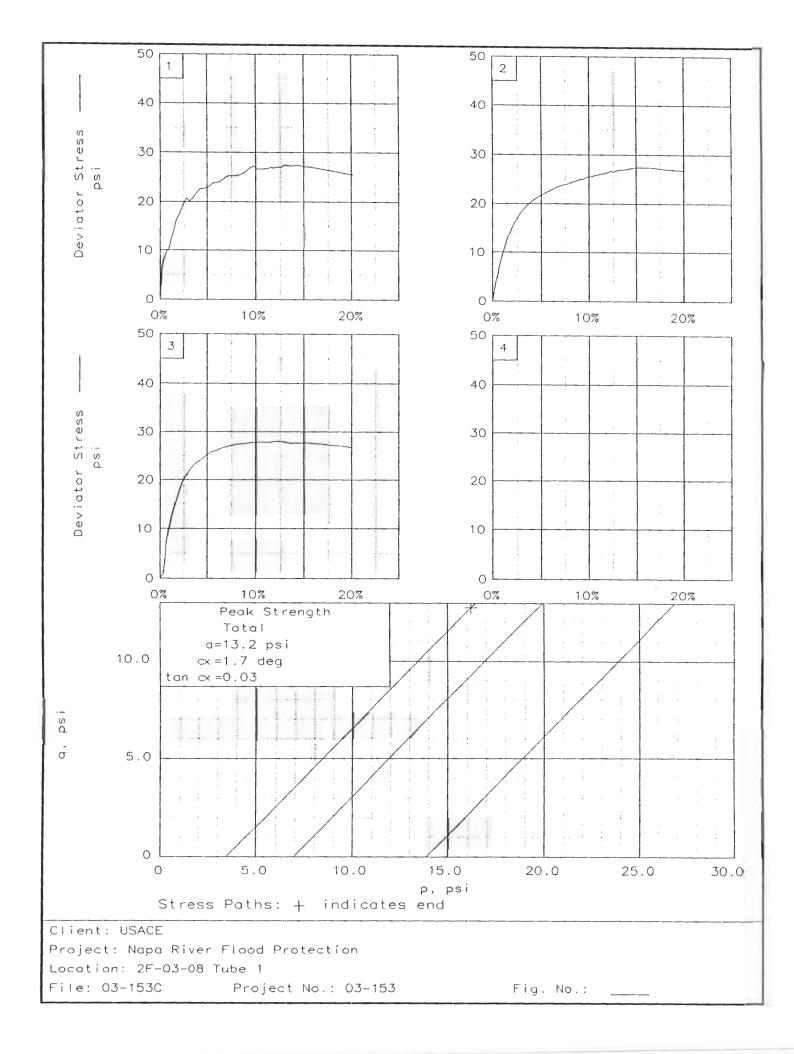

Figure

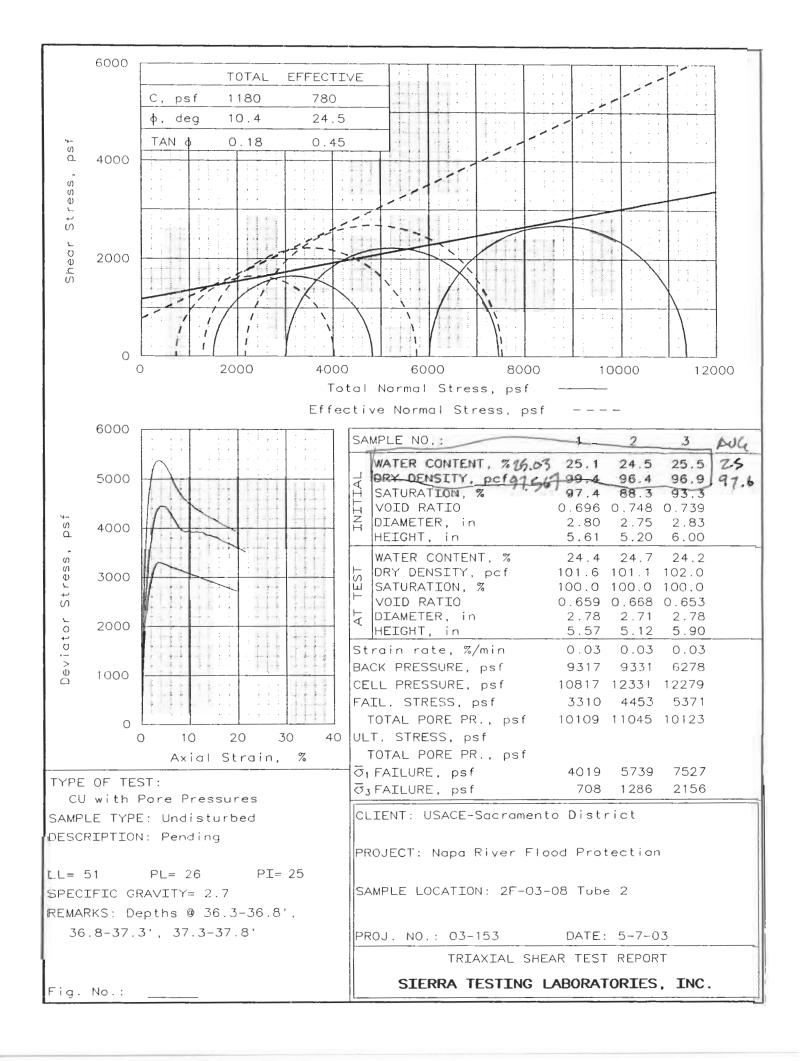


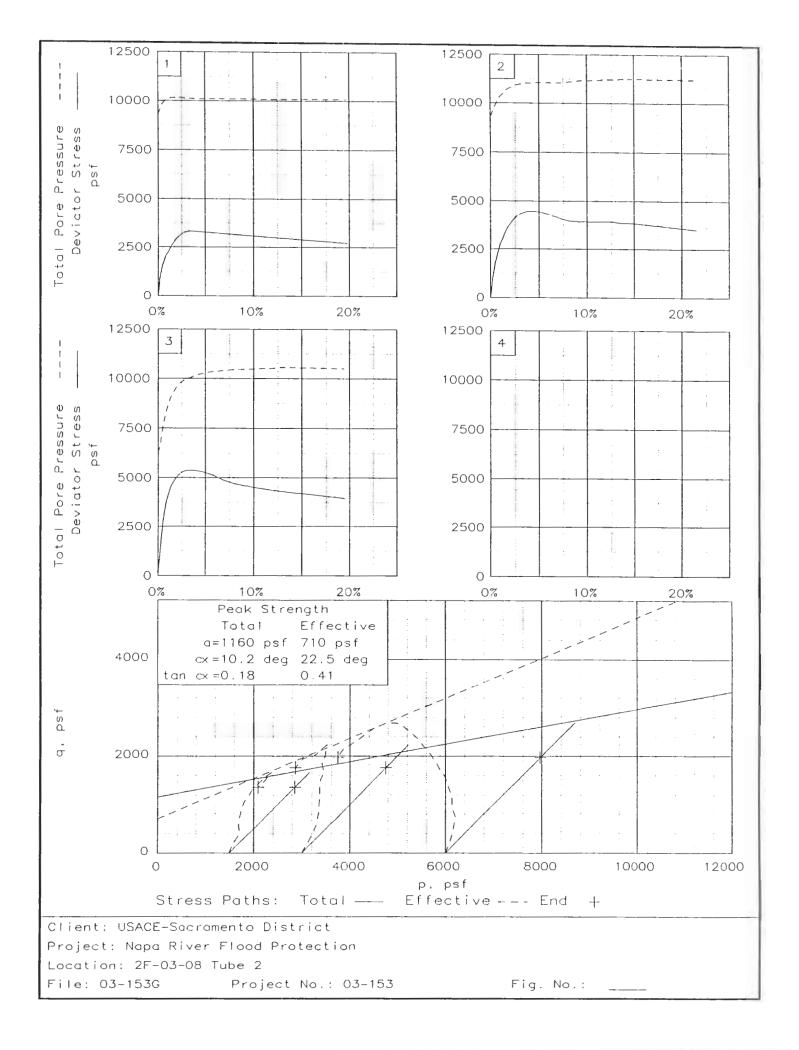


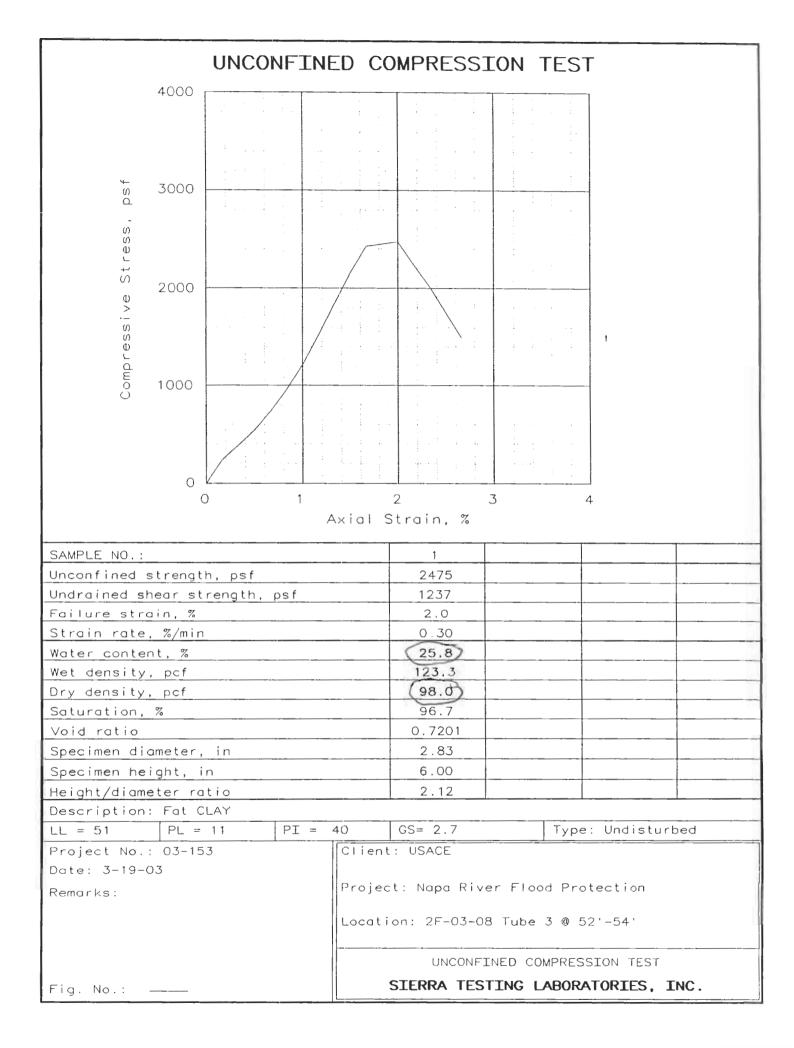


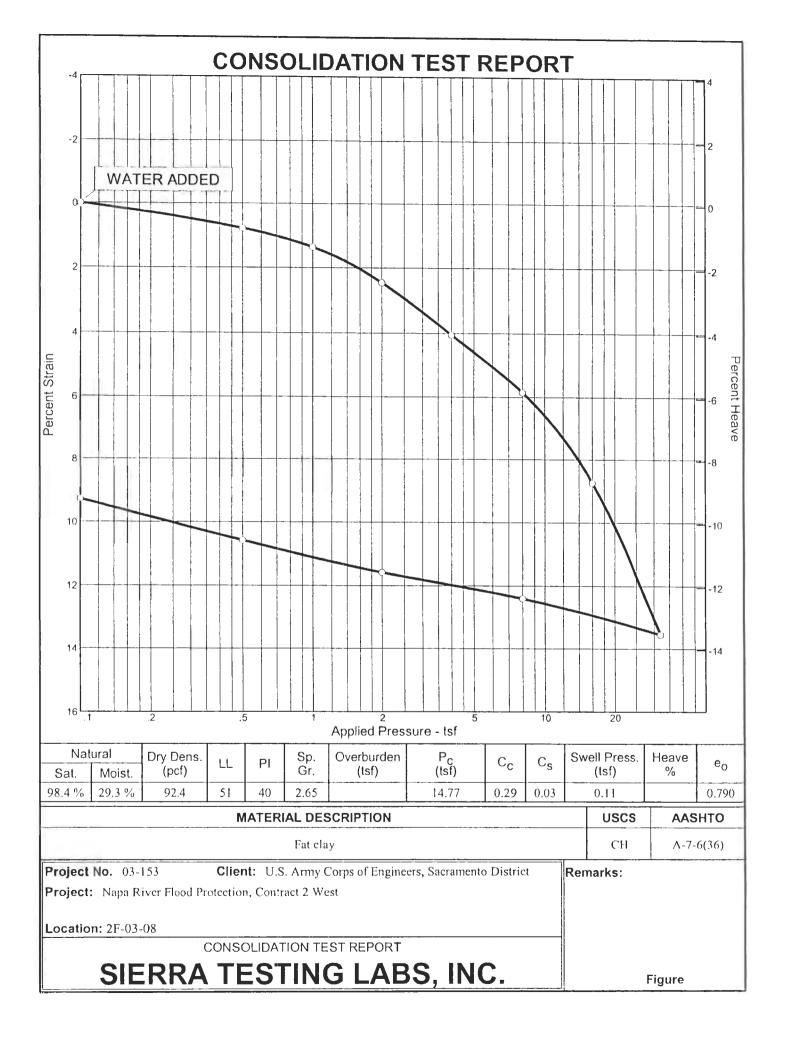


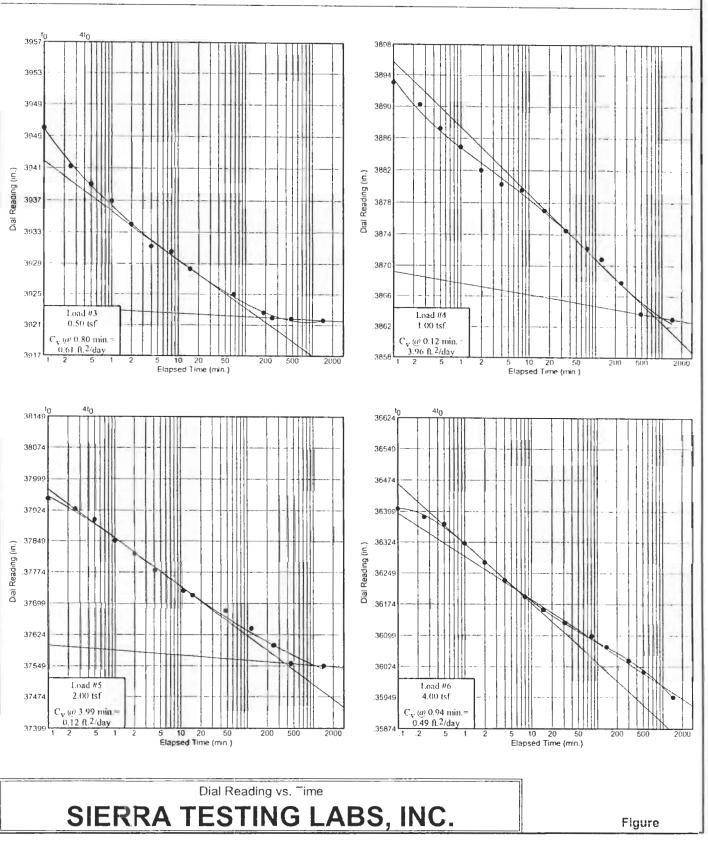






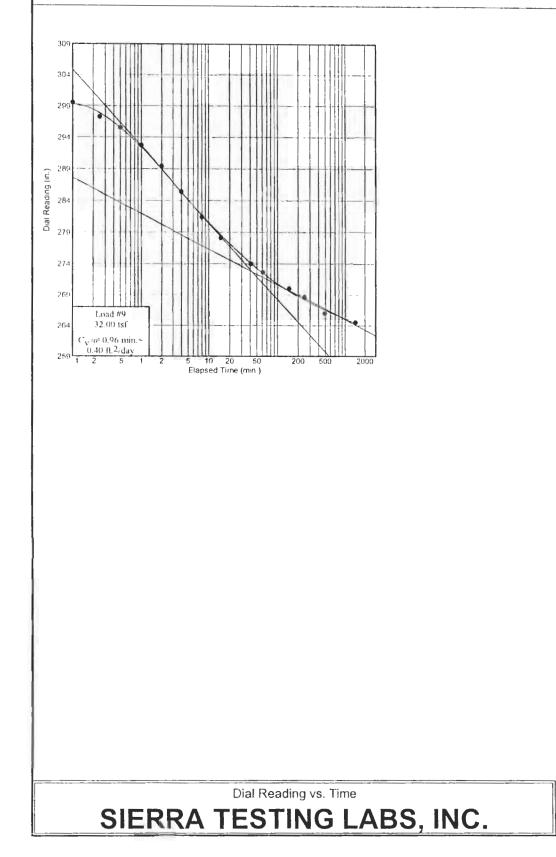






Dial Reading vs. Time

Project No.: 03-153 Project: Napa River Flood Protection, Contract 2 West


Location: 2F-03-08

Dial Reading vs. Time

Project No.: 03-153 Project: Napa River Flood Protection, Contract 2 West

Location: 2F-03-08

Figure

APPENDIX 5: PILE DESIGN CALCULATIONS

Napa Contract 2 West Soldier Pile Wall

Pile Foundation Depth for Vertical Wall at Hatt Building

Information (From MGE Engineering, structural designers) 2' diameter CIDH piles 8' spacing between footings, 6' spacing in footing Compression Load 88.2 kips/pile Tension Load 39.2 kips/pile

Factors of Safety (EM 1110-2-2906) Verified by Pile Load Test 2.0 Not verified by Pile Load Test 3.0

Stratigraphy (Soil borings 2F-03-3, 2F-03-4, 2F-04-51, B-4) 25 feet dense sand and gravel (phi = 33 degrees) 25 feet very stiff/hard lean clay (c =1200 psf)

10 feet dense sand and gravel (phi = 33 degrees) 6 feet hard lean clay (c=1200 psf)

There are many references and many methods for performing pile design. Use several methods and average the results for the design value. References are: EM 1110-1-1905 (Bearing Capacity of Soils)

NAVFAC 7.2 (Foundations and Earth Structures) Virginia Tech (Engineering Manual for Drilled Shafts) FHwA-HI-88-042 (Drilled Shafts: Construction Procedures & Design Methods)

Case A. Assume pile depth = 51', 2 ' diameter, 3 piles

Pile founded 1 foot into lower sand and gravel layer. BUT, due to unknowns associated with the top elevation of that layer, assume "worst-case" condition and use clay equations for end bearing

Compression capacity

End Bearing - use clay equations

Method	Critical Depth L _c (ft)	Pile Depth (ft)	Pile Diam (ft)	Cohesion (psf)	N _{cp}	F _r	Unit End Bear (ksf)	As (ft2)	End Bear kips
Bear Cap EM	N.A.	51	2	1200	9.000	1.000	10.80	3.142	33.93
NAVFAC 7.2	N.A.	51	2	1200	9		10.8	3.142	33.93
VA Tech	N.A.	51	2	1200	9		10.8	3.142	33.93
FHwA	N.A.	51	2	1200	9		10.8	3.1416	33.93

Avg 33.93

Method	Pile Diam (ft)	Pile Depth (ft)	A _s (ft ²)	Midpt. Eff.Str. σ'∟ (ksf)	β_{f}	δ (deg)	tan δ	к	K _{HC}	∲ (deg)	tan ϕ	fsi (ksf)	Qsui (kips)
Bear Cap EM	2	25	157	1.1581	0.45							0.52	81.82
NAVFAC 7.2	2	25	157	1.1581		24.75	0.461		0.70			0.37	58.64
Touma&Reese (VA Tech)	2	25	157	1.1581				0.7		33.00	0.649	0.53	82.60
FHwA	2	25	157	1.1581	1.02							1.18	185.95
												*Avg. (ignore FHwA -	74.35 seems too higł
	•	illed shafts in cla multiplier of 0.7 f		uire a strength redu f 3 diameters	iction for gi	roup effects.	Drilled shafts	in sand			Pile Group	Multiplier	0.7
												Group Avg.	52.05

Skin Friction sand portion

Skin Friction (clay portion)

Method	Clay Depth (ft)	Pile Diam (ft)	A _s clay (ft)	Cohesion (ksf)	α_{a}	C _A	f _{si} (ksf)	A _{si} (ft²)	Qsui (kips)
Bear Cap EM	26	2	163.28	1.2	0.55		0.66	157	103.62
NAVFAC 7.2	26	2	163.28	1.2		0.6	0.72	157	113.04
VA Tech	26	2	163.28	1.2	0.55		0.66	157	103.62
FHwA	26	2	163.28	1.2	0.55		0.66	157	103.62
								Avg.	105.98
						Total Skin F	riction		158.02
						End bearing	J		33.93
						-	「otal		191.95
								- 2	95.98
							Allowable F.S. = 2 Allowable F.S. = 3		63.98

CHECK TENSION CAPACITY

Case A. Pile Depth = 51 feet, diameter = 2', pile founded in clay, 3 piles

Method	Pile Depth (ft)	Pile Diam (ft)	Wt Pile (kips)	Skin Frict (kips)	Multiplier	Qni (kips)	Pni (kips)	
Bear Cap EM	51	2	14.03	185.44	0.667	123.69	137.72	
NAVFAC 7.2	51	2	14.03	171.68	0.4	68.67	82.70	
Va Tech	51	2	14.03	186.22	0.55	102.42	116.45	
FHwA	51	2	14.03	not used - too hi	gh			
				Average			112.29	(for one pile)
	a. The sum of	the individual	uplift capacities	hafts is the lesse s of the drilled sh nd the piles withi	afts			
a. 112.29 x 3 =	337	Kips						
b. Soil Wt.	105	Kips		Pile wt =	42		Total	147 controls
					Allowable	F.S. = 2		74
					Allowable	F.S. = 3		49

Case B. Assume pile depth = 51', 3' diameter pile

Pile founded 1 foot into lower sand and gravel layer. BUT, due to unknowns associated with the top of that layer, assume "worst-case" condition and use clay equations for end bearing

Compression Capacity

End Bearing - use clay equations

Method	Critical Depth L_c (ft)	Pile Depth (ft)	Pile Diam (ft)	Cohesion (psf)	N _{cp}	F _r	Unit End Bear (ksf)	As (ft2)	End Bear kips
Bear Cap EM	N.A.	51	3	1200	9.000	1.000	10.80	7.069	76.34
NAVFAC 7.2	N.A.	51	3	1200	9		10.8	7.069	76.34
VA Tech	N.A.	51	3	1200	9		10.8	7.069	76.34
FHwA	N.A.	51	3	1200	9		10.8	7.0686	76.34

Avg 76.34

Method	Pile Diam (ft)	Pile Depth (ft)	A _s (ft²)	Midpt. Eff.Str. σ'∟ (ksf)	β_{f}	δ (deg)	tan δ	К	К _{НС}	φ (deg)	$tan \ \phi$	fsi (ksf)	Qsui (kips)
Bear Cap EM	3	25	235.5	1.1581	0.45							0.52	122.73
NAVFAC 7.2	3	25	235.5	1.1581		24.75	0.461		0.70			0.37	87.96
Touma&Reese (VA Tech)	3	25	235.5	1.1581				0.7		33.00	0.649	0.53	123.90
FHwA	3	25	235.5	1.1581	1.02							1.18	278.92
												*Avg. (ignore FHwA -	111.53 seems too higł
		lled shafts in cl nultiplier of 0.7		uire a strength redu f 3 diameters	ction for g	roup effects	. Drilled shaft	s in sand			Pile Group	Multiplier	0.7
Skin Friction	(clay portion)											Group Avg.	78.07
Method	Clay Depth (ft)	Pile Diam (ft)	A _s clay (ft)	Cohesion (ksf)	α_a	C _A	f _{si} (ksf)	A _{si} (ft ²)	Qsui (kips)				
Bear Cap EM	26	3	244.92	1.2	0.55		0.66	235.5	155.43				
NAVFAC 7.2	26	3	244.92	1.2		0.6	0.72	235.5	169.56				
VA Tech	26	3	244.92	1.2	0.55		0.66	235.5	155.43				
FHwA	26	3	244.92	1.2	0.55		0.66	235.5	155.43				
								Avg.	158.96				

Skin Friction sand portion

.34
.37
.69 .46

CHECK TENSION CAPACITY

Case B. Pile Depth = 51 feet, diameter = 3', pile founded in clay, assume 2 piles

Method	Pile Depth (ft)	Pile Diam (ft)	Wt Pile (kips)	Skin Frict (kips)	Multiplier	Qni (kips)	Pni (kips)	
Bear Cap EM	51	3	31.56	278.16	0.667	185.53	217.10	
NAVFAC 7.2	51	3	31.56	257.52	0.4	103.01	134.57	
Va Tech	51	3	31.56	279.33	0.55	153.63	185.20	
FHwA	51	3	31.56	not used - too hi	gh			

Average

178.95 (for one pile)

The References say the uplift capacity for a group of drilled shafts is the lesser of

a. The sum of the individual uplift capacities of the drilled shafts

b. The effective weight of the block of soil and the piles within the group

		Allo	wable F.S. = 3		58	
		Allo	wable F.S. = 2		87	
b. Soil Wt.	110 Kips	Pile wt =	63	Total	173	controls
a. 178.95 x 2 =	358 Kips					

Case C. 2 ' diameter, 3 piles, Check capacity at bottom of explorations (depth = 66'). Pile founded in clay

Compressin Capacity

End Bearing - use clay equations

Method	Critical Depth L_c (ft)	Pile Depth (ft)	Pile Diam (ft)	Cohesion (psf)	N_{cp}	F _r	Unit End Bear (ksf)	As (ft2)	End Bear kips
Bear Cap EM	N.A.	66	2	1200	9.000	1.000	10.80	3.142	33.93
NAVFAC 7.2	N.A.	66	2	1200	9		10.8	3.142	33.93
VA Tech	N.A.	66	2	1200	9		10.8	3.142	33.93
FHwA	N.A.	66	2	1200	9		10.8	3.1416	33.93

Avg 33.93

Onin'r riodon	apper sund												
Method	Pile Diam (ft)	Pile Depth (ft)	A _s (ft ²)	Midpt. Eff.Str. σ'∟ (ksf)	β_{f}	δ (deg)	tan δ	К	K _{HC}	φ (deg)	tan φ	fsi (ksf)	Qsui (kips)
Bear Cap EM	2	25	157	1.1581	0.45							0.52	81.82
NAVFAC 7.2	2	25	157	1.1581		24.75	0.461		0.70			0.37	58.64
Touma&Reese (VA Tech)	2	25	157	1.1581				0.7		33.00	0.649	0.53	82.60
FHwA	2	25	157	1.1581	1.02							1.18	185.95
												*Avg. (ignore FHwA -	74.35 seems too higł
												(ightere i hum)	J
				quire a strength redu	ction for g	roup effects.	Drilled shafts	in sand			Pile Group	Multiplier	0.7
		rilled shafts in cla multiplier of 0.7 f			ction for g	roup effects.	Drilled shafts	in sand			Pile Group		-
require a strer					ction for g	roup effects.	Drilled shafts	in sand			Pile Group	Multiplier	0.7
require a strer	ngth reduction				ction for g $\beta_{\rm f}$	roup effects. δ (deg)	Drilled shafts tan δ	in sand K	К _{нс}	φ (deg)	Pile Group tan ø	Multiplier	0.7
require a strer	ngth reduction <i>Iower sand</i> Pile Diam	multiplier of 0.7 f Pile Depth	for spacing o A _s	of 3 diameters Midpt. Eff.Str.	-	δ			К _{НС}			Multiplier Group Avg. fsi	0.7 52.05 Qsui
require a strer <i>Skin Friction</i> Method	ngth reduction <i>Iower sand</i> Pile Diam (ft)	multiplier of 0.7 f Pile Depth (ft)	for spacing o A _s (ft ²)	of 3 diameters Midpt. Eff.Str. σ'∟ (ksf)	β _f	δ			К _{НС} 0.70			Multiplier Group Avg. fsi (ksf)	0.7 52.05 Qsui (kips)
require a strer <i>Skin Friction</i> Method Bear Cap EM	ngth reduction <i>Iower sand</i> Pile Diam (ft) 2	multiplier of 0.7 f Pile Depth (ft) 10	A _s (ft ²) 62.8	Midpt. Eff.Str. σ' _L (ksf) 3.8186	β _f	δ (deg)	tan δ					Multiplier Group Avg. fsi (ksf) 1.72	0.7 52.05 Qsui (kips) 107.91

Skin Friction upper sand

		*Avg. (ignore FHwA - se	98.07 eems too higł
VA Tech and FHwA refs say drilled shafts in clay do not require a strength reduction for group effects. Drilled shafts in sand require a strength reduction multiplier of 0.7 for spacing of 3 diameters	Pile Group	Multiplier	0.7
		Group Avg.	68.65
	Total Sand S	Skin Friction	120.69

Skin Friction	upper clay								
Method	Clay Depth (ft)	Pile Diam (ft)	A _s clay (ft)	Cohesion (ksf)	α_{a}	C _A	f _{si} (ksf)	A _{si} (ft²)	Qsui (kips)
Bear Cap EM	26	2	163.28	1.2	0.55		0.66	157	103.62
NAVFAC 7.2	26	2	163.28	1.2		0.6	0.72	157	113.04
VA Tech	26	2	163.28	1.2	0.55		0.66	157	103.62
FHwA	26	2	163.28	1.2	0.55		0.66	157	103.62
								Avg.	105.98

Skin Friction	lower clay								
Method	Clay Depth (ft)	Pile Diam (ft)	A _s clay (ft)	Cohesion (ksf)	α_{a}	C _A	f _{si} (ksf)	A _{si} (ft ²)	Qsui (kips)
Bear Cap EM	6	2	37.68	1.2	0.55		0.66	31.4	20.72
NAVFAC 7.2	6	2	37.68	1.2		0.6	0.72	31.4	22.61
VA Tech	6	2	37.68	1.2	0.55		0.66	31.4	20.72
FHwA	6	2	37.68	1.2	0.55		0.66	31.4	20.72
								Avg.	21.20
							Total clay skin	friction	127.17
							TOTAL SKIN F	RICTION	247.86
							END BEARING	ì	33.93
						TOTAL C	APACITY		281.79
							Allowable F.S. Allowable F.S.		140.90 93.93

Don't need to check tension capacity as 51' pile is OK in tension

Case D. Assume 60 foot pile depth, 2' diameter, 3 piles

Everything the same as previous case except don't have the skin friction of the lower clay layer.

Total skin friction	226.67
End Bearing	33.93
TOTAL CAPACITY	260.60
Allowable F.S. = 2 Allowable F.S. = 3	130.30 86.87

CHECK TENSION CAPACITY

Case D. Pile Depth = 60 feet, diameter = 2', pile founded in clay, 3 piles

Method	Pile Depth (ft)	Pile Diam (ft)	Wt Pile (kips)	Skin Frict (kips)	Multiplier	Qni (kips)	Pni (kips)
Bear Cap EM	60	2	16.50	236.43	0.667	157.70	174.20
NAVFAC 7.2	60	2	16.50	208.23	0.4	83.29	99.80
Va Tech	60	2	16.50	215.58	0.55	118.57	135.07
FHwA	60	2	16.50	not used - too hi	gh		

Average

136.36 (for one pile)

The References say the uplift capacity for a group of drilled shafts is the lesser of

a. The sum of the individual uplift capacities of the drilled shafts

b. The effective weight of the block of soil and the piles within the group

			Allowable F.S. =		60	
		A	llowable F.S. =	= 2	90	
b. Soil Wt.	131 Kips	Pile wt =	50	Total	181	controls
a. 136.36 x 3 =	409 Kips					

Case E. All soil borings extending deep enough have the lower sand & gravel layer. If it does not exist over all of Wall Type A area, will 10' of clay instead of sand at bottom give sufficient capacity

Minimum required total capacity (88.2 x 3) 264.6 Kips

End bearing and skin friction in upper sand layer will not change

End Bearing Upper Sand Skir Sum	n Friction	33.93 74.35 108.28							
Required clay sk	in friction	156.32							
Skin Friction	clay								
Method	Clay Depth (ft)	Pile Diam (ft)	A _s clay (ft)	Cohesion (ksf)	α_{a}	C _A	f _{si} (ksf)	A _{si} (ft²)	Qsui (kips)
Bear Cap EM	35	2	219.8	1.2	0.55		0.66	213.52	140.92
NAVFAC 7.2	35	2	219.8	1.2		0.6	0.72	213.52	153.73
VA Tech	35	2	219.8	1.2	0.55		0.66	213.52	140.92
FHwA	35	2	219.8	1.2	0.55		0.66	213.52	140.92
								Avg.	144.13

Total capacity 252.41 Kips

F.S. 2.86

Don't need to check tension capacity as 51' pile is OK in tension

CHECK BLOCK FAILURE CAPACITY FOR CASES D AND E

Case D

Use worst case block situation, 90 feet along wall LOL, 9 feet perpendicular to wall LOL, 36 total piles

Capacity of 36 piles = 36 x 277.10 9,381.55 Kips

Block Capacity

End Bearing

Х	Y	N _c	С	Q_{ui}
(ft)	(ft)		(ksf)	kips
9	90	7.65	1.2	7,435.80

Skin Friction

Sand layers - assume calculated the same as above

Upper sand

Method	Width (ft)	Pile Depth (ft)	A _s (ft ²)	Midpt. Eff.Str. σ'∟ (ksf)	β_{f}	δ (deg)	tan δ	К	K _{HC}	φ (deg)	$tan \ \phi$	fsi (ksf)	Qsui (kips)
Bear Cap EM	9	25	4950	1.1581	0.45							0.52	2579.67
NAVFAC 7.2	9	25	4950	1.1581		24.75	0.461		0.70			0.37	1848.87
Touma&Reese (VA Tech)	9	25	4950	1.1581				0.7		33.00	0.649	0.53	2604.29
FHwA	9	25	4950	1.1581	1.02							1.18	5862.74
												*Avg. (ignore FHwA -	2344.27 seems too higł
				uire a strength redu	ction for g	roup effects.	Drilled shafts	in sand			Pile Group	Multiplier	0.7
require a strer	Igin reduction												
		multiplier of 0.7	for spacing c	a diameters								Group Avg.	1640.99
Skin Friction	lower sand	multiplier of 0.7	for spacing c	f 3 diameters								Group Avg.	1640.99
Skin Friction Method	<i>lower sand</i> Width (ft)	Pile Depth (ft)	A _s (ft ²)	Midpt. Eff.Str. σ'∟ (ksf)	β _f	δ (deg)	tan δ	К	К _{НС}	φ (deg)	tan φ	Group Avg. fsi (ksf)	1640.99 Qsui (kips)
	Width	Pile Depth	A _s	Midpt. Eff.Str.	β _f 0.45		tan δ	к	K _{HC}		tan φ	fsi	Qsui
Method	Width (ft)	Pile Depth (ft)	A _s (ft ²)	Midpt. Eff.Str. σ'∟ (ksf)			tan δ 0.461	K	К _{НС} 0.70		tan φ	fsi (ksf)	Qsui (kips)
Method Bear Cap EM	Width (ft) 9	Pile Depth (ft) 10	A _s (ft ²) 1980	Midpt. Eff.Str. σ'∟ (ksf) 3.8186		(deg)		K 0.7			tan φ 0.649	fsi (ksf) 1.72	Qsui (kips) 3402.37

		*Avg. (ignore FHwA - se	3091.91 eems too higł
VA Tech and FHwA refs say drilled shafts in clay do not require a strength reduction for group effects. Drilled shafts in sand require a strength reduction multiplier of 0.7 for spacing of 3 diameters	Pile Group	Multiplier Group Avg.	0.7 2164.34
	Total Sand	Skin Friction	3805.33

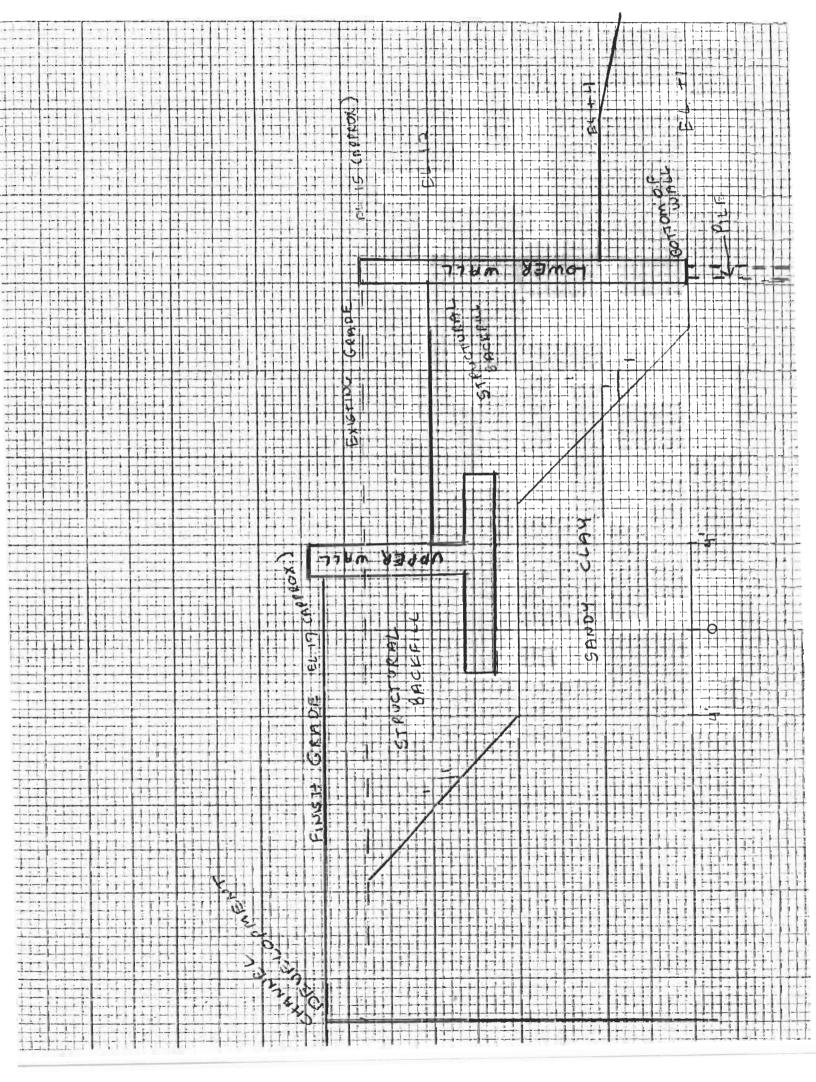
Skin Friction clay

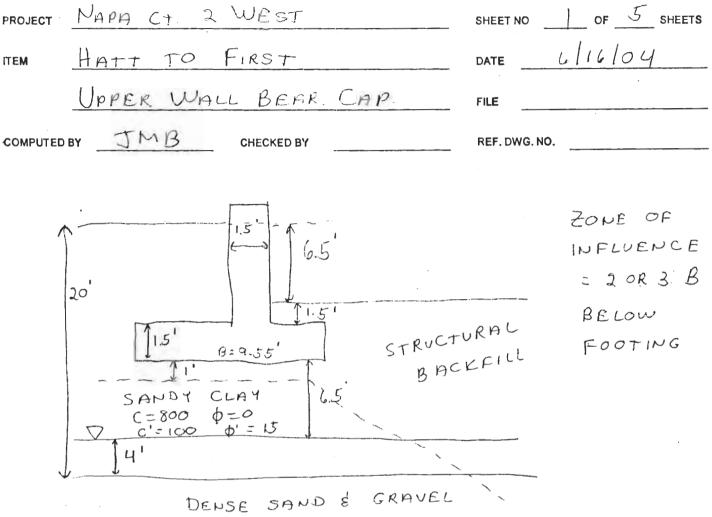
According to VA Tech and FHwA refs, do not use the reduction multiplier (usually called α) when doing block analysis

X	Y	Z	C	Q _{ui}
(ft)	(ft)	(ft)	(ksf)	kips
9	90	25	1.2	5,940.00

Total Capacity	17,181.13 Kips	So individual pile capacity controls
----------------	----------------	--------------------------------------

Case E.

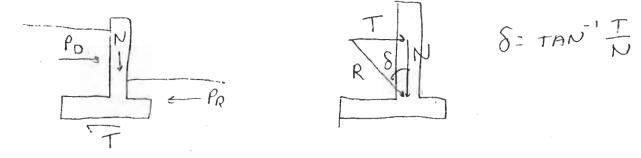

End bearing same	as Case D		7,435.80 Kips				
Skin friction sand -	same as upper	Case D	1,640.99 Kips				
Skin friction clay							
X (ft)	Y (ft)	Z (ft)	C (ksf)	Q _{ui} kips			
9	90	35	1.2	8,316.00			
Total Capacity	17,392.79	So individual pile	e capacity controls				


APPENDIX 6: DEFLECTION/SETTLEMENT CALCULATIONS

PROJECT	NAPA 2 WEST	HATT 2 FIRST	SHEET NO OF SHEETS
ITEM	DEFLECTION /S	ETTLEMENT	DATE
	WALL TYPE	A	FILE
COMPUTER	SPILE JMB CH	ECKED BY	REF. DWG. NO.
		PILE DEFLECT	IOH FROM LPILE
	1//JH	DEPTH = 11 K	
	H	DEPTH=0' S	PILE = 0.28"
		SWALL = 0. 61	"
		H= 24.0 (MA	x)
	FIND DEFLEC	TEP AREA	
	$A_{PILE} = \frac{1}{2} \left(\frac{0.28}{12} \right)$	$(11) = 0.13 \text{ FT}^2$	
	AWALL = (0.2	8")(24)+2("	$(24')(24')=0.56\pm0.61$
	AWALL = d.L	7 FT	
A	DEFLECTES O. 13 +	1.17 = 1.39' FT	2 = 187.2 IN2
	SETTLEME	NT	
	- N- R	ASETTLEMENT =	ADEFLECTED
	P	RALPH PECK.	CHART
	MAX	MAX SETTLEMENT	= 1%.
		MAX SETTLEME	UT = 0.24 FT
CESPD FO	RM 284, 1 SEP 89		22.9"

PROJECT	NAPA 2 WEST HATT 2 FIRST	SHEET NO 2 OF 2 SHEETS
ITEM	DEFLECTION/SETTLEMENT	DATE
	WALL TYPE A	FILE
COMPUTED	DBY JMB CHECKED BY	REF. DWG. NO.
	FIND NO	
	RALPH PECK CHART	
	$\frac{N}{H} = 2$ H N = 2(24) = 48'	
	CHECK ASETTLEMENT ASETTLEMENT = 2 (0.24') (48') = 5.76 Ft 2
	5.76 Ft2 >> \$.30 Ft	+ (ADEFLECTED)
	SO, THE SETTLEMENT W	ILL BE ZS THAN
	PREDICTED BY PECK	CHART.
	OLD BUILDING AT NAPA M WALL LOL	ILL IS 9' FROM .
	7	20 VARIOUS VALIO 13 - 2 (2000) (2-13) Simpr = (106.6) - 2 April 2 Simpr
CESPD F	ORM 284, 1 SEP 89	5 MAY (108) NX 12

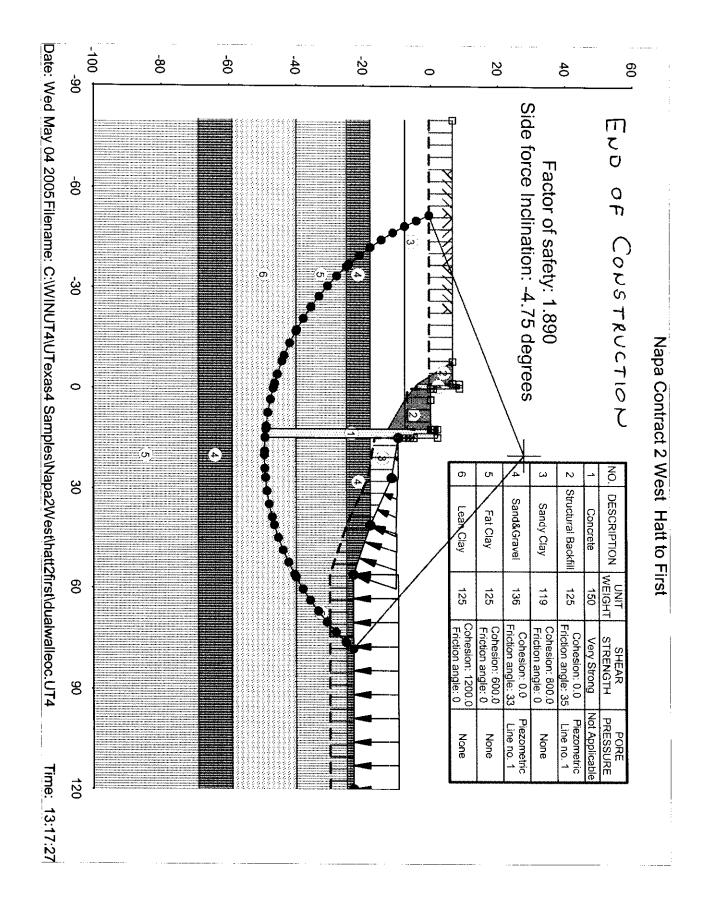
APPENDIX 7: BEARING CAPACITY CALCULATIONS – UPPER WALL

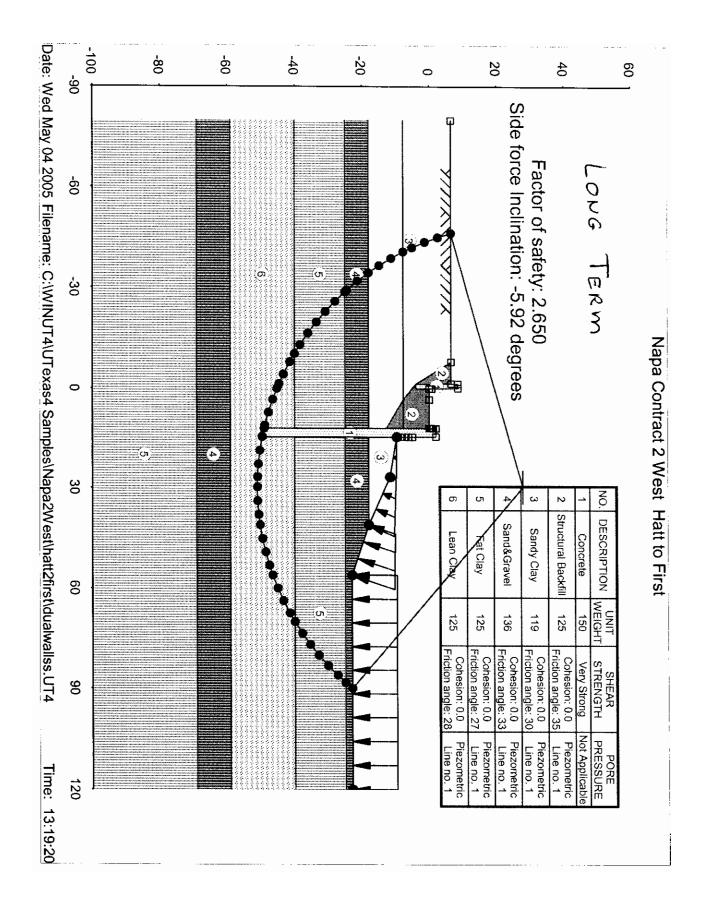


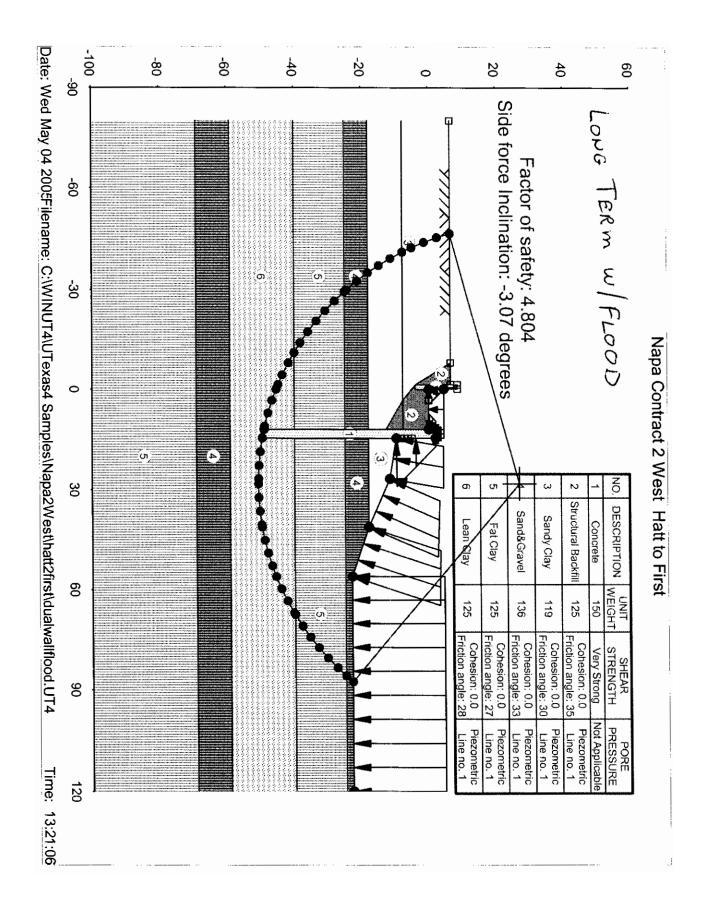
 $b = 38^{\circ}$

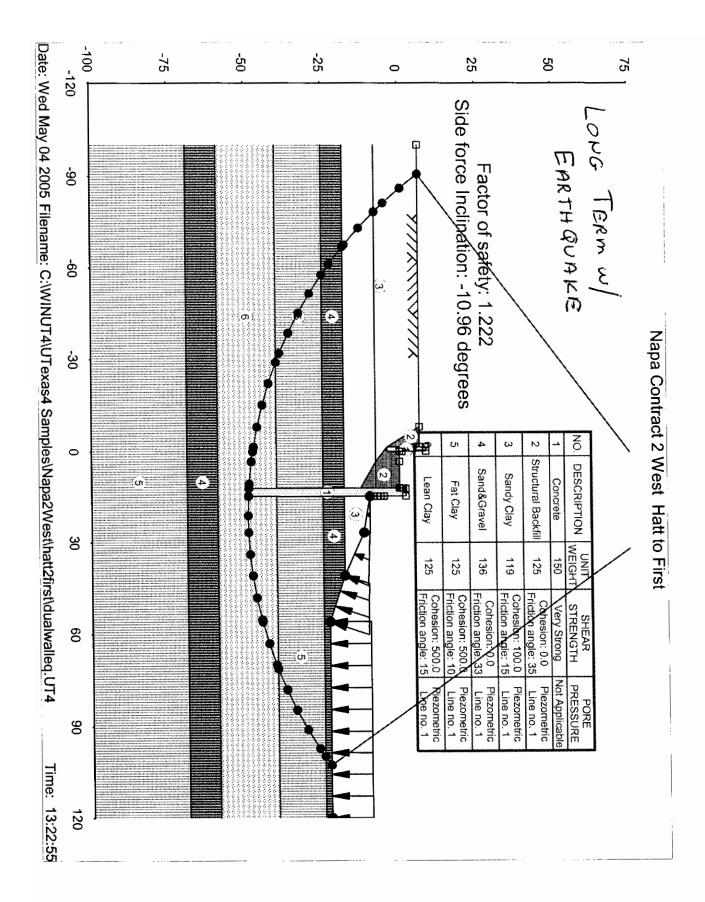
ZONE OF INFLUENCE BELOW FOOTING CONTAINS STRUCTURAL BACKFILL AND INSITU CLAY & SAND. DUE to LOWER & ANGLE, BEAR CAP. OF SANDY CLAY WILL BE LOWER THAN GRANNLAR SOILS. ACTUAL BEAR CAP. WILL BE BETWEEN THE VALUES. DO CARES FOR ALL SOIL TYPES

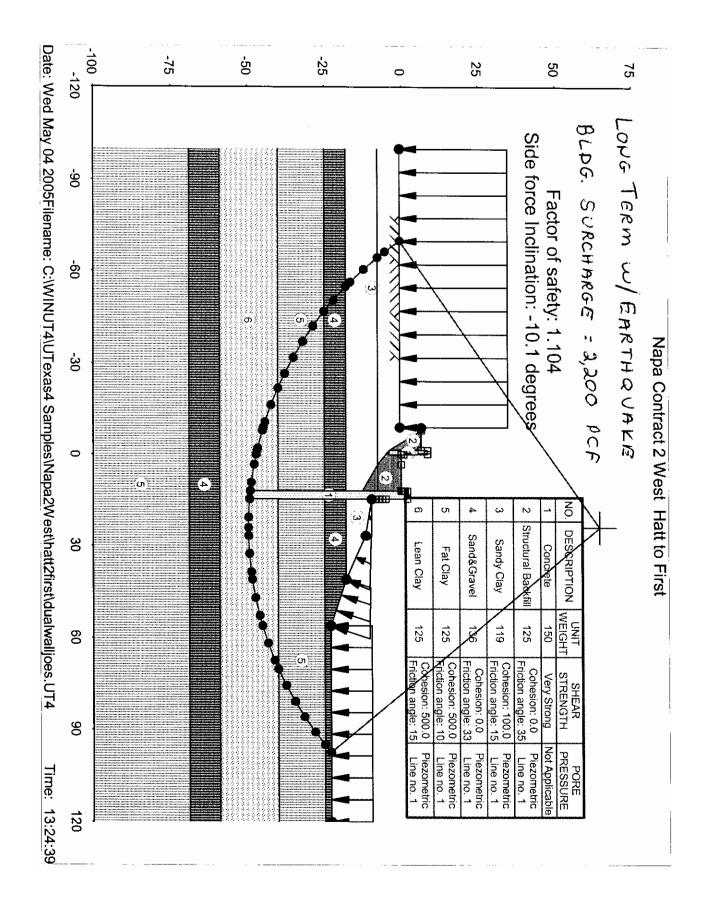
PROJECT	SHEET NO 2 OF 5 SHEETS
ITEM	DATE 6/16/04
UPPER YJALL BEAR CAP.	FILE
COMPUTED BY CHECKED BY	REF. DWG. NO
EM 1110-2-2502 (RETAININ	G & FLOOD WALLS)
quit = B (CNC+ go Ng + 1	(BYNy)
qo= 120(3)=360	
FOR ECCENTRIC LOADING	B= B-2 C
$e = \frac{9.5}{3} - 3.25 = 1.5$	
$\overline{B} = 9.5 - 2(1.5) = 6.5$	5
SANDY CLAY	
LOWER \$= LOWER MC, Ng,	Ny SO EOC CONTROLS
FOR \$=0 Nc=5.14 Ng	= $1 N_{\delta} = 0$
quer = B (800.5.14 + 360.1	$) = \overline{B} (411.2 + 360)$
BUT INCLINED LOADING S FACTOR	O NEED CORRECTION

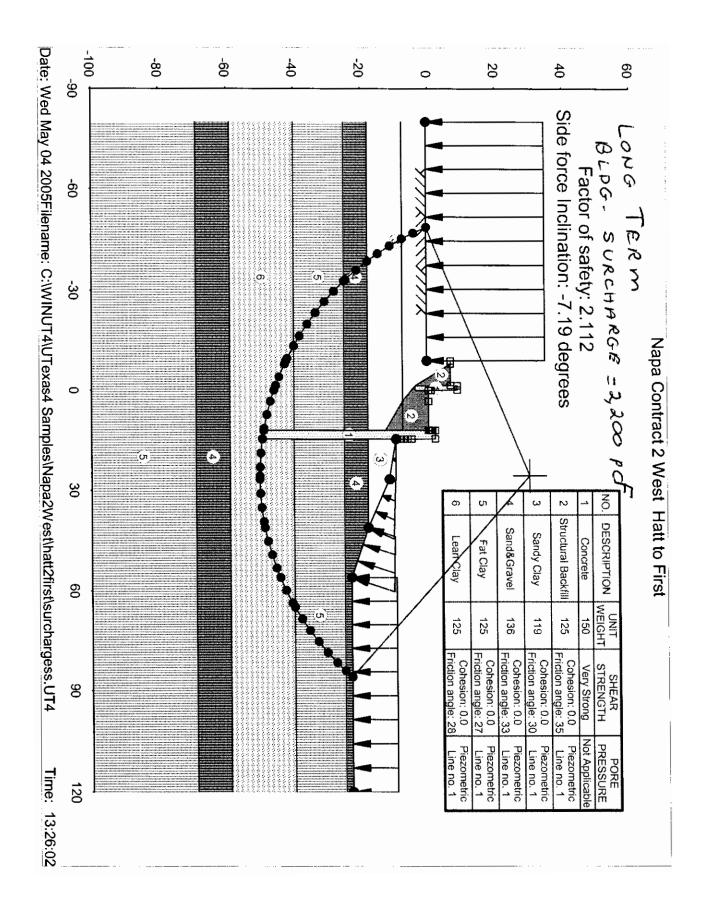



PROJECT	SHEET NO <u>3</u> OF <u>5</u> SHEETS
ITEM	DATE 6/16/04
UPPER WALL BEAR. CAP.	FILE
COMPUTED BY TMB CHECKED BY	REF. DWG. NO.
N= WT WALL + WT. SOIL AI	BOVE FOOTING
WT. WALL= [(95x 1.5) + (1.	5x 11)]x150= 4,613
WT SOIL ABOVE FOOTING = [((2.5×1.5)+(4.5×6.5))×120
= 3 96	σ
N=4,613+3,960= 8,573	
$T = P_D - P_R$	
$P_{p} = K_{0} + Z_{1} - \frac{Z_{1}}{2} = (0.4)(120)(120)(120)(120)(120)(120)(120)(120$	$(9.5)\left(\frac{9.5}{2}\right) = 2,166$
$P_R = K_P \partial Z_2 \cdot \frac{Z_2}{2} = (3)(120)(120)(120)(120)(120)(120)(120)(120$	$(3)\left(\frac{3}{2}\right) = 1,620$
T= 2,166 - 1,620 = 546	
S= TAN' 546 8,573 = 3.6°	
$q_{q_1} = \bar{q}_{c_1} = (1 - \frac{\delta}{90})^2 = 0.9$	2
EMBEDMENT FACTOR	
$f_{cd} = 1 + 0.2 \left(\frac{D}{B}\right) TAN(45 + \frac{1}{3})$	$\left(\frac{0}{2}\right)$
= 1+ 0.2(=) TAN (45+1.	(5)=1,16
$\frac{5}{5}$ Gd = 1	
SO quit = B (4,112 × 0.92× 1.16	+ 360× 0.92 ×1)
$=\overline{B}(4,391+331)=$	B (4,722)
(DON'T MULTIPLY BY	B TO GET VALUE IN PSF)


PROJECT	SHEET NO 4 OF 5 SHEETS
ITEM	DATE 6/16/04
UPPER WALL BEAR CAP.	FILE
COMPUTED BY JMB CHECKED BY	REF. DWG. NO.
$g_{ALL} = \frac{g_{ULT}}{F.5} = \frac{4,722}{3} = 1,5$	TH PSF
STRUCTURAL BACKFILL	
FOR \$=30 NC= 30.14 1 C=0 50 CNC=	# ·
quir= FoNg + 1 B & 1	Ur
= (360×18.4) + (12	x6.5x120x15.67)
JULT = 6,624 + 6,111	
CORRECTION FACTORS	
INCLINATION Eq. =	$(1-\frac{S}{90})^2 = 0.92$
$\Xi_{ti} = (1$	$\left(-\frac{\delta}{\Phi}\right)^2 = 0.77$
Embedment	
Egd = E = 1+0.1 (E) TAN (45+ 4)
= 1, 08	
gult = (6,624×0.92×1.08+	6,111 x 0. 77 x 1.08)
= 6,582 + 5,111 = 1	1,693
9-ALL = 11,693 =	3,897 PSF
DENSE SAND & GRAVE	EL WILL HAVE A
HIGHER PALL DUE TO 1	HIGHER Ø.
FAILURE WILL LIKELY B IN SANDY CLAY LAYE	E "CONCENTRATED" ER.


PROJECT	SHEET NO <u>5</u> OF <u>5</u> SHEETS
ITEM	DATE 6/16/04
UPPER WALL BEAR CAP	• FILE
COMPUTED BY JMB CHECKED BY	REF. DWG. NO.
USE GALL = 2,000 PSF.	TAKES INTO
ACCOUNT BOTH STRUCT	-URAL BACKFILL
AND SANDY CLAY.	PROBABLY A LITTLE
ON THE CONSERVATIVE	SIDE WITHOUT
BEING HYPERCONSERV	ATIVE


APPENDIX 8: GLOBAL STABILITY FAILURE SURFACES



APPENDIX 9: TELEPHONE CONVERSATION RECORDS

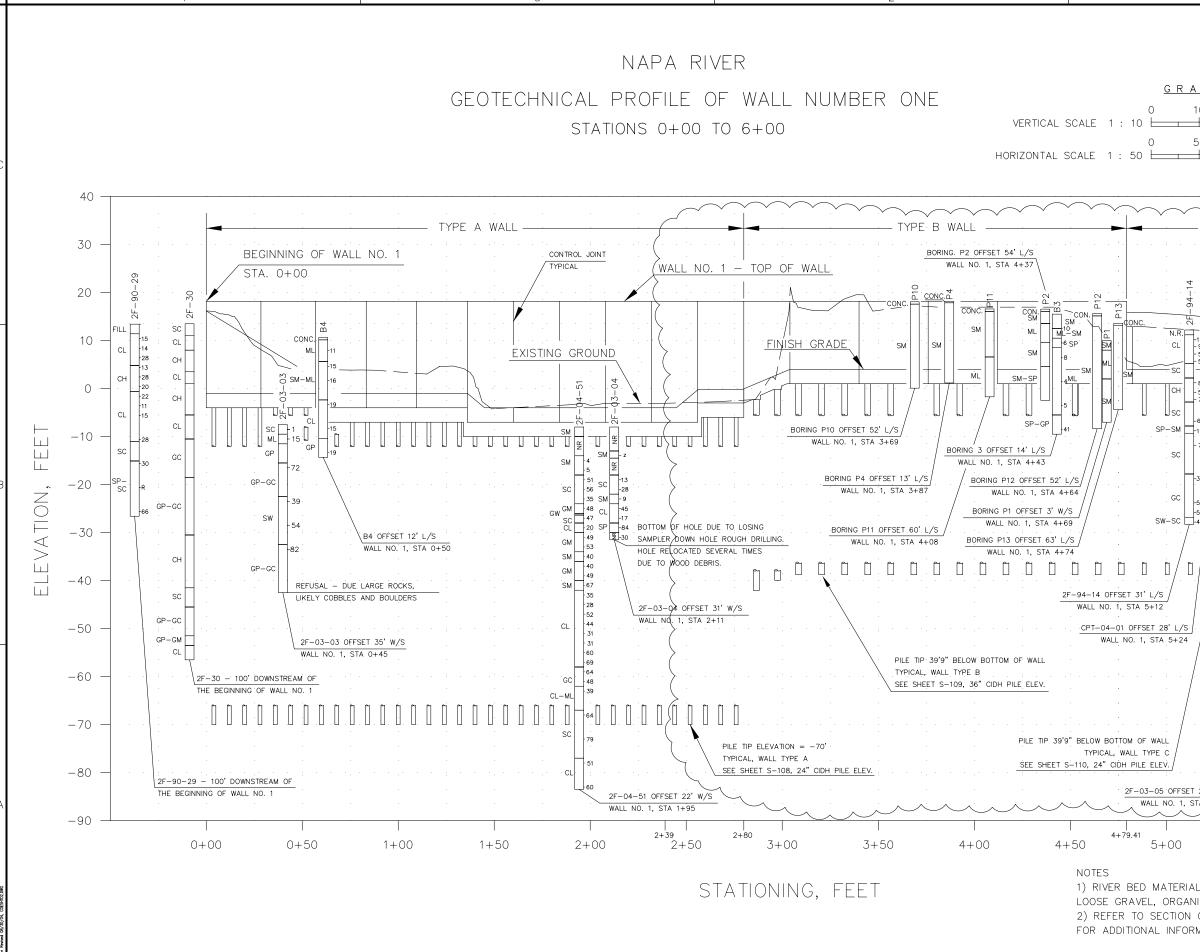
CONVERSATION RECORD

Person Called: Mark Andrilla, City of Napa Public Works, (707) 257-9520 x7423

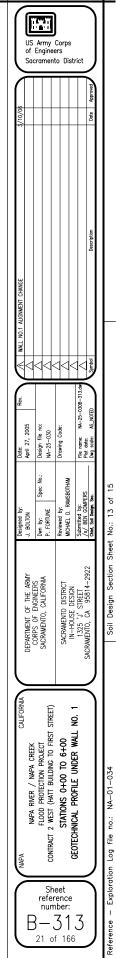
Person Calling: Jane Bolton, CESPK-ED-GS, (916) 557-7637

Date of Call: January 12, 2005

I asked Mark if he could direct me to someone who had any knowledge about the experiences of the Third and/or First Street bridge contractors with installing sheet piles in the Napa River. Mark said he had been on site off and on throughout the construction of the pier cofferdams for both bridges. He said the sheet piles were installed with vibratory hammers. In some cases the piles went in easy, in some cases the piles were difficult to install. Only for the easterly pier of the First Street bridge did they encounter refusal with the vibratory hammer on some of the piles. In those cases, they switched to a diesel drop hammer and were able to install the piles with the drop hammer.


CONVERSATION RECORD

Person Called: Jane Bolton, CESPK-ED-GS, (916) 806-0239 (cell)


Person Calling: Bob Sennett, MGE Engineering, (916) 421-1000

Date of Call: February 1, 2005

Bob asked me about the tip elevation of the piles for the first 248 lineal feet of the soldier pile wall. I told him I had given him a tip elevation of -60 ft. NGVD in an earlier email and he said he would look for it. We also talked about the possible impact of a building surcharge for Downtown Joes on the lower wall design. Bob said MGE will look at whether temporary shoring will be required during construction. I said it was possible the building surcharge would add to the loading on the lower wall, but given the elevations, the distance away from the wall, and the relatively light loading of Downtown Joes that an impact would likely be small, but MGE will look at it. I described the global stability analysis I did, that it took a building surcharge of 3,000 pounds per square foot to develop a critical global stability situation, and Bob said a building of that size and type would likely have a surcharge of about 1,000 pounds per square foot.

-65 -61 CL -29 П сн Ĩ 0.00 CH -16 CL -33 GC -55 -40WALL NO. 1, STA 5+12 SC -50 CPT-04-01 OFFSET 28' L/S WALL NO. 1, STA 5+24 CL -60 -70 TYPICAL, WALL TYPE C -80 2F-03-05 OFFSET 27' L/S WALL NO. 1, STA 5+50 - -90 4+79.41 5+00 5+50 6+00 1) RIVER BED MATERIAL CONSISTING OF WET, LOOSE GRAVEL, ORGANICS, DEBRIS AND TRASH. 2) REFER TO SECTION 02020 SUBSURFACE DATA FOR ADDITIONAL INFORMATION.

<u>GRAPHIC SCALES</u>

20

100

FYPE C WALL

- SW16

CL

SP-SM

SC

GC

SW-SC 48

-55

SW-SM

CL¹⁹

-SM2

-36 S₩4

SM

GW -23 GP -29

-SM -29

GP-GM

GP-GM

GC

۴z

-23

TUBE BENT ON THE BOTTOM DUE TO

-45 REFUSAL DUE TO - R BOULDER, MOVED HOLE

5 FEET TO THE NORTH

10

50

0

30

150

40

200

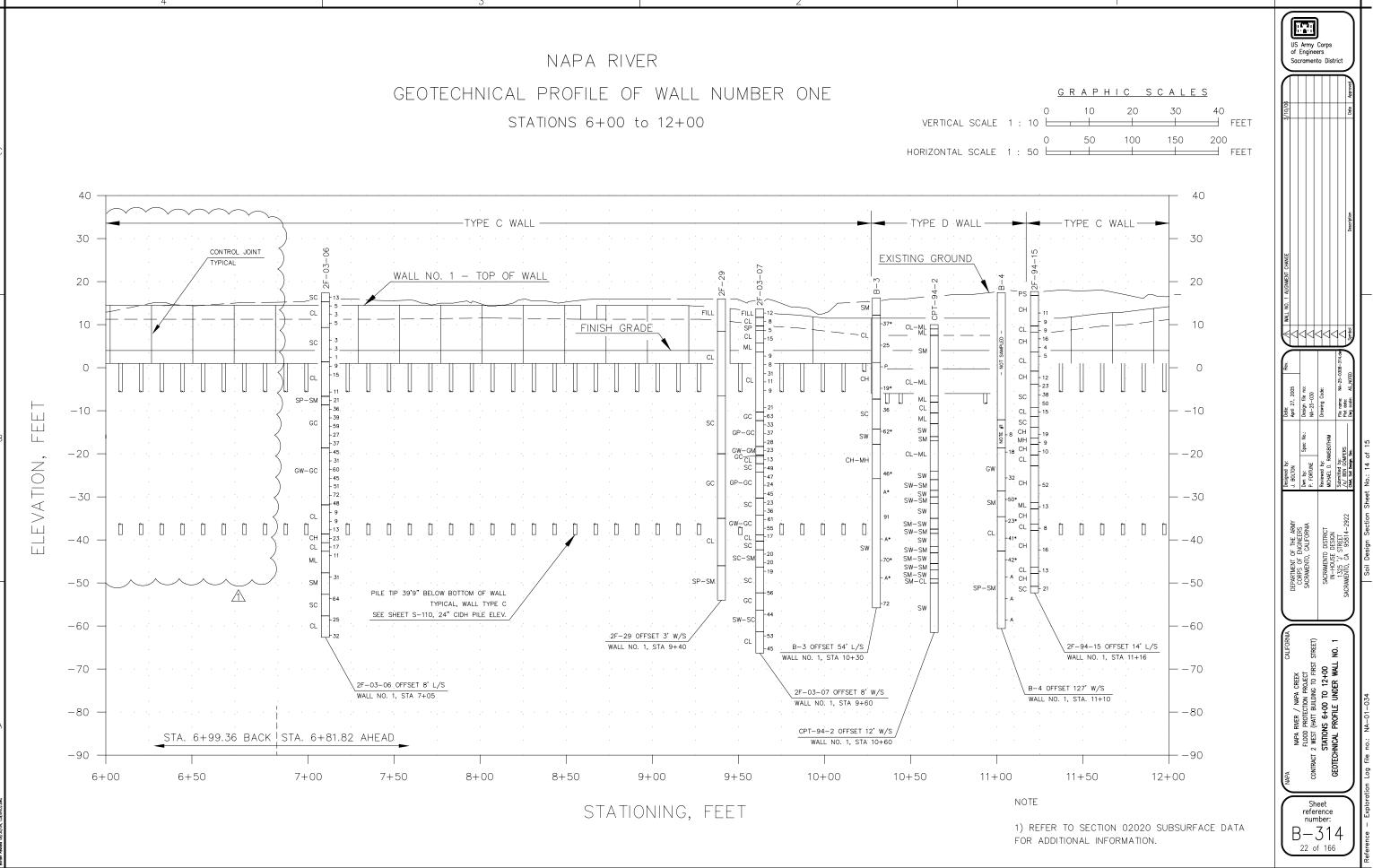
🚽 FEET

🚽 FEET

40

30

20


10

0

-10

-20

-30

Appendix D

2005 Hatt Bldg to First Street Floodwall

Design Documentation Report Supplemental

NAPA RIVER/NAPA CREEK FLOOD PROTECTION PROJECT

CONTRACT 2 WEST (HATT BUILDING TO FIRST STREET)

DESIGN DOCUMENTATION REPORT (SUPPLEMENTAL TO THE USACE SGDM)

> PREPARED FOR U.S. ARMY CORPS OF ENGINEERS SACRAMENTO DISTRICT

CONTRACT NUMBER DACW05-01-D-0011

PREPARED BY

MARCH 2005

Table of Contents

1.0	EXE	CUTIVE SUMMARY	1
2.0 2. 2.	1 Fւ	IGN CRITERIA LOODWALLS AND RETAINING WALLS ENERAL DESIGN CRITERIA	2 3
2.	2.3.1 2.3.2 2.3.3 2.3.4	Primary Flood Wall Alignment Location of Flood Protection Elevation (FPE) Structural Concrete Pavement Design Ramps and Stairs Veterans Park Amphitheater ESIGN MODIFICATIONS FROM THE URBAN DESIGN PLAN Hatt to 5 th Street 5 th Street to 3 rd Street Below the 3 rd Street Bridge Veterans Park	3 4 4 4 5 5 5 6 6
3.0 3. 3.	1 N/	Veterans Park to 1^{st} Street L TYPE RECOMMENDATIONS APA MILL COMPLEX (BEGINNING OF WALL TO 5^{TH} STREET)	7 7
4.0	UPP	PER PROMENADE WALLS	8
5.0	WAL	L AESTHETICS	8
6.0	PRO 6.1.1 6.1.2 6.1.3 6.1.4	UECT UTILITIES DESIGN Storm Drainage Water Supply Sanitary Sewer Electrical Power Supply.	9 10 10
7.0	PRO 7.1.1 7.1.2	UECT CONSTRUCTION STAGING AND PHASING	11
8.0	STO	RM WATER POLLUTION PREVENTION 1	1
9.0	REF	ERENCES 1	2

1.0 Executive Summary

This report discusses the results of final level designs for the primary floodwall between the Napa Mill complex (Hatt Building) and the 1st Street Bridge as well as secondary walls retaining the upper promenade walkway for the Napa River/Napa Creek Flood Protection Project within the City of Napa, California. The purpose of this report is to document design features that differ from the concepts as shown in the Final Supplemental General Design Memorandum (FSGDM) prepared by the USACE and dated October 1998.

Project aesthetics and features utilized the recommendations documented in the *City* of Napa, Downtown Riverfront Urban Design Plan, February, 2003 and includes features such as river walk pedestrian access, surface finish aesthetics, lighting, planting, and redevelopment of Veterans Park. Generally, the recommendations outlined in the Urban Design Plan were incorporated into the Flood Protection project through direct improvements, or through design incorporating provision for future installation.

The primary floodwall can be separated into two distinct portions: 1) Napa Mill Complex (from the beginning of the wall to 5^{th} Street, and 2) 5^{th} Street to the 1^{st} Street Bridge. The portion of the wall at the Napa Mill Complex extends into the river channel initially before entering the existing patio area, paralleling the hotel addition, and ending at 5^{th} Street. The design height of the wall varies from approximately 16-feet to 24-feet, transitioning to a design height of approximately 12-feet at 5^{th} Street at the beginning of the lower promenade. The remaining portion of the wall terminates at an existing concrete wall adjacent to Riverside Auto and just southeast of the existing 1^{st} Street Bridge. The design height of this portion of the wall varies from approximately 10-feet for the majority of the wall limits to approximately 7-feet where the lower promenade passes below the existing 3^{rd} Street Bridge.

The FSGDM indicated the use of a soldier pile wall with precast concrete panels and tieback anchors for the primary lower floodwall, and conventional cast-in-place, reinforced concrete cantilever walls with spread footings for the upper setback walls.

Additional investigations regarding appropriate wall types to be utilized were performed. Wall type selection considerations included:

- 1. Constructability
- 2. Cost
- 3. Aesthetics

The following wall types were considered:

- 1. Cast-in-place (CIP), reinforced concrete cantilever soldier pile supported on 24-inch and 36-inch cast-in-drilled-hole (CIDH) concrete piles,
- 2. CIP, reinforced concrete cantilever wall supported on 24-inch CIDH concrete pile footings,

- 3. Soldier pile wall with precast concrete panels, and
- 4. Soil nail tieback wall with CIP concrete facing.

Recommended wall types for the various portions of the project were as follows:

- 1. Napa Mill Complex:
 - a) Beginning of wall (Station 0+00) to Station 2+56 Cast-in-place, reinforced concrete cantilever wall supported on 24-inch diameter CIDH concrete pile footings.
 - b) Station 2+56 to Station 4+68 Cast-in-place, reinforced concrete soldier pile wall supported on 36-inch diameter CIDH concrete piles.
- 2. 5th Street to Existing Wall at Riverside Auto: Station 4+68 to 16+40 Cast-in-place, reinforced concrete soldier pile wall supported on 24-inch diameter CIDH concrete piles.
- 3. Upper Level Promenade Walls: From 5th Street to the Main Street Landing, from the Main Street Landing to the south side of the 3rd Street Bridge, from the north side of the 3rd Street Bridge to Veterans Park, and from Veterans Park to the First Street Bridge Cast-in-place, reinforced concrete, cantilever walls supported on spread footings.

In addition to the construction of the new primary floodwall, the existing floodwall below the 3^{rd} Street Bridge will be modified to facilitate the raising of the lower promenade as well as to complete the connection of the new primary floodwall at each side of the bridge.

2.0 Design Criteria

2.1 Floodwalls and Retaining Walls

Floodwalls and retaining walls will be designed in accordance with the design criteria in Section 18.2 of the FSGDM with the following exceptions:

- 1. Minimum concrete strength of 4,000 psi specified.
- 2. Vehicle loadings considered only at wall locations where vehicle access is feasible.

2.2 General Design Criteria

2.2.1 Primary Flood Wall Alignment

Final Design for this construction contract began with the finalization of the primary floodwall alignments. In general, the alignments as shown on the *Urban Design Plan* were compared with the alignments used for hydraulic analysis prepared by the USACE. Minor modifications to the USACE alignment were proposed to meet the intent of the *Urban Design Plan*, and affects of this realignment were adopted after analysis determined that desired flood protection was achieved and the alignments were adopted include:

- 1. Bulb radius at the 4th Street Boat Dock Radius and location of the curve were modified to better center the access stairs and provide promenade width.
- Radius and tangent alignments at Veteran's Park Bandstand Radius and tangent alignments were modified to highlight the bandstand area, and provide desired promenade widths. Additionally, the center of the ellipse was shifted to center on the park and provide adequate ramp length to comply with accessibility requirements.

2.2.2 Location of Flood Protection Elevation (FPE)

The flood protection elevation (with freeboard) was defined during finalization of the floodwall alignments. In general, the flood protection elevation from south to north is defined as follows:

- Begin Floodwall #1 FPE at 17.50' located at beginning of promenade, Station 0+00. Protection is maintained at or above this elevation to Station 4+68 where FPE turns west to top of Ramp/Stairs Access No. 1 at 5th Street.
- 2. Begin Floodwall #2 FPE from beginning of Wall #2 to top of Ramp/Stairs Access #2 at 4th Street.
- 3. Begin Floodwall #3 FPE from beginning of Wall #3 to end of Wall #3 at the south side of the Third Street Bridge abutment. FPE is along the face of the existing Third Street Bridge abutment to the beginning of VP Wall #1.
- 4. Begin VP Wall #1 FPE from beginning of VP Wall #1 to approximate station 0+90 where the FPE travels perpendicular to the VP South Ramp to Terrace Wall No. 1.
- 5. VP Terrace Wall # 1 FPE travels along Terrace Wall #1 from beginning to end, then follows VP Wall #4 to the top of VP Ramp #3.
- 6. Flood protection across VP North Ramp is provided by a temporary flood wall (Stop Log) assembled prior to high water.

- 7. Wall #6 FPE from beginning of Wall #6 to End of Wall # 6 at Ramp/Stair Access No. 3.
- 8. Top of Ramp/Stair Access No. 3 northern wall to terminus of Wall #1.

2.2.3 Structural Concrete Pavement Design

The structural concrete pavement for the lower promenade is intended to accommodate pedestrian loading only, and was therefore designed as a reinforced concrete slab 4 inches thick. The upper promenade is intended to accommodate pedestrian, maintenance truck and emergency vehicle loading and was designed as a reinforced concrete slab 6 inches thick.

Because of the difficulty of pavement replacement after construction and the phasing of construction of the upper promenade, the design team determined that a geotextile would be utilized to separate the pavement structural section from the pavement subgrade. This geotextile will prevent intrusion of subgrade materials into the structural section and provide extended service life. Additionally, the geotextile will serve to uniformly distribute pavement loading to the subgrade and prevent localized failure. It is believed that utilization of the geotextile to reinforce the structural pavement section is justified to extend the useful life of the pavement and reduce the long-term maintenance burden on the owner.

2.2.4 Ramps and Stairs

The three sets of ramps and stairs at 5th, 4th and 1St street have been designed to meet ADA and pedestrian loading requirements.

2.2.5 Veterans Park Amphitheater

The Veteran's Park Amphitheater was designed in accordance with the concepts outlined in the *Urban Design Plan*. There are three points of access from Main Street and access to the lower promenade pedestrian path. Access between Main Street and the lower promenade meets ADA requirements. Maintenance vehicle access is limited to the bottom of the main north and south ramps.

The Bandstand Plaza was located above the 10-year flood elevation, with a series of turf-planted elliptical terraces forming the amphitheater. All terraces provide wheelchair access and wheelchair parking. The park is contained on the north and south by landscaped planters.

Electrical power for lighting, water for a drinking fountain and landscape irrigation and subsurface drainage has been provided. A foundation and electrical conduits for future power to the bandstand have also been provided.

Many of the existing improvements within the park will be salvaged. Four light fixtures will be relocated from within the park to the park's Main Street frontage. The pedestrian sidewalk along Main Street will be replaced.

2.3 Design Modifications from the Urban Design Plan

Several design modifications to the *Urban Design Plan* have occurred to the flood protection project. In general, these modifications have been dictated by schedule, adjacent property owner requirements or compliance with state and local codes. These modifications are summarized below:

2.3.1 Hatt to 5th Street

The design alignment from the beginning of the project to 5th Street primarily follows the alignment shown in the Urban Design Plan. A short section of the existing pedestrian walkway required removal and replacement to meet the required project flood control elevations. Initial discussion contemplated access to the promenade from the corridor between the Angele Restaurant and the outdoor covered dining area fronting the Main Street parking lot. This access was discounted after discussion with the property Owner.

Discussions concerning continuous pedestrian access between the beginning of the project and the 5th Street access required several iterations of design in an attempt to provide continuous pedestrian access and provide continued use of the patio for Hatt building customers. Due to the alignment of the floodwall in proximity to the newer Hatt Residential Suites, it was determined that sufficient Right-of-Way would not be available in a post project condition to provide sufficient walkway width without significant impact to the suites. As a result, the design team was directed to eliminate the walkway between the floodwall and the Hatt Suites building in favor of an unimproved area to be landscaped after completion of the flood control project.

Construction setback requirements dictated a significant impact to the patio/dining area between the primary floodwall and the existing Hatt Building. The design team assembled design documents for the reconstruction of the Hatt patio as part of the flood control project.

2.3.2 5th Street to 3rd Street

The project design between 5th Street and 3rd Street matches the *Urban Design Plan*. The access ramp/stairs were mirrored to eliminate conflicts between stair and ramp users.

As a result of pending commercial improvements (Channel Development) planned for the undeveloped area bounded by Main Street and the flood control project and by 5th and 3rd Streets, the design team determined that portions of the flood control project could not be constructed prior to the Channel Development construction without damage to flood project improvements. This led to the development of a Matchline between the projects to clearly define limits of construction and to define finish elevations between the projects to be used for drainage and other improvements.

Conceptual design improvements for the terminus of 5th Street were completed by the design team, however, responsibility for final design and construction will be left to the Channel Development Project. A similar division of design and construction

responsibility was developed for the area south of the Third Street Bridge and Main Street.

At the request of the City of Napa, the ramp/stair access at 4th Street was redesigned by the author of the *Urban Design Plan* after the 50% plan submittal to revise the aesthetics and operations of the stairs and access ramp. The redesign replaced the symmetrical concept with the asymmetrical design presented in the final plans.

Accommodation for the 4th Street boat dock and ramp was included in the design. Meetings and shared design files with Charles Rauw, the City of Napa dock and ramp designer, were utilized to provide future dock and ramp accommodations without compromise to the goals of the flood control project.

2.3.3 Below the 3rd Street Bridge

The existing solider-pile wall and walkway below the 3^{rd} Street Bridge was constructed several feet below the required elevation. As a result, the design team prepared a design to raise the surface elevation of this portion of the lower promenade. Limitation to the finish height of the walkway was determined by the soffit elevation of the bridge and the height of an existing waterline hung from the underside of the bridge.

The knowledge that this portion of the lower promenade will be subject to flooding and flood debris led the design team to provide longitudinal and transverse surface drainage for this portion of the walkway. In addition, a removable grate leading to a river drain protected by a flap gate will also aid in the post-flood recovery.

Accommodation was also provided for existing bridge deck and abutment drain-line extensions.

2.3.4 Veterans Park

Design and layout of Veterans Park (VP) followed the concepts prescribed in the *Urban Design Plan* thorough 35% design. A slight modification to the floodwall alignment was approved, moving the floodwall closer the river centerline. This shift allowed the design to more closely reflect the concept of the *Urban Design Plan*.

Between the 35% and 50% design, analysis by the City of Napa Accessibility Consultant required that the northern VP stairs proposed in the *Urban Design Plan* be replaced by accessible ramps and that all terraces be provided with handicap accessibility and wheelchair parking. In order for the ramp and terrace access to meet accessibility requirements, finish surface elevations below the 100-year protection elevation were required on the VP north ramp. As a result, a flood control bulkhead has been provided to meet the project goals.

The bulkhead consists of self-sealing, 6" high by 14' long flood panels. The flood panels have been provided with on-site, secure storage for easy deployment prior to high water. The installation and maintenance responsibility for this bulkhead will be provided by the Napa County Flood Control Agency.

Per the *Urban Design Plan* a drinking fountain has been provided at Veterans Park. Due to vandalism protection and to prevent potable water cross-contamination during flood events, the drinking fountain has been located outside the flooding zone.

2.3.5 Veterans Park to 1st Street

The northern boundary of Veterans Park is shared by the 'Downtown Joe's' restaurant (DJ). In order to reduce the impact to the DJ dining patio, the north and south VP ramps and the northern VP planter was slightly reduced in size between the 50% and 95% design submittals. This shift minimized the impact to the DJ dining patio, and located Wall #6 in the location of the current patio wall.

DJ operates a dining room in a building that has been constructed on cantilevered steel moment frames. The design team requested and obtained a shift in the primary flood wall at this location towards the river centerline in order to provide room to construct the upper wall near this dining room. In addition, DJ utilizes the area below the dining room for equipment and restaurant storage. To protect and allow continuation of this use, the design team provided a retaining wall and drainage below the dining room to allow for backfill and drainage of the upper floodwall without compromise to the DJ storage area.

The terminus of the reach of this contract is at an existing un-reinforced masonry wall located south of the bridge at 1st Street. The ramp and stairs providing access to the lower promenade at this location mirrors the ramp/stairs at 5th Street. The design of this area reflects the *Urban Design Plan*. Conformance to existing asphalt pavement and pedestrian walkways has been provided. The relocation of the existing trash enclosure removed by the project is the responsibility of the City of Napa.

A 6' wide walkway at the level of the upper promenade has been provided at the northern terminus of the project. This 'half-section' of the promenade is intended as a provision for future widening and river walk extension with development to the north.

3.0 Wall Type Recommendations

Selection of the various wall types for the limits of the project considered constructability, cost, and aesthetics. Constructability issues included: limited areas and lengths for soil nail tieback anchors, subsurface debris, construction below the mean lower low water elevation, areas of cut and fill configurations, and construction adjacent to existing buildings and public facilities. Desired wall aesthetics consist of a rusticated block pattern achieved through the use of form liners.

3.1 Napa Mill Complex (Beginning of Wall to 5th Street)

Within this portion of the wall limits, tieback anchors could not be considered due to the close proximity of the wall to the existing structures as well as the lack of complete "as-built" plans. Wall types considered consisted of a cast-in-place, reinforced concrete soldier pile wall supported on 36-inch diameter cast-in-drilled-hole concrete piles, and a conventional cast-in-place concrete cantilever wall supported on a concrete pile footing utilizing 24-inch diameter cast-in-drilled-hole concrete piles. Analysis results indicated that at the tallest regions of the wall, displacements were not acceptable considering a soldier pile type wall without tieback anchors. Thus, for wall heights greater than about 16 feet, the cantilever wall with a pile footing utilizing 24-inch CIDH concrete piles is required. Considering the higher cost of the cantilever wall on pile footings, a transition to the soldier pile wall is recommended as soon as the design height drops below about 16-feet.

3.2 5th Street to 1st Street (Riverside Auto)

Within this portion of the project, the wall limits between station 4+68 (5th Street) to station 14+07 (just north of Downtown Joe's restaurant), a soil nail type tieback anchor wall is a feasible alternative to a conventional cast-in-place concrete soldier pile wall utilizing 24-inch CIDH concrete piles. From station 14+07 to station 16+40 (end of wall), a CIP soldier pile wall supported on CIDH concrete piles is required due to the wall height and existing grade fill conditions. The use of a wall type utilizing precast concrete panels was also considered. However, the expected need to make slight location adjustments of soldier piles as a result of the presence of subsurface debris would result in the need to cast additional non-uniform panel widths. Considering the potential negative affects on the aesthetics in addition to likely construction change orders, the decision was made to not further evaluate a precast concrete wall type alternative.

Further investigations revealed that a cast-in-place reinforced concrete soldier pile wall with 24-inch CIDH concrete piling spaced at 12-feet would be adequate to satisfy the design requirements for the majority of the limits of the wall. Cost of the wall was estimated to be \$74/SF. Costs for a soil nail type tieback wall were estimated to be \$66/SF. Potential cost savings considering construction of a soil nail wall between stations 4+68 and 14+07 was estimated to be \$96,000 (2.6% of total wall cost).

Considering the relatively small potential cost savings of constructing a soil nail wall, and considering the advantages of utilizing one wall type for the lower promenade, the cast-in-place soldier pile wall was recommended.

4.0 Upper Promenade Walls

At upper promenade wall locations, conventional cast-in-place, reinforced concrete cantilever walls supported on spread footings were recommended due to the advantages of cost, constructability, and aesthetics over other wall types considered.

5.0 Wall Aesthetics

Desired wall aesthetic treatment consists of a rusticated block pattern achieved through the use of form liners, and matching those used on the new Third Street Bridge retaining/wing walls. Walls will incorporate pilasters, coping, and metal tube hand and picket railings and other features as described in the Downtown Riverfront Urban Design Plan prepared by the City of Napa and dated February 2003.

6.0 Project Utilities Design

Project utilities design consists primarily of storm drainage, landscape irrigation supply, domestic and fire water supply at Veteran's Park, power for project site lighting, and a sanitary sewer connection for the Veteran's Park drinking fountain.

6.1.1 Storm Drainage

The City of Napa, who will be responsible for storm drainage maintenance, requested that primary storm drainage pipe be a minimum of 12" diameter and utilize Class 3 Reinforced Concrete pipe (RCP).

In general, the project directs surface drainage within the boundary of the project into subsurface drainage systems that outlet through the lower floodwall. Where the lower promenade has little or no slope, the surface pavement has been graded away from the lower wall towards the upper wall and into longitudinal trench drains. These trench drains are piped under the lower promenade and through the lower wall. All wall penetrations have been provided with gate boxes and flap gates to prevent debris and flood water from entering the storm drain system.

From the beginning of the project to the Hatt patio, the promenade has been sloped to drain into inlets that are vented through the wall to the river. The Hatt patio has surface drainage directed into drainage inlets that vent thorough the wall to the river. These inlets have been provided with additional connections to accept drainage from the rest of the Hatt patio. The landscaped area between the Hatt Suites and the flood wall is drained by area inlets that vent through the wall to the river.

Between 5th and 3rd Street the upper promenade has been sloped away from the upper wall towards Main Street where storm water is collected in longitudinal trench drains. Drainage between 5th and 4th Street is collected by trench drains, conveyed in RCP pipe to the existing 5th Street drainage system. Upper promenade drainage between 4th and 3rd Streets is collected by trench drains and conveyed to the existing storm drain system in Main Street near 3rd Street.

The lower promenade between 5^{th} and 4^{th} Street is drained by longitudinal trench drains at the base of the upper wall. The lower promenade platform at 4^{th} Street has been graded to surface drain north and south. The southern drainage is directed into the trench drain system, and the northern portion is directed down the promenade grade to the crossing below the 3^{rd} Street Bridge.

Surface drainage below the 3^{rd} Street Bridge has been provided by longitudinal trench drains that are collected into an inlet structure near the centerline below 3^{rd} Street. This inlet has been provided with a removable decorative grate to facilitate removal of flood debris. This inlet structure is vented through the lower wall into the river.

At Veteran's Park the sidewalk along Main Street is graded to drain into the existing Main Street storm drain system. The north and south ramps are graded to direct surface drainage to the bandstand platform. The bandstand platform is graded to drain into two decorative, grated inlets on either side of the center stairs. The

bandstand platform inlets are vented through the lower flood wall via an 18" RCP. The Veteran's Park terraces are graded to drain into numerous area drains that are directed into the bandstand platform drainage inlets. At the request of the City of Napa, this terrace and terrace wall drain system has been provided with clean-outs to facilitate maintenance access.

The promenade between Veteran's Park and 1st Street is graded towards the park bandstand platform. The platform above the 1st Street ramp/stairs is graded to the 1st Street parking lot, where drainage is directed via curb and gutter to a subsurface system through the lower wall to the river.

6.1.2 Water Supply

Water supply for the project is provided at four locations. Irrigation water supply for planting from the beginning of the project to 5^{th} Street will be provided by the Owner of the Hatt building and utilizes an existing supply system.

Water supply for irrigation between 5^{th} and 3^{rd} Street will be provided from a new supply developed from a City of Napa Water main that terminates at the end of 5^{th} Street. This 1-1/2" supply is provided with an irrigation meter and reduced pressure backflow prevention device meeting City of Napa Water Division Standards.

Water supply for Veterans Park and the landscaping needs to 1^{st} Street will be provided via a new water supply at 3^{rd} and Main tapped from the City of Napa water main within Main Street. This 1-1/2" water supply will provide both potable and non-potable supply for the project north of the 3^{rd} Street Bridge. The water meter is relocated from its pre-project location in the Main Street sidewalk.

The existing water supply tap for Veteran's Park will be utilized as the required fire service supply and is piped to the bandstand location.

6.1.3 Sanitary Sewer

A single 4" sanitary sewer connection is required to service the drinking fountain located in the northwest corner of Veteran's Park. The sewer service will be connected to the existing City of Napa collection system near the intersection of Main and 2^{nd} Street.

6.1.4 Electrical Power Supply

Two electrical service sources are required for this project. Electrical power for the project south of the 3^{rd} Street Bridge will be supplied from a shared transformer (with Channel Properties) located at the end of 5^{th} Street. The electrical power for the project north of the 3^{rd} Street Bridge will be supplied from a new transformer to be located in Veterans Park. The location of this service will be determined after Application for Electric Service is completed by the City of Napa.

7.0 Project Construction Staging and Phasing

7.1.1 Construction Staging

The Owner of the Hatt building and the Hatt Suites requested that construction be staged so that simultaneous construction will not occur below the Hatt Building and the Hatt Suites. Contract documents require that wall from the beginning of the project to approximate Station 2+50 not be constructed at the same time as the wall from Station 2+50 to 5^{th} Street, thereby complying with the Hatt building Owner's request.

To accommodate the Napa County Flood Protection District and the Channel Development project, the walls between 5^{th} and 3^{rd} Street are required to be completed prior to May of 2006. The contract documents require that this area be completed prior to the above date.

7.1.2 Construction Phasing

To accommodate the construction of the Channel Development properties between 5^{th} and 3^{rd} Streets, the design team has made provision to defer the construction of the upper promenade and the trench drains until after completion of the Channel Development project. This deferral allows the Channel Development to complete their construction and not damage flood control project improvements and provide them with construction staging areas. The access stairs and ramps, the lighting and trees and the underground utilities will be installed as part of the flood control project.

8.0 Storm Water Pollution Prevention

Standard Best Management Practices (BMP's) have been included in the contract documents for construction storm water treatment. BMP's include inlet protection, temporary erosion control planting, stabilized construction entrances and concrete wash down areas.

To protect the water quality of the Napa River, the project requires that a continuous Turbidity Curtain be placed in the water for the length of the project. The Contractor is given direction concerning material, installation, repair, maintenance and removal of the Turbidity Curtain.

Permanent storm water quality is protected by the paving, landscaping and drainage systems that will be part of the constructed improvements. These temporary and permanent measures guarantee compliance with the requirements of the project Environmental Document as well as local, state and federal regulations.

9.0 References

- 1. MGE Engineering, Napa River/Napa Creek Flood Protection Wall Type Selection, Contract 2West (Hatt Building to First Street), Technical Memorandum, June, 2004.
- 2. USACE Sacramento District, Napa River/Napa Creek Flood Protection Project – Final Supplemental General Design Memorandum, Main Report, October, 1998.
- 3. City of Napa, Downtown Riverfront Urban Design Plan, February, 2003.

Napa River / Napa Creek Flood Protection Project

Contract 2West (Hatt Building to First Street)

STRUCTURAL DESIGN CALCULATIONS (100% SUBMITTAL)

> Prepared for U.S. Army Corps of Engineers Sacramento District

Contract Number DACW05-01-D-0011

Prepared by

March 2005

TABLE OF CONTENTS

I.	DESIGN CRITERIA SUMMARY	1
II.	FLOOD WALL DESIGN SUMMARY	4
III.	 WALL #1 DESIGN A. TYPE A WALL 1. Load Case 1 2. Load Case 2 3. Load Case 3 4. Load Case 4 5. Design of Wall Section and Pile Footings B. TYPE B WALL (PILE SPACING 9') 1. Load Case 1 2. Load Case 2 3. Load Case 3 4. Load Case 4 	7 8 9 10 11 12 17 18 19 20
	 Load Case 4	22 25 26 27 28 29 30 34 35 36 37 38
IV.	 WALL #2 TO #6 DESIGN A. DESIGN HEIGHT H=6' 1. Load Case 1 2. Load Case 2 3. Load Case 3 4. Load Case 4 5. Design of Wall Section and Spread Footings B. DESIGN HEIGHT H=8' 1. Load Case 1 2. Load Case 2 3. Load Case 3 	43 44 45 47 49 50 51 56 57 59

TABLE OF CONTENTS

Page No.

	4. Load Case 4	62
	5. Design of Wall Section and Spread Footings	63
	C. DESIGN HEIGHT H=10'	
	1. Load Case 1	69
	2. Load Case 2	71
	3. Load Case 3	73
	4. Load Case 4	74
	5. Design of Wall Section and Spread Footings	75
	D. DESIGN HEIGHT H=12'	
	1. Load Case 1	
	2. Load Case 2	
	3. Load Case 3	85
	4. Load Case 4	86
	5. Design of Wall Section and Spread Footings	
	E. DESIGN HEIGHT H=14'	
	1. Load Case 1	
	2. Load Case 2	
	3. Load Case 3	
	4. Load Case 4	
	5. Design of Wall Section and Spread Footings	99
IV.	RAMP WALL DESIGN	104
1	A. DESIGN HEIGHT $H=3^{\circ}-6^{\circ}$	
	1. Load Case 2	
	 Load Case 2 Load Case 4 	
	 Design of Wall Section and Spread Footings 	
	B. Design Height H=5'-6''	
	1. Load Case 2	
	 Load Case 2 Load Case 4 	
	 Design of Wall Section and Spread Footings 	
	C. Design Height H=7'-6''	114 110
	1. Load Case 2	
	 Load Case 2 Load Case 4 	
	 Boad Case 4	
	5. Design of wan been and spread roomings	121
V.	VETERANS PARK WALLS DESIGN	
	A. WALL NO. 1	
	1. Load Case 1	
	2. Load Case 2	
	3. Load Case 3	
	4. Load Case 4	130

TABLE OF CONTENTS

Page No.

	5. Design of Wall Section and Spread Footings	131
	B. WALL NOS. 2 & 3	137
	1. Load Case 1	137
	2. Load Case 2	
	3. Load Case 3	139
	4. Load Case 4	140
	5. Design of Wall Section and Spread Footings	141
	C. WALL NO. 1A & PLANTER WALL NO. 4	
	1. Load Case 1	147
	2. Load Case 2	148
	3. Load Case 3	149
	4. Load Case 4	150
	5. Design of Wall Section and Spread Footings	151
	D. TERRACE WALL	
VI.	XSECTION ANALYSES	
	A. WALL NO. 1, TYPE A PILE CROSS SECTION	
	B. WALL NO. 1, TYPE B AND TYPE E PILE CROSS SECTION	
	C. WALL NO. 1, TYPE C PILE CROSS SECTION	
VII.	LPILE ANALYSES	
	A. DEFLECTION CALCULATIONS	170
	B. PILE LOADS (CASE 2) @ STATION 2+52	
	C. PILE BENDING MOMENT CURVES	
	D. PILE HEAD DEFLECTION AT JOINTS CURVES	
	E. P-Y CURVES	
	D. LPILE OUTPUT FILES	

			Project	Napa River	Flood Cont	rol Project
IG	ENGINEERIN	G. INC.	Subject	Design Crit	eria Summa	ary
			Ву	David An	Date	Mar-05
				_		
	<u>D</u>	ESIGN C	RITE	<u>RIA SUMMA</u>	<u>ARY</u>	
Analyses	and design of flood v	all reinforced con	crete structur	es are based on "Final \$	Supplemental (General Design
-	dum" dated October					g
Materials	:					
	Concrete:	f'c = 4,000 psi				
		n = 8				
	Reinforcement:	Fy = 60,000 ps	i			
Loading:						
				strict, Corps of Engineer	'S"	
	"Soldier Pile and S		ad Conditions	s & Load Diagrams"		
	H-15:	AASHTO				
	D-4 Dozer:	V = 2.5 k/ft				
	Live Load Conside					
	Wall #	71 -		s Considered Due to Ac	cess	
			3: D-4 Dozer	-		
		Туре С	: D-4 Dozer	Only		
	Wall #	2:	H-15 OR D	0-4 Dozer		
	Wall #	3:	H-15 OR D	0-4 Dozer		
	Wall #	4:	D-4 Dozer			
	Wall #		D-4 Dozer			
	Wall #	-		s Considered Due to Ac		
	Ramp/Access Wal			s Considered Due to Ac		
	Veterans Park Wa	lls:	No Vehicle	s Considered Due to Ac	cess	
Backfill N	laterials Properties					
	Ba	ackfill Unit Weight		125 pcf		
		Φ		37 degree		
		C ·		0 pcf		
	SMF= Tan	$(\Phi_d) / \text{Tan}\Phi = 2/3$		0.67		
	1/-	Φ _d : = Tan ² (45° - Φ/2)		27 degree		
		= Tan (45° - Φ/2) : Tan ² (45° - Φ _d /2)		0.25 0.38		
		: Tan [°] (45° - Φ _d /2) : Tan ^² (45° + Φ/2)		0.38 4.02		
Water Pro	nertv					

MG	ENGINEERING, INC.

Project	Project Napa River Flood Control Project						
Subject	Design Criteria Sur	Design Criteria Summary					
Ву	David An Date	Mar-05	V				

			Ву	David An	Date	Mar-05	
	Soil Profile 1. Station 0+00		Corps of Engineers)				
Elevation	Depth	Thickness	Soil Type	Unit Wt	Shear Strength	Phi	
-8 -33	- 25'	25	Dense Sand & Gravel	Moist = 115 pct Sat = 120 pct		38	
-58	50'	25	Stiff, Slightly O.C. Clay	Moist = 128 pct Sat = 136 pct	c = 1200 psf		
-68	60'	10	Dense Sand & Gravel	Moist = 115 pct Sat = 120 pct		38	
-74	66'	6	Stiff, Slightly O.C. Clay	Moist = 128 pct Sat = 136 pct	c = 1200 psf		
	2. Station 2+00	to 4+75	1			1	
Elevation	Depth	Thickness	Soil Type	Unit Wt	Undrained Shear	Drained Shear R Strength	Draine Shear Streng
15 4	- 11'	11	Sand Clay	Moist = 115 pct Sat = 120 pct	Phi = 0	c = 250 psf Phi = 15	c = 0 p Phi =
-2	17'	6	Fat Clay, GWT 13'	Moist = 112 pct Sat = 120 pct	c = 500 psf Phi = 10	c = 500 psf Phi = 10	c = 0 p Phi =
-6	21'	4	Sand Clay	Moist = 115 pct Sat = 120 pct	c = 1200 psf Phi = 0	c = 250 psf Phi = 15	c = 0 Phi =
-26	41'	20	Clayey Sand & Gravel	Moist = 128 pct Sat = 136 pct	c = 0 psf Phi = 39	c = 0 psf Phi = 39	c = 0 Phi =
-38	53'	12	Fat Clay	See Above	See Above	See Above	See At
-50	65'	12	Clayey Sand & Gravel	See Above	See Above	See Above	See Ab
-56	71'	6	Lean Clay	Moist = 115 pct Sat = 120 pct	c = 1200 psf Phi = 0	c = 250 psf Phi = 15	c = 0 Phi =
	3. Station 4+75	to 9+30					
Elevation	Depth	Thickness	Soil Type	Unit Wt	Undrained Shear	Drained Shear R Strength	Drain Shear Streng
16 -4	- 20'	20	Sand Clay, GWT 14'	Moist = 121 pct Sat = 124 pct	c = 1400 psf Phi = 0	c = 220 psf Phi = 18	c = 0 Phi =
-34	50'	30	Clayey Sand & Gravel	Moist = 128 pct Sat = 136 pct	c = 0 psf Phi = 38	c = 0 psf Phi = 38	c = 0 Phi =
-46	62'	12	Sand Clay	Moist = 115 pct Sat = 120 pct	c = 1200 psf Phi = 0	c = 250 psf Phi = 15	c = 0 Phi =
-59	75'	13	Clayey Sand & Gravel	See Above	See Above	See Above	See Ab
-64	80'	5	Lean Clay	Moist = 115 pct Sat = 120 pct	c = 1200 psf Phi = 0	c = 500 psf Phi = 15	c = 0 Phi =
	4. Station 9+30	to U/S End of W	all				
Elevation	Depth	Thickness	Soil Type	Unit Wt	Undrained Shear	Drained Shear R Strength	Drain Shear Streng
17 -5	- 22'	22	Sand Clay, GWT 20'	Moist = 119 pct Sat = 123 pct	c = 800 psf Phi = 0	c = 100 psf Phi = 15	c = 0 Phi =
-13	8'	8	Clayey Sand & Gravel	Moist = 128 pct Sat = 136 pct	c = 0 psf Phi = 35	c = 0 psf Phi = 35	c = 0 p Phi =

				Project	Napa River Flo	od Control l	Project	
	IGE	i Engineering,	INC.	Subject Design Criteria Summary				
				Ву	David An	Date	Mar-05	
-32	19'	19	Fat Clay		Moist = 121 pct Sat = 125 pct	c = 600 psf Phi = 0	c = 500 psf Phi = 10	c = 0 psf Phi = 27
-49	17'	17	Lean Clay	Lean Clay		c = 1200 psf Phi = 0	c = 500 psf Phi = 10	c = 0 psf Phi = 28
-58	9'	9	Clayey Sand &	Clayey Sand & Gravel		c = 0 psf Phi = 38	c = 0 psf Phi = 38	c = 0 psf Phi = 38
-63	5'	5	Fat Clay		See Above	See Above	See Above	See Above

Design and Analysis Description

Wall #1 includes Types A, B, C, and D. For each type wall in Wall #1 (except Type D which is the extension existing walls), a critical section is selected with a station identified to perform the analyses and design. The results are then applied to that type of walls.

The design and analyses for Upper Walls #2 through #6 and Ramp Walls are performed based on different design height. Results are summarized in the table. For Vertans Park (VP) walls 1 to 3, a critical section is selected for analysis and design and results are then applied to whole length of that wall. For VP wall No. 4, a minimum reinforcement is provided due to small wall height.

Pile capacities are calculated using Xsection software. Pile deflections and structure-soil interaction were analyzed by LPile software. Flood scouring is ignored.

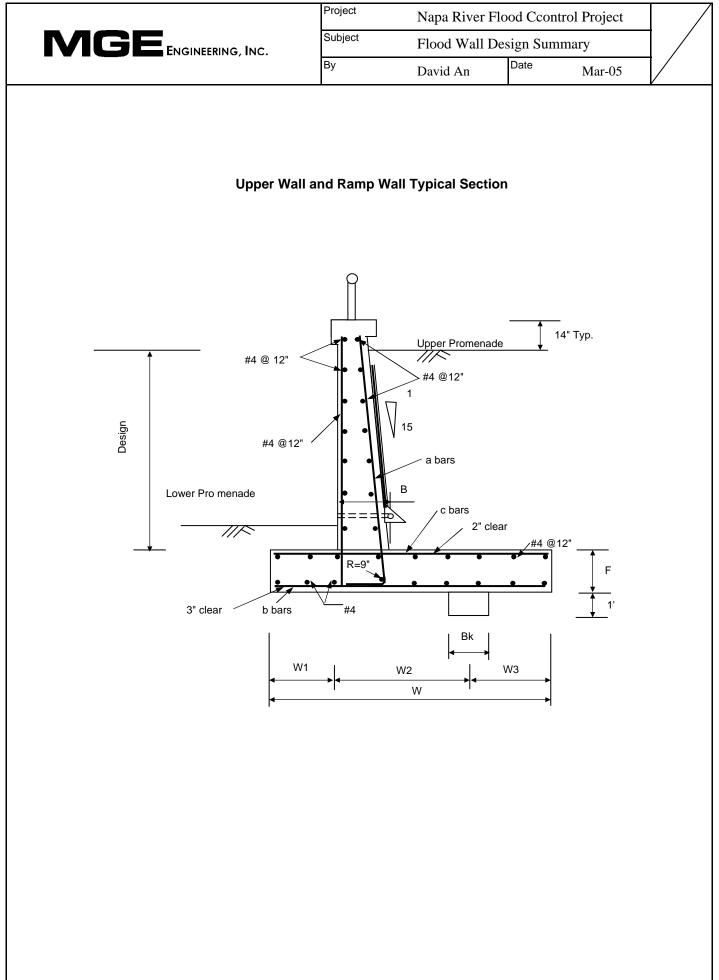
p-y curves were generated in Lpile program by following soil types:

		Lpile Input	t Data (from Lpile "u	user's manual"-ta	able 3.2 thru tabl	e 3.4
Soil Profiles	Lpile Soil Types	Eff. Unit Wt. pci	undrained cohesion, c psi	p-y modulus,k pci	soil strain e50	friction angle (degree)
1. Station 0+00 to 2+200						
Dense Sand & Gravel	Sand(Reese)	0.03		125		38
Stiff, Slightly O.C. Clay	Stiff Clay	0.04	8.33	500	0.005	
2. Station 2+00 to 4+75						
Sand Clay	Stiff Clay	0.03	9.72	500	0.005	
Fat Clay	Soft Clay	0.03	3.47		0.02	
Clayey Sand & Gravel	Sand(Reese)	0.04		60		39
Lean Clay	Stiff Clay	0.03	8.33	500	0.005	
3. Station 4+75 to 9+30						
Sand Clay	Stiff Clay	0.04	9.72	500	0.005	
Clayey Sand & Gravel	Sand(Reese)	0.04		60		38
Sand Clay	Stiff Clay	0.03	8.33	500	0.005	
Lean Clay	Stiff Clay	0.03	8.33	500	0.005	
4. Station 9+30 to End of W	/all					
Sand Clay	Soft Clay	0.04	5.56		0.02	
Clayey Sand & Gravel	Sand(Reese)	0.04		60		35
Fat Clay	Soft Clay	0.04	4.17		0.02	
Lean Clay	Stiff Clay	0.04	8.33	500	0.005	

For details of p-y curves, please see "Lpile analyses-Lpile output files" from the page 190

Project Napa River Flood Ccontrol Project							
Subject	Flood Wall Design Summary						
Ву	David An	Date	Mar-05				

Summary of Flood Wall (Wall #1)


W	all Station	Туре	F	Pile Station	No. of Piles	Pile Main Rebar	Spiral Required	Section Computed
Begin	0+00.00	А	Begin	0+04.00	32 x 3-24" CIDH	12#6	#4@6"	1+88.00
End	2+56.00	Α	End	2+52.00	32 X 3-24 CIDIT	12#0	#4@0	1+00.00
Begin	2+56.00	в	Begin	2+61.00	18 x 1-36" CIDH	18#11	#5@5"	2+61.00
End	4+67.79	В	End	4+59.00		10#11	#3@3	3+15.00
Begin	4+67.79	С	Begin	4+71.00	47 x 1-24" CIDH	14#10	#5@5"	4+83.00
End	10+26.92	C	End	10+23.00	47 X 1-24 CIDIT	14#10	#3@5	4+03.00
Begin	10+26.92	D			Existing Wall			
End	11+11.70	D						
Begin	11+16.92	С	Begin	11+25.00	44 x 1-24" CIDH	14#10	#5@5"	4+83.00
End	16+40.12	C	End	14+01.00	44 X 1-24 CIDH	14#10	#5@5	4+83.00

Upper Walls (#2 to #6) and Ramp Walls Dimensions and Reinforcing Steel

Max. Design H	Upper Walls (#2 to #6)					Ramp Walls		
(ft)	6.00	8.00	10.00	12.00	14.00	3.50	5.50	7.50
W (ft)	5.25	7.50	9.50	11.00	12.50	4.00	5.50	7.50
W1(ft)	2.00	2.75	3.50	4.75	5.00	1.50	2.25	3.25
W2 (ft)	2.00	3.00	4.00	3.75	4.50	1.50	2.25	3.25
W3 (ft)	1.25	1.75	2.00	2.50	3.00	1.00	1.00	1.00
B (ft)	1.30	1.43	1.57	1.70	1.83	1.00	1.00	1.00
Bk (ft)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F (ft)	1.50	1.50	1.50	1.50	1.50	1.25	1.25	1.25
a bars	#5@12"	#6@12"	#6@9"	#7@9"	#8@9"	#4@12"	#5@12"	#7@12"
b bars	#4@12"	#4@12"	#5@12"	#7@12"	#7@10"	#4@12"	#4@12"	#5@12"
c bars	#4@12"	#5@12"	#5@12"	#6@12"	#6@10"	#4@12"	#4@12"	#5@12"
Max toe pressure (ksf)	1.67	1.80	1.84	1.73	1.99	1.34	1.41	1.32

Pile Summary (From Lpile Runs Under Max. Loads)

Flood Wall	Dile True e		Force at Top of	Pile	Max Bending	Bending Cap.	D/C	Notes
(Wall#1)Type	Pile Type	V (kips)	M (k-ft)	P (kips)	Moment (k-ft)	(k-ft)	D/C	Notes
A	Ftg-Pilesb 3 rows 24"CIDH	42	0	88	138	310	0.44	
B (9ft spacing)	Single row 36" CIDH	87	631	50	942	2,045	0.46	
C (From 4+75 to 9+30)	Single row 24" CIDH	52	265	27	432	810	0.53	
C (From 9+30 to End)	Single row 24" CIDH	52	265	27	562	810	0.69	

	Project	Napa River Flo			
MGE ENGINEERING, INC.	Subject	Wall #1 Design			
	Ву	David An	Date	Feb-05	

WALL #1 DESIGN

	Project	Napa River Flo	od Con	trol Project
	Subject	Flood Wall De	sign (W	(all #1, Type A)
	Ву	David An	Date	Mar-05
	WALL #1,	ITPEA		
Backfill Properties				
Dackini riopentes	Backfill Thick	ness = (17.00') - (-7.00') =	:	24.00 ft
		Backfill Unit Weight =		125 pcf
		Φ=		37 degree
		C =		0 pcf
	SMF	= Tan(Φ_d) / Tan Φ = 2/3 =		0.67
		$\Phi_d =$		27 degree
		Ka = $Tan^2 (45^\circ - \Phi/2) =$		0.25
		Ko = Tan ² (45° - $\Phi_{d}/2$) =		0.38
		Kp = Tan ² (45° + Φ/2) =		4.02
Water Property				
		Water Unit Weight =		62.5 pcf
Pile and Wall Data				
		Station =	:	1+88
	Finish	Grade Elevation(behind)	=	17.00 ft
	Finis	n Grade Elevation(front) =	=	-4.00 ft
		Fop of Footing Elevation :	=	-7.00 ft
		Pile Spacing =		8.00 ft
		Pile Diameter =		2.00 ft
		100 Year Flood Level		15.27 ft
		Elevation (Mean higher)		3.76 ft
	Wate	Elevation (Mean lower)	=	-2.84 ft

_				Project	Napa River	i loou Collu	orroject	
N	1GE	ENGINEERING,		Subject	Flood Wall	-	ll #1, Type A)	/
				Ву	David An	Date	Mar-05	\backslash
	Load (Case 1 Sho	ort Term (Und	drained) In Ser	vice Conditio	on (Station	1+88)	
			-	-		•		
		k	2' V _{D-4} (fror	n back face of wall) D-4 Dozer (Constr		t)		
			V				Elev. +17.00'	
				Pem		▲ /	P _{D-4}	
	Water Elev1.0	00'		qem			125 37 Backfill	
				qesub			or Baokin	
	$\overline{I} \equiv$			N			Elev4.00'	
	1				<u> </u>	V	Elev7.00'	
qw2a	1				qw1a			
					\backslash			
	/							
	/				\setminus			
	Backfill Soil Pre	essure at Wall(S	oil pressure =γ K	(i hi)	N	ote: Passive so	oil resistance were ig	anored
		Thickness(ft)	Pressure(ksf)]				gnorea
	Name							
	qem	18.00	0.856		qem - Moist soil	l pressure at re	st wall	
					qem - Moist soil qesub - Subme			
	qem	18.00	0.856			rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta	18.00 6.00 6.00	0.856 0.999 0.375 nary	Momento (l. ft)	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name	18.00 6.00 6.00 ant Forces Sumi Force (kips)	0.856 0.999 0.375 nary Mom Arm(ft)	Moments(k-ft)	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem	18.00 6.00 6.00 Int Forces Sumi Force (kips) 61.6	0.856 0.999 0.375 mary Mom Arm(ft) 12.00	740	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name	18.00 6.00 6.00 ant Forces Sumi Force (kips)	0.856 0.999 0.375 nary Mom Arm(ft)		qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub	18.00 6.00 6.00 Forces Sumi Force (kips) 61.6 44.5	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92	740 130	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a	18.00 6.00 6.00 Forces Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00	740 130 18	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4	18.00 6.00 6.00 Force Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor	740 130 18 0 -18 869.8	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a	18.00 6.00 6.00 Forces Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00	740 130 18 0 -18	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a	18.00 6.00 6.00 Force Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor	740 130 18 0 -18 869.8	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall	18.00 6.00 6.00 Forces Summ Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1 Σ V	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor	740 130 18 0 -18 869.8	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a	18.00 6.00 6.00 Forces Summ Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1 Σ V	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor	740 130 18 0 -18 869.8	qesub - Subme	rged soil press		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall	18.00 6.00 6.00 Force Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1 Σ V	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1	740 130 18 0 -18 869.8 Σ Μ	qesub - Subme	rged soil pressi ssure		ft
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall D-4 Dozer Load b	18.00 6.00 6.00 Forces Sum Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1 Σ V	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1	740 130 18 0 -18 869.8 Σ Μ Moment	qesub - Subme	rged soil press ssure a = 2' / 24.0	ure at rest wall h = 24.00 0' = 0.08	ft ≤ 0.4
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall D-4 Dozer Load b 0.0	18.00 6.00 6.00 6.00 ant Forces Summary Force (kips) 61.6 44.5 9.0 0.0 -9.0 106.1 ∑ V ling Summary Z 0.00	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure a = 2' / 24.0 Vi	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0	≤ 0.4 kips/ft
	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPd-4Pw2aAt bot of wallD-4 Dozer Loadb0.00.1	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline \\ Force (kips)\\ \hline 61.6\\ \hline 44.5\\ 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \\ \Sigma \ V\\ \hline \\ \hline \\ \textbf{ing Summary}\\ \hline \\ Z\\ \hline \\ 0.00\\ \hline \\ 2.40\\ \hline \\ 4.80\\ \hline \\ 7.20\\ \hline \end{array}$	0.856 0.999 0.375 Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline \\ Force (kips)\\ \hline 61.6\\ \hline 44.5\\ \hline 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \\ \Sigma \ V\\ \hline \\ \textbf{ing Summary}\\ \hline \\ Z\\ \hline 0.00\\ \hline 2.40\\ \hline 4.80\\ \hline 7.20\\ \hline 9.60\\ \hline \end{array}$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline \\ Force (kips)\\ \hline 61.6\\ \hline 44.5\\ \hline 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \\ \Sigma \ V\\ \hline \\ \hline \\ \textbf{ing Summary}\\ \hline \\ Z\\ \hline \\ 0.00\\ \hline \\ 2.40\\ \hline \\ 4.80\\ \hline \\ 7.20\\ \hline \\ 9.60\\ \hline \\ 12.00\\ \hline \end{array}$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4 0.5 0.6	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline Force (kips)\\ \hline 61.6\\ \hline 44.5\\ \hline 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \Sigma \ V\\ \hline \\ \hline \textbf{ing Summary}\\ \hline Z\\ \hline 0.00\\ \hline 2.40\\ \hline 4.80\\ \hline 7.20\\ \hline 9.60\\ \hline 12.00\\ \hline 14.40\\ \hline \end{array}$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline Force (kips)\\ \hline 61.6\\ \hline 44.5\\ 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \Sigma \lor \\ \hline \\ \hline \\ \textbf{100}\\ \hline \\ \textbf{100}\\ \hline \\ \textbf{2.40}\\ \hline \\ \textbf{4.80}\\ \hline \\ \textbf{7.20}\\ \hline \\ 9.60\\ \hline \\ \textbf{12.00}\\ \hline \\ \textbf{14.40}\\ \hline \\ \textbf{16.80}\\ \hline \end{array}$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline \\ \hline \\ Force (kips)\\ \hline \\ 61.6\\ \hline \\ 44.5\\ \hline \\ 9.0\\ \hline \\ 0.0\\ \hline \\ -9.0\\ \hline \\ 106.1\\ \hline \\ \Sigma \lor \\ \hline \\ \hline \\ \textbf{massless}\\ \hline \\ \textbf{massless}\\ \hline \\ \hline \\ \textbf{massless}\\ \hline \hline \hline \hline \\ \textbf{massless}\\ \hline \hline \hline \hline \\ \textbf{massless}\\ \hline \hline \hline \hline \hline \\ \textbf{massless}\\ \hline \hline$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Pd-4 Pw2a At bot of wall 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	$\begin{array}{c} 18.00\\ \hline 6.00\\ \hline 6.00\\ \hline \\ \textbf{ant Forces Summ}\\ \hline Force (kips)\\ \hline 61.6\\ \hline 44.5\\ 9.0\\ \hline 0.0\\ \hline -9.0\\ \hline 106.1\\ \hline \Sigma \lor \\ \hline \\ \hline \\ \textbf{100}\\ \hline \\ \textbf{100}\\ \hline \\ \textbf{2.40}\\ \hline \\ \textbf{4.80}\\ \hline \\ \textbf{7.20}\\ \hline \\ 9.60\\ \hline \\ \textbf{12.00}\\ \hline \\ \textbf{14.40}\\ \hline \\ \textbf{16.80}\\ \hline \end{array}$	0.856 0.999 0.375 mary Mom Arm(ft) 12.00 2.92 2.00 2.00 Safety Factor 1.1 ΔP _{D-4} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	740 130 18 0 -18 869.8 Σ M Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	qesub - Submer qw - Water pres	rged soil press ssure $a = 2' / 24.0$ V_{1} $_{4} = (V_{D-4} / h) [(0.11)]$	ure at rest wall h = 24.00 0' = 0.08 0-4 = 0 203b)/(0.16+b^2)^2	≤ 0.4 kips/ft]

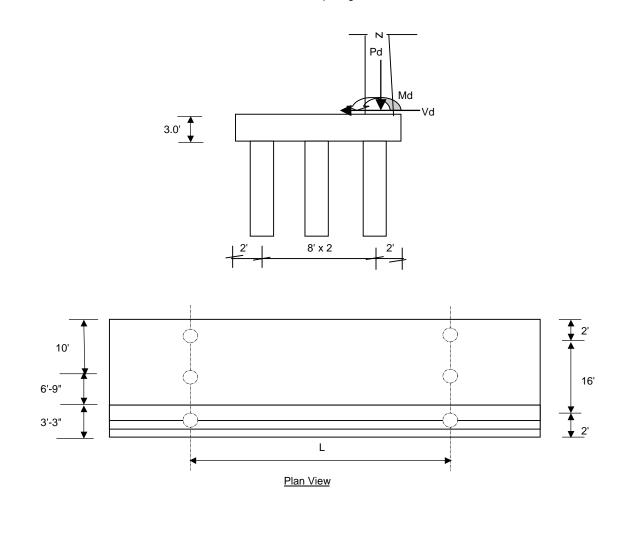
Bit David An Date Mar-OS Backfill Action 14, 11, 19 (PA) Vector (from back face of wall)					Project	Napa River Flo	ood Control	Project	/
By David An Date Mar.05 Load Case 2 - Long Term (Drained) In Service Condition (Station 1+88) V _{LETT} (from back face of wall) V _{REFT} V _{LETT} (from back face of wall) V _{REFT} USE V= 0 kips USE V= 0 kips USE V= 0 kips Vater Elev4.00° Elev7.00° Water Thrickness(tr) Pressure(sh) Gent - Moist soil pressure at rest wall quesub - Submerged soi	N	IGE	ENGINEERING	, INC.	Subject	Flood Wall De	sign (Wall a	#1, Type A)	
VLEET (from back face of wall) VSBURT H-15 truck load Image: Construction of the second o					Ву	David An	Date	Mar-05	
H-15 truck load 2ft 6ft H-15 truck Elev. +17.0° Water Elev4.00° gesub Pem 25 Pes 36 kfill Water Elev4.00° gesub gevia Elev1.00° Elev7.00° Backfill Soil Pressure at Wall(Soil pressure =7 Ki h) Note: Passive soil resistance were ignore Rem - Moist soil pressure at rest wall gesub Submerged soil pressure at rest wall gern 21.00 0.999 gewib Submerged soil pressure at rest wall gewib 3.000 1.070 839 qevib Submerged soil pressure at rest wall Pen 83.9 10.00 839 qevib - Name Pend 83.9 10.00 239 - 2.3 1.00 - 2.4 Name Force Arm to bot. Moments - 2.3 - 2.0 - 2.0 Pend 83.9 10.00 2.8 - 2.3 - 2.0 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.4 - 2.3 - 2.0 - 2.3 - 2.0 - 2.0 - 2.0 - 2.0 <th></th> <th>Load</th> <th>Case 2 Lo</th> <th>ong Term (Dr</th> <th>ained) In Serv</th> <th>vice Condition (</th> <th>Station 1+8</th> <th>8)</th> <th></th>		Load	Case 2 Lo	ong Term (Dr	ained) In Serv	vice Condition (Station 1+8	8)	
H-15 truck load 2ft 6ft H-15 truck Elev. +17.0° Water Elev4.00° gesub Pem 25 Pes 36 kfill Water Elev4.00° gesub gevia Elev1.00° Elev7.00° Backfill Soil Pressure at Wall(Soil pressure =7 Ki h) Note: Passive soil resistance were ignore Rem - Moist soil pressure at rest wall gesub Submerged soil pressure at rest wall gern 21.00 0.999 gewib Submerged soil pressure at rest wall gewib 3.000 1.070 839 qevib Submerged soil pressure at rest wall Pen 83.9 10.00 839 qevib - Name Pend 83.9 10.00 239 - 2.3 1.00 - 2.4 Name Force Arm to bot. Moments - 2.3 - 2.0 - 2.0 Pend 83.9 10.00 2.8 - 2.3 - 2.0 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.3 - 2.0 - 2.4 - 2.3 - 2.0 - 2.3 - 2.0 - 2.0 - 2.0 - 2.0 <td></td> <td></td> <td>VIEET (from</td> <td>back face of wall</td> <td>) Vricht</td> <td></td> <td></td> <td></td> <td></td>			VIEET (from	back face of wall) Vricht				
$ \begin{array}{c} \textbf{Fight result} \\ Fi$		H-15 truck load			1			0 kips	
water Elev4.00' gem gem gesub gesub gesub gesub Elev4.00' Elev4.00' gwaa gem gesub gem gesub gem gesub Elev7.00' Backfill Soil Pressure at Wall(Soil pressure = γ Ki hi) Note: Passive soil resistance were ignore Name Thickness(ft) Pressure(ksf) gem - Moist soil pressure at rest wall gesub - Submerged soil pressure at rest wall qwt1a=qw2a 3.00 0.188 qem - Water pressure Thickness(ft) Water pressure Backfill Resultant Forces Summary Marme Force Arm to bot. Moments Pent 1 0.00 0 0 Phv15 0.0 0 Phv1a 2.3 1.000 2 Phv12 2.3 1.000 2 2 1.3 Σ M Struck Loading Summary (Left) (for V _{ktert}) Z Δ Pert (ktert) Moment 1.3 Σ M 1.3 Σ M 1.3 2.40 0.000 0.000						55		Elev. +17.00'	
Water Elev4.00' gesub Backfill qwaa qwaa Elev4.00' Elev4.00' qwaa qwaa qwaa Elev7.00' Elev7.00' Backfill Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignore Mame Thickness(th) Pressure(ksf) qem - Moist soil pressure at rest wall qesub - Submerged soil pressure at rest wall qwaa=qw2a 3.00 0.188 qwaa qwaa qwaa Backfill Resultant Forces Summary Name Force Arm to bot. Moments Name 83.9 10.00 83.9 Pesub 24.8 1.48 37 Pw1a 2.3 1.00 -2 At bot of wall 106.7 Safety Factor 875.8 2 V 1.3 2 M Moment 10.1 2.40 0.000 0.000			\square	,	Pem			-	
Water Elev4.00' Water Elev4.00' Elev4.00' Water Elev4.00' Elev7.00' Water Trickness(ft) Pressure e y Ki hi) Note: Passive soil resistance were ignore Marme Thickness(ft) Pressure(ksf) qem 21.00 0.999 qems - Moist soil pressure at rest wall qesub 3.00 1.070 qw1a=qw2a 3.00 0.188 Backfill Resultant Forces Summary Marme Force Arm to bot. Moments Pen 83.9 10.00 839 Pesub 24.8 1.48 37 Pw1a 2.3 1.00 2 Ph-15 0.0 0 0 Pw2a 2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 Σ W 1.3 Σ M H15 Truck Loading Summary (Right) Moment Moment 0.1 2.40 0.000							3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Water Flev -4.0	יחי					Backfill	
Elev7.0° qw1a Elev7.0° gw1a Elev7.0° Backfill Soil Pressure at Wall(Soil pressure = γ Ki hi) Note: Passive soil resistance were ignore Mame Thickness(ft) Pressure(ksf) qern 21.00 0.999 qesub 3.00 1.070 qw1a=qw2a 3.00 0.188 Backfill Resultant Forces Summary Mame Force Arm to bot. Moments Pem 83.9 10.00 839 Pew1a 2.3 1.00 2 Ph-15 0.0 0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 Σ 1.3 2 M b (for V _{LEFT}) Moment 0.1 2.40 0.000 0.000				X	qesub			Elev4.00'	
qw2aqw1aqw1aBackfill Soil Pressure at Wall(Soil pressure = γ Ki hi)Note: Passive soil resistance were ignoreNameThickness(ft)Pressure(ksf)qem - Moist soil pressure at rest wallqesub - Submerged soil pressure at rest wallqesub3.001.070qesub - Submerged soil pressure at rest wallqesub - Submerged soil pressure at rest wallqw1a=qw2a3.000.188MomentsPesub24.81.48Pern83.910.00839Pesub24.81.4837Pen83.910.002Ph-150.00Pw1a2.31.002.31.00-2At bot of wall108.7Safety FactorS Truck Loading Summary (Left)Moment $(for V_{LEFT})$ Z $\Delta P_{PH(REFT)}$ Moment0.12.400.000									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Backfill Soil Pre	essure at Wall(S	Soil pressure =γ k	(i hi)	Note	: Passive soil r	esistance were ig	nored.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Name	Thickness(ft)	Pressure(ksf)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		qem	21.00	0.999	-	qem - Moist soil pr	essure at rest v	wall	
Backfill Resultant Forces Summary Name Force Arm to bot. Moments Pem 83.9 10.00 839 Pesub 24.8 1.48 37 Pw1a 2.3 1.00 2 Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 ΣV 1.3 ΣM Tuck Loading Summary (Right) Fruck Loading Summary (Left) (for V_{LEFT}) Z $\Delta P_{PH (LEFT)}$ Moment 0.1 2.40 0.000 0.000 0.000	-			1	-			at rest wall	
Name Force Arm to bot. Moments Pem 83.9 10.00 839 Pesub 24.8 1.48 37 Pw1a 2.3 1.00 2 Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 Σ V 1.3 Σ Μ H-15 Truck Loading Summary (Right) for V _{LEFT}) Z ΔP _{PH (LEFT)} Moment 0.1 2.40 0.000 0.000 0.000		qw1a=qw2a	3.00	0.188	J	qw - Water pressu	e		
Pem 83.9 10.00 839 Pesub 24.8 1.48 37 Pw1a 2.3 1.00 2 Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 Σ V 1.3 Σ M 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT)} Moment 0.1 2.40 0.000 0.000 0.000	Г			1	Managata	7			
Pesub 24.8 1.48 37 Pw1a 2.3 1.00 2 Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 ΣV 1.3 Σ Μ 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT)} Moment 0.1 2.40 0.000 0.000 0.000	ŀ					-			
Pw1a 2.3 1.00 2 Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 ΣV 1.3 Σ Μ H-15 Truck Loading Summary (Right) 5 Truck Loading Summary (Left) (for V _{LEFT}) Z ΔP _{PH (LEFT}) Moment 0.1 2.40 0.000 0.000 0.000	ŀ					-			
Ph-15 0.0 0 Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 D D 1.3 Σ M 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT)} Moment 0.1 2.40 0.000 0.000 0.1	-								
Pw2a -2.3 1.00 -2 At bot of wall 108.7 Safety Factor 875.8 Σ V 1.3 Σ M 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT)} Moment 0.1 2.40 0.000 0.000 0.000 0.1 2.40 0.000 0.000	ŀ			1.00		-			
At bot of wall 108.7 Safety Factor 875.8 Σ V 1.3 Σ M 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT}) Moment 0.1 2.40 0.000 0.000 0.1 2.40 0.000 0.000	F			1.00		-			
Σ V 1.3 Σ M 5 Truck Loading Summary (Left) H-15 Truck Loading Summary (Right) (for V _{LEFT}) Z ΔP _{PH (LEFT}) 0.1 2.40 0.000 0.000	F			ń	<u>.</u>				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŀ					-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				<u>.</u>	4				
0.1 2.40 0.000 0.000 0.1 2.40 0.000 0				Moment	1				Momen
					1				0.000
				1	1		1		0.000
					1				0.000
					1				0.000
					1				0.000
					1			-	0.000
					1				0.000
					1				0.000
				1	1				0.000
	0.9				1				0.000
	0.9 1.0	24.00			-				

Demand at Top of Pile: Vd = 141 kips Md = 1,139 k-ft

				Project	Napa River l	Flood Cont	rol Project
	GE	ENGINEERING	INC.	Subject	Flood Wall I	Design (Wa	all #1, Type A)
				Ву	David An	Date	Mar-05
	Load Case	3 Long Te	erm (Drained)	In Service	Condition With	Flood (Sta	ation 1+88)
v	Vater Elev. 15.2	27'		Pem			Elev. +17.00'
	$\frac{\nabla}{I} \equiv$	\	\backslash			-	
	/			qem		Soil Laye	r 1 (Backfill) 125
	/		λ	qesub			37 Elev4.00'
				N_			_ 37 Elev4.00
2a		\square			qw1a		
В	ackfill Soil Pre	essure at Wall(S Thickness(ft)	Soil pressure =γ K Pressure(ksf)	i hi)	No	ote: Passive s	oil resistance were i
	qem	21.00	0.999		qem - Moist soil	pressure at re	est wall
	qesub	3.00	1.070		qesub - Submer	ged soil press	sure at rest wall
	qw1a	3.00	0.188		qw - Water pres		
	qw2a	22.27	1.392				
в	ackfill Resulta	nt Forces Sum	marv				
Ē	Name	Force (kips)	Mom Arm(ft)	Moments(k-f	:)		
	Pem	83.9	10.00	839	<u>.</u>		
	Pesub	24.8	1.48	37			
	Pw1a	2.3	1.00	2			
Γ	Pw2a	-123.9	7.42	-920			
	At bot of wall	-13.0	Safety Factor	-41.8			
		ΣV	1.1	ΣM			

				Project	Napa River	Flood	Contro	ol Projec	ct	
N	1GE		INC.	Subject	Flood Wall	Desig	n (Wall	l #1, Tyj	pe A)	7 /
				Ву	David An	Da	ite	Mar-	05	
	Load Case 4 - Water Elev1.0		(Drained) In	Service Cond Pem qem qesub	dition With Ea	nthqu	1	qeq-p	+ 17.00' er 1 (Bad	
w2a					qw1a	<u>i</u>	<u>/</u>	Elev.		
		1	Soil pressure =γ K	(i hi)	N	ote: Pa	ssive soi	l resistanc	e were	ignored
	Name	Thickness(ft)	Pressure(ksf)							
	qem	18.00	0.856		qem - Moist soil					
	qesub	3.00	0.927	1	qesub - Subme	rged so	il pressu	re at rest v	wall	
	qw1a	3.00	0.188							
				4	qw - Water pres	ssure				
	qw2a	3.00	0.188							
					qw - Water pres qeq - Seismic c		ents			
	qw2a	3.00 24.00	0.188		qeq - Seismic c		ents 0.15	g		
	qw2a qeq $\alpha = tan^{-1}[(C_1 + (C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + (C_1 + C_1 + C_1$	$\frac{3.00}{24.00}$	0.188)	qeq - Seismic c	compone		g		
	qw2a qeq $\alpha = tan^{-1}[(C_1 + (C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + (C_1 + C_1 + C_1$	$\frac{3.00}{24.00}$	0.188 0.344)	qeq - Seismic c	compone K _h =	0.15	g degre	e	
	qw2a qeq $\alpha = tan^{-1}[(C_1 + (C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + \sqrt{(C_2 + \sqrt{(C_2 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + (C_1 + C_1 + C_1$	3.00 24.00 : ₁ ² +4C ₂))/2] 56 of EM 1110-2-	0.188 0.344		qeq - Seismic c	compone K _h = β =	0.15 0		e	
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))})})})})})}}}}}}}}}}}}}}}}}}}}}}}}$	3.00 24.00 : ₁ ² +4C ₂))/2] 56 of EM 1110-2-: / (1+K _h tanΦ)	0.188 0.344 2502, Page 3-67)		qeq - Seismic c ł	compone $K_h = \beta = \Phi = 0$	0.15 0 30		÷e	
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))})})})})})}}}}}}}}}}}}}}}}}}}}}}}}$	3.00 24.00 : ₁ ² +4C ₂))/2] 56 of EM 1110-2-: / (1+K _h tanΦ)	0.188 0.344		qeq - Seismic c ł c c	$k_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$	0.15 0 30 0.787			
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + (C_1 +))})}))})})})}}}}}}}}}}}}}}}}} }}}}}}}}$	3.00 24.00 3:1 ² +4C ₂))/2] 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2-3	0.188 0.344 2502, Page 3-67))	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 +))})})}) .)) } } } } } } } } } } } }$	3.00 24.00 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- hΦ tarβ)-(tanβ-K _h	0.188 0.344 2502, Page 3-67) 2502, Page 3-67)) nΦ)]	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))})})})}))) }) } } } } } } } } }$	3.00 24.00 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- hΦ tarβ)-(tanβ-K _h 58 of EM 1110-2-	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _n tar 2502, Page 3-67)) nΦ)])	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	$\frac{qw2a}{qeq}$ $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))})})})}))) }) } } } } } } } } }$	3.00 24.00 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- hΦ tarβ)-(tanβ-K _h 58 of EM 1110-2-	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar) nΦ)])	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 +))})}}) .) .) . } . }) } } } } } } $	3.00 24.00 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- 0Φ tarβ)-(tanβ-K _h 58 of EM 1110-2- 58 of EM 1110-2- 58 of EM 1110-2-	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _n tar 2502, Page 3-67)) nΦ)])	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 +))})}}}))) }) }) } } } } } } } }$	3.00 24.00 56 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- 0Φ tarβ)-(tanβ-K _h 58 of EM 1110-2- 58 of EM 1110-2- 58 of EM 1110-2-	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68)) nΦ)])	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 +))})}}}))) }) }) } } } } } } } }$	3.00 24.00 24.00 56 of EM 1110-2-: / (1+K _h tanΦ) 57 of EM 1110-2-: hΦ tarβ)-(tanβ-K _h 58 of EM 1110-2-: onents qeq =γ K _h k	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68)) nΦ)]) Moments	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 +))}}}) .) .) . } . }) . } } } } } }$	3.00 24.00 ${}_1^2+4C_2))/2]$ 56 of EM 1110-2-: / (1+K _h tanΦ) 57 of EM 1110-2-: hΦ tarβ)-(tanβ-K _h) 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 50 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: ant Forces Summer Force 61.6	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary) nΦ)])	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + })}) } }) }) }) } }) } } } } } $	3.00 24.00 ${}_{1}^{2}+4C_{2}))/2]$ 56 of EM 1110-2-: / (1+K _h tanΦ) 57 of EM 1110-2-: hΦ tarβ)-(tanβ-K _h) 58 of EM 1110-2-: bonents qeq = γ K _h H 52 of EM 1110-2-: ant Forces Summ Force 61.6 21.4	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _n tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 9.00 1.48) nΦ)]) Moments 555 32	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2 + \sqrt{(C_1 + 2 + \sqrt{(C_1 + 2 + \sqrt{(C_1 + 2 + \sqrt{(C_1 + 2 + \sqrt{(C_1 + 2 + 2 + 2 + 2})}}})}}})}}})}})})})})})Dynamic Compone(Equation 3-6)Backfill ResultaNamePem$	3.00 24.00 2 +4C ₂))/2] 56 of EM 1110-2-: / (1+K _h tanΦ) 57 of EM 1110-2-: 4 Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 5	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _n tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 9.00) (Moments) 555 32 2	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + C_1 + C_1 + (C_1 + C_1 + $	3.00 24.00 24.00 51^2 +4C ₂))/2] 56 of EM 1110-2-3 7 of EM 1110-2-3 40^{-1} tarβ)-(tanβ-K _h) 57 of EM 1110-2-3 40^{-1} tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3 ant Forces Summ Force 61.6 21.4 2.3 33.0	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 9.00 1.48 1.00 16.00) Moments 555 32 2 529	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + \sqrt{(C_1 + (C_1 + C_1 + (C_1 + C_1 + C_$	3.00 24.00 2 +4C ₂))/2] 56 of EM 1110-2-: / (1+K _h tanΦ) 57 of EM 1110-2-: 4 Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 59 of EM 1110-2-: 50 of EM 1110-2-: 51 of EM 1110-2-: 52 of EM 1110-2-: 53 of EM 1110-2-: 54 of EM 1110-2-: 55 of EM 1110-2-: 56 of EM 1110-2-: 57 of EM 1110-2-: 58 of EM 1110-2-: 5	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 9.00 1.48 1.00 16.00 1.00) (Moments) 555 32 2	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		
	qw2aqeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 +)} }) }) }) }) }) }) } } } } } $	3.00 24.00 24.00 51^2 +4C ₂))/2] 56 of EM 1110-2-3 7 of EM 1110-2-3 40^{-1} tarβ)-(tanβ-K _h) 57 of EM 1110-2-3 40^{-1} tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3 ant Forces Summ Force 61.6 21.4 2.3 33.0	0.188 0.344 2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tar 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 9.00 1.48 1.00 16.00) Moments 555 32 2 529	qeq - Seismic c ł c c	$K_{h} = \beta = 0$ $\Phi = 0$ $C_{1} = 0$ $C_{2} = 0$	0.15 0 30 0.787 0.681	degre		

Project	Napa River Flood Control Project					
Subject	Flood Wall Des	sign (Wall #	1, Type A)			
Ву	David An	Date	Mar-05			


Design Wall Section and Pile Footings (Station 1+88)

1. Loads

	Load Case	1	2	3	4
Forces w/o	Shear (k)	106.1	108.7	-13.0	0.3
Safety Factor	Moments(kft)	869.8	875.8	-41.8	9.8
	Safety Factor	1.1	1.3	1.1	125
Forces w/	Shear (k)	116.8	141.3	-14.3	37.0
Safety Factor	Moments(kft)	956.8	1138.6	-46.0	1226.9

Demand at top of Footing:

	Vd=	141 kips
	Md=	1227 kft
	Pd = [Lx(Bt + Bb)/2xh)x0.15 =	52 kips
Where		
	Wall thickness @ Top Bt =	1.00 ft
	Wall thickness @ Bottom (1:15 batter) Bb =	2.60 ft
	Front of Wall to Center of Footing (6'-9") =	6.75 ft
	Wall Height h =	24.00 ft
	Pile Spacing L =	8.00 ft

		Project	Napa River	Flood Contr	ol Projec	t	/
	NC.	Subject	Flood Wall	Design (Wal	ll #1, Ty _]	pe A)	
		Ву	David An	Date	Mar-	05	
	-	-	dth of 1') ut horizontal axis at l	pottom of wall)			
Mu ≤ ΦMn Mu = Hf x 1.7 x Mα	d / L = (1.30) ('	1.7) (153 k-ft/ft) =	-			339	k-ft/ft
н	lf =	Hydraulic facto 4P3-2, Equatio	r			1.30	
Md / L = (1227 k-ft	t) / (8.00 ft)					153	k-ft/ft
					Φ =	0.90	
			d = 2.60 x	(12 - 2.5" - 1.13	"/2 = b =	28.1 12	
				1	с = f'с =		ksi
					fy =	60	ksi
Reinforcement R Mu ≤ ΦMn = Φ As	-	where a = As x f	y / (0.85 x f'c x b)				
Therefore,							
		s x fy / (2 x 0.85 :					
	-	⊅ As^2 x fy^2 / (2 Ф fy^2 / (2 x 0.85					
= ([Φ fy^2 / (2 x 0.85							
			.90)(60 ksi)[(28.1") A	s + (339 k-ft/ft)	(12 in/ft) = (C	
39.71 As^2 -1519.					A =	39.71	
					B =	1519.43	
					C =	4067.08	
Solve for As,	4			,	_	2.90	in ²
Required reinford Try 2#8 bundle ba		$s As = 0.79 in^2 x$	2 x 2 =	F	\s =	2.90	
			tend to the top of wa	II.		5.10	
a =Asfy / (0.85f'c*t		,				4.65	in
ΦMn = Φ Asfy(d -	a/2)					367	kft/ft
Use 2#8 bundle b	oars @6" Spac	cing	D/C = Mu	/ ΦMn = 339 / 3	67 =	0.92	ок
Check Shear							
	′u = Hf x 1.7 x νVn = Φ(Vc+Vs						kips/ft
	/here	<i>>)</i>				60.2	kips
	/c = 2 x √f'c x b	o x d				42.7	kips
V	′s = As fy d / s					28.1	
u	se #4 @12" as	s shear reinforce	ment @ bottom of w	all stem			
V	Vhere $\Phi =$					0.85	
				D/C = Vu / c	⊅Vn	0.65	ок
Pile reinforcemer	nt developme	nt longth Id					
ld = max{ ACI.R12	-	-				47.4	in
ACI R12.2.2 ld	d = [fy x αβλ/(2	20√f'c)]db =				47.4	in
		f'c x αβγλ/[(c+Ktr)/db]} =			28.5	
	*****	nt loosting foot					
	= reinforceme	ent location factor	I			1.0 1.0	
q						1.0	

Where Flood Wall Design (Wall #1, Type A) y David An Pate A = lightweight aggregate concrete factor 1.0 A = lightweight aggregate concrete factor 1.0 C = cover 3.00 in (dear cover c > de) 0.552 KH = A typ(/ (1500m) = 0.592 where Mr = 0.75 in P2 W = Y 0.00 kgi s = relat spacing 6.3 in (clear cover c > de) (KH = A typ(/ (1500m) =) 0.592 where Mr = 0.75 in P2 where Mr = 0.00 kgi s = relat spacing 6.3 in 1.00 in (dear cover c > de) (KH = A typ(/ (1500m) A ims) + Vu'D/2 322 krlt Ware Md = Da x - 2 (100 k A ms) + Vu'D/2 322 krlt Ware Md = Da x - 2 (100 k A ms) + Vu'D/2 322 krlt Ware Md = Pd x - 2 (200 k A ms) + Vu'D/2 322 krlt Ware Md = Maximum of All Load Cases without Embedment Safety Factor 676 kr ft V = (Sam as M) 109 kips 2.5 kr ft Varia (sam as M) 109 kips Pd = Mooting = X (20/2 475 260) / 2 2 kr ft			Project	Napa River I	Flood Contro	ol Project	
$\frac{1}{10^{-1}} = \frac{1}{10^{-1}} \frac{1}{10^{-1}$		INC.		Flood Wall I	-	#1, Type A)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ву	David An	Date	Mar-05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		v – reinforcem	ent size factor			1.0	
$\begin{array}{ccccccc} & 3.00 \text{ in} \\ (clear cover c > db) \\ (clear cover c > db) \\ Kr = Ar x tyl / (1000 n) = & 0.592 \\ where & Ar = & 0.79 \text{ inv}2 \\ yh = hy & 0.00 \text{ kSi} \\ s = rebar spacing & 5.3 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ (clear s > 2.db) & n = number of bars & 10.0 \text{ in} \\ Ndmax = & Vd & 0.2 \text{ is} (clear coll s = 2.db) & 10.0 \text{ in} \\ Ndmax = & Vd & 0.2 \text{ is} (Name number of Vacint = Ndmax = Nd) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Name number of Vacint = 2.db) & 10.0 \text{ is} (Na$				factor			
			aggregate concrete	lactor			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			> db)			0.00	,
$ \begin{array}{cccc} & \text{where} & \text{At} r = & 0.79 \ \text{inv} 2 \\ & \text{fy} t = fy & 600 \ \text{ksi} \text{is} \\ & \text{s} = \text{rebor spacing} & 5.3 \ \text{in} \\ & (\text{clear s} > 200) & n = \text{number of bars} & 10.0 \\ & \text{db} = \text{nominal diameter of bar} & 10.0 \\ & \text{db} = nomina$,			0.592	2
s = rebar spacing (dear s > 20b) (
s = rebar spacing (clear s > 2db) (clear s >			fyt = fy			60.0) ksi
$\begin{array}{c} \begin{array}{c} n = number of bars \\ de = normial diameter of bar \\ (c+Ktr)/db = 1 3.592 \\ use \\ (c+Ktr)/db = 2.5 \end{array}$						5.3	3 in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(clear s > 2db)				
(e+Ktr)/db = 3.592 use $(e+Ktr)/db = 2.5$ 3. Footing & Piles Loads at Bottom of Footing Mdmax= Md - Pd x < 2(Woll x Arms) + Vd*D/2 392 k-ft Vdmax = Vd Vdmax = Vd Pdmax= Pd + Wlooting + Wsoll 191 kips Pdmax= Pd + Wlooting + Wsoll 191 kips Vhere Md = (Maximum of All Load Cases without Embedment Safety Factor 876 k-ft Vd = (Same as Md) Pd = 61.9 kips Vsoli-1 (resisting side, RSP, Rec.) = 3' x (20/2+6.75) x L x 0.12 48 kips Moment Arm for Wsoli-1 = 20/2 - 2072-6.75 / 2 2072 49.7 ft Wsoli-3 (driving, Tr.) = (2.60'-1.00') x (24.00') x L x 0.12 15 kips Moment Arm for Wsoli-3 = (2.60-1.00') x 2 / 3 - 1.00' - 6.75' -8.8 ft Pile Force Ig=Ls = 89'2'2 = (3 Rows & Bt x 2) 128 ftm2 Pile reaction Tension Rt=Pdmax/2-Mdmax'di / Ipiles = 39.2 kips Laterial Force Vpile = (Vd-Rsp)/2 (2 pile take lateral force) 41.9 kips Where Laterial resistance of ftg Q = Top of ftg Q = = 6.9 x' x M1 0.69 kirt Q = 7 = 120-62.5 57.50 pcf h = 3.00 ft Q = 7 po ftg Q = 2 = 6.00 ft Q = 4 = 6.00 ft Q = 2 = 6.00 ft Q = 2 = 6.00 ft Q = 4 = 6.00 ft Q = 6 = 6.00 ft Q = 6 = 6.00 ft Q =			n = number of bar	s		10.0)
use (c+Ktr)/db =2.53. Footing & PliesLaads at Bottom of Footing Mdmax Md - Pd xc - Z(Wsoil x Arms) + Vd*D/2392 k-ft 109 kpsVdmax =Vd109 kpsPdmax =Pd +Wfooting + Wsoil191 kipsWhere Md = (Maximum of All Load Cases without Embedment Safety Factor876 k-ft 976 k-ftVd = (Same as Md)109 kipsPd =619 kipsPd =619 kipsc = From Center of Wall to Center of Footing8.05 ft 9 = 0 = 0 peth of FootingD = Depth of Footing3.00 ftWhoeting = 16 x D x L x 0.1557.6 kips Moment Arm for Wsoil-1 = 20/2 - (20/2-6.75) x L x 0.12Wooting = 16 x D x L x 0.1557.6 kips Moment Arm for Wsoil-1 = 20/2 - (20/2-6.75)/2Wootin 2 (driving, Rec.) = (20/2-6.75-2.607)/2 - 20/29.7 ft Wsoil-3 (driving, Tri.) = (2.60-1.00) x (24.00) x L / 2 x 0.12Wiseli-3 (driving, Tri.) = (2.60-1.00) x (24.00) x L / 2 x 0.1216 kips Moment Arm for Wsoil-3 = (-2.60-1.00) * 2/3 - 1.00' - 6.75'Pile Force Insta = 80*22 = (Compression Rc-Pdmax/2-Mdmax'di / lpiles = Compression Rc-Pdmax/2-Mdmax'di / lpiles = 8.8 k tipsPile reaction128 lth2Laterial Force Insta = 80*22 = (Compression Rc-Pdmax/2-Mdmax'di / lpiles = 3.00 ft @ Top of ftg @ qu = Kp x/ x N111.39 ksft Where (qu = 120-62.5 (pu = 120-62.5 (db = nominal dian	neter of bar		1.00) in
3. Footing & Piles Loads at Bottom of Footing Mdmax= Md - Pd x c - Σ (Wsoil x Arms) + Vd*D/2 392 k-ft Vdmax = Vd Pdmax= Vd Pdmax= Pd + Wooting + Wsoil 191 kips Pdmax= Pd + Wooting + Wsoil 191 kips Casme as Md) 191 kips Pd = 6 from Center of All Load Cases without Embedment Safety Factor 876 k-ft Vd = (Same as Md) 109 kips Pd = 6 from Center of Wall to Center of Footing 8.06 ft D = Depth of Footing 3.00 ft Wooting = 16 x D x L x 0.15 57.6 kips Wooli-1 (resisting side, RSP, Rec.) = 3' x (20'/2+6.75') x L x 0.12 48 kips Moment Arm for Wsoil-3 = 20'/2-675'/2.00' x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20'/2-6.75'/2.00') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (2.60-1.00') x (2/2 0.0) x L / 2 x 0.12 15 kips Moment Arm for Wsoil-3 = (2.60-1.00') x (2/2 0.0) x L / 2 x 0.12 12 kips Moment Arm for Wsoil-3 = (2.60-1.00') x (2/2 0.10') x (2/2 0.10') x 0 + 6.75' - 8.8 kt Pile Force Iscus = 8'2'2' = (3 Rows 8tt x 2) 128 ft/2 Pile reaction Re-Pdmax/2-Mdmax'di / Ipiles = 39.2 kips Compression Re-Pdmax/2-Mdmax'di / Ipiles = 39.2 kips Moment Arm for fbg Qu = Kp Xr' x h1 0.66 ksf Where $r' = 120-62.5$ 57.50 pd h1 = 3.00 ft @ Top of ftg Qu = Kp Xr' x h1 0.69 ksf Where $r' = 120-62.5$ 57.50 pd h2 = 6.00 ft Rup = fQu+4pu)/2 x 2.5 x L 2.98 kips Allow/liable Pile Loading (without load test)			(c+Ktr)/db =			3.592	2
$ \begin{array}{c c} \mbox{Loads at Bottom of Footing} \\ \mbox{Mdmaxa} & Md - Pd \times c \cdot \Sigma(Wsoll \times Arms) + Vd^*D/2 & 392 k-ft \\ \mbox{Vdmax} = Vd & 109 kips \\ \mbox{Pdmax} = Pd + Wtooting + Wsoll & 191 kips \\ \mbox{Where} \\ \mbox{Md} = (Maximum of All Load Cases without Embedment Safety Factor & 876 k-ft \\ \mbox{Vd} = (Game as Md) & 109 kips \\ \mbox{Pd} = (Game as Md) & 109 kips \\ \mbox{Pd} = c = From Center of Wall to Center of Footing & 8.05 ft \\ \mbox{D} = Depth of Footing & 3.00 ft \\ \mbox{Wtooting} = 16 \times D \times L \times 0.15 & 57.6 kips \\ \mbox{Wsoll-1} (resisting side, RSP, Rec.) = 3' \times (20'2+6.75') \times L \times 0.12 & 48 kips \\ \mbox{Moment Arm for Wsoil-1} = 20'2 \cdot (20'2+6.75')/2 & 1.6 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 kip \\ \mbox{Moment Arm for Wsoil-3} = (2.60-1.00)^* 2 / 3 - 1.00' - 6.75' & 48.8 ft \\ \mbox{Where} & Tension Rec.Pdmax/2+Mdmax*di / Iplies = $39.2 kips \\ \mbox{Moment Arm for Wsoil-3} = (2.60-1.00)^* 2 / 3 - 1.00' - 6.75' & 57.50 pcf \\ Moment Arm for Wso$		use	(c+Ktr)/db =			2.5	5
$ \begin{array}{c c} \mbox{Loads at Bottom of Footing} \\ \mbox{Mdmaxa} & Md - Pd \times c \cdot \Sigma(Wsoll \times Arms) + Vd^*D/2 & 392 k-ft \\ \mbox{Vdmax} = Vd & 109 kips \\ \mbox{Pdmax} = Pd + Wtooting + Wsoll & 191 kips \\ \mbox{Where} \\ \mbox{Md} = (Maximum of All Load Cases without Embedment Safety Factor & 876 k-ft \\ \mbox{Vd} = (Game as Md) & 109 kips \\ \mbox{Pd} = (Game as Md) & 109 kips \\ \mbox{Pd} = c = From Center of Wall to Center of Footing & 8.05 ft \\ \mbox{D} = Depth of Footing & 3.00 ft \\ \mbox{Wtooting} = 16 \times D \times L \times 0.15 & 57.6 kips \\ \mbox{Wsoll-1} (resisting side, RSP, Rec.) = 3' \times (20'2+6.75') \times L \times 0.12 & 48 kips \\ \mbox{Moment Arm for Wsoil-1} = 20'2 \cdot (20'2+6.75')/2 & 1.6 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 ft \\ \mbox{Wsoil-3} (driving, Rec.) = (20'2-6.75'-2.60')/2 - 20'/2 & 49.7 kip \\ \mbox{Moment Arm for Wsoil-3} = (2.60-1.00)^* 2 / 3 - 1.00' - 6.75' & 48.8 ft \\ \mbox{Where} & Tension Rec.Pdmax/2+Mdmax*di / Iplies = $39.2 kips \\ \mbox{Moment Arm for Wsoil-3} = (2.60-1.00)^* 2 / 3 - 1.00' - 6.75' & 57.50 pcf \\ Moment Arm for Wso$	3 Ecoting & Piles						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	of Footing					
Vdmax = Vd 109 kips Pdmax = Pd + Wfooting + Wsoil 191 kips Where Md = (Maximum of All Load Cases without Embedment Safety Factor 876 k-ft Md = (Game as Md) 109 kips 190 kips Pd = 51.9 kips 51.9 kips c = From Center of Wall to Center of Footing 8.05 ft 100 kips D = Depth of Footing 3.00 ft 3.00 ft Wtooting = 16 x D x L x 0.15 57.6 kips 57.6 kips Wsoil-1 (resisting side, RSP, Rec.) = 3' x (20/2+6.75') x L x 0.12 48 kips Moment Arm for Wsoil-3 = (20/2-6.75-2.60)'2 - 20/2 1.6 ft Wsoil-2 (driving, Rec.) = (20/2-6.75-2.60) x (24.00) x L / 2 x 0.12 15 kips Moment Arm for Wsoil-3 = (20/2-6.07-2.60)'2 - 20/2 -9.7 ft Wsoil-3 (driving, Tri.) = (2.60'-1.00') x (24.00') x L / 2 x 0.12 18 kips Moment Arm for Wsoil-3 = (20/2-6.07-2.60)'2 - 20/2 -9.7 ft Wsoil-3 (driving, Tri.) = (2.60'-1.00') x (24.00') x L / 2 x 0.12 18 kips Moment Arm for Wsoil-3 = (20/2-6.07-2.60)'2 - 20/2 -9.7 ft Wsoil-3 (driving, Tri.) = (2.60'-1.00') x (24.00') x L / 2 x 0.12 18 kips 100 kips 88.2 kips Moment Arm for Wsoil-3 = (20/2-6.05-2.60')/2 / 2 / 3 t 1.00' - 6.75' -8.8 ft 128 fm2 128		-	(Wsoil x Arms) + Vd	I*D/2		392	₽ k-ft
Pdmax=Pd +Wfooting + Wsoil191 kipsWhere Md = (Maximum of All Load Cases without Embedment Safety Factor876 k-ftVd = (Same as Md)109 kipsPd =51.9 kipsc = From Center of Wall to Center of Footing8.05 ftD = Depth of Footing3.00 ftWfooting = 16 x D x L x 0.1557.6 kipsWootin2 = 16 x D x L x 0.1557.6 kipsWootin2 = 16 x D x L x 0.1557.6 kipsWootin2 = 16 x D x L x 0.1557.6 kipsWootin2 = 16 x D x L x 0.1557.6 kipsWootin2 = 16 x D x L x 0.1557.6 kipsWootin3 = 16 x D x L x 0.1557.6 kipsWootin4 rum for Wsoil-1 = 20/2 - (20/2+6.75) x L x 0.1248 kipsMoment Arm for Wsoil = 2 (20/2-0.752-2.60)/2 - 20/2/216 ftWsoil-2 (driving, Tri.) = (2.60 - 1.00) x (24.00) x L / 2 x 0.1215 kipsMoment Arm for Wsoil-3 = - (2.60 - 1.00) x L / 2 x 0.1218 kipsMoment Arm for Wsoil-3 = - (2.60 - 1.00) * 2 / 3 - 1.00 - 6.75'-8.8 ftPile Force Image = 8%2*2 =(3 Rows 8ft x 2)128 ft%2Pile reactionTensionRL=Pdmax/2-Mdmax*di / Ipiles =39.2 kipsCompressionRC=Pdmax/2-Mdmax*di / Ipiles =39.2 kipsLaterial Force Vpile = (Vd-Rspi/2) (2 pile take lateral force)41.9 kipsWhere Where $\gamma' = 120-62.5$ 57.50 pcf h1 =Moment Arm for Where $\gamma' = 120-62.5$ 57.50 pcf h2 =Rue for pof ftg Where $q_{02} = kp x' x' h1$.39 ksf WhereWhere Rue for pof ftg Rue for pof ftg $q_{02} = kp x$				0,2			
Where $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Pdmax=		+ Wsoil				-
$\begin{tabular}{ c c c c } \mbox{Md} = (Maximum of All Load Cases without Embedment Safety Factor $76 k-ft$ $19 kips$ $10 yips$ $Pd = $10 yips$ $21 yips$ $11 yips$ $21 yips$ $		Ū					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		of All Lood Coo	aa without Embodm	ant Safaty Eastar		070	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				lent Salety Factor			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Md)					•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		of Wall to Cont	for of Footing				-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			ler of Fooling				
Wsoil-1 (resisting side, RSP, Rec.) = 3' x (20/2+6.75) x L x 0.12 48 kips Moment Arm for Wsoil-1 = 20/2 - (20/2+6.75)/2 1.6 ft Wsoil-2 (driving, Rec.) = (20/2-6.75-2.60') x L x 0.12 15 kips Moment Arm for Wsoil-3 = (20/2-6.75-2.60')/2 - 20/2 -9.7 ft Wsoil-3 (driving, Tri.) = (2.60'-1.00') x (24.00') x L / 2 x 0.12 18 kips Moment Arm for Wsoil-3 = - (2.60'-1.00') * 2 / 3 - 1.00' - 6.75' -8.8 ft Pile Force IpILES = 8*2*2 = (3 Rows 8ft x 2) 128 ft*2 Pile reaction Tension Rt=Pdmax/2-Mdmax*di / Ipiles = 39.2 kips Compression Rc=Pdmax/2+Mdmax*di / Ipiles = 39.2 kips Laterial Force Vpile = (Vd-Rsp)/2 (2 pile take lateral force) 41.9 kips where - - - Laterial resistance of ftgs @ Top of ftg qp = Kp x y' x h1 0.69 ksf Where y' = 120-62.5 57.50 pcf - - Mvere y' = 120-62.5 57.50 pcf - - Mvere y' = 120-62.5 57.50 pcf - - - Where y' = 120-62.5 57.50 pcf - - - - <		oung				0.00	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-					
$\begin{tabular}{ c c c c c } & Moment Arm for Wsoil-3 = (20'/2-6.75-2.60')/2 - 20'/2 & -9.7 \ ft \\ Wsoil-3 (driving, Tri.) = (2.60'-1.00') \times (24.00') \times L / 2 \times 0.12 & 18 \ kips \\ Moment Arm for Wsoil-3 = -(2.60'-1.00') * 2 / 3 - 1.00' - 6.75' & -8.8 \ ft \\ Pile Force \\ I_{PLES} = 8^{0}2^{2}2 = & (3 \ Rows 8ft \times 2) & 128 \ ft^{2}2 \\ Pile reaction & $$Tension $$ Rt=Pdmax/2-Mdmax*di / Ipiles = $$ 39.2 \ kips \\ Compression $$ Rc=Pdmax/2+Mdmax*di / Ipiles = $$ 39.2 \ kips \\ Compression $$ Rc=Pdmax/2+Mdmax*di / Ipiles = $$ 88.2 \ kips \\ Laterial Force $$ Vpile = (Vd-Rsp)/2 (2 \ pile take lateral force) $$ 41.9 \ kips $$ where $$ Laterial resistance of ftgs $$ @ Top of ftg $$ qpt = Kp \times \gamma' \times h1$ 0.69 \ ksf $$ where $$ y' = 120-62.5 $$ 57.50 \ pcf $$ h1 = $$ 3.00 \ ft $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$							
$ \begin{array}{cccc} Wsoil-3 (driving, Tr.i) = (2.60^{\circ} 1.00^{\circ}) \times (24.00^{\circ}) \times L/2 \times 0.12 & 18 \ kips \\ Moment \ Arm \ for \ Wsoil-3 = - (2.60^{\circ} 1.00^{\circ}) * 2/3 - 1.00^{\circ} - 6.75^{\circ} & -8.8 \ ft \\ \end{array} $	Wsoil-2 (driving,	, ,	, (,			
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $							
Pile Force $I_{PLLES} = 8^{N}2^{*}2 =$ $I_{PLLES} = 8^{N}2^{*}2 =$ $I_{PLLES} = 8^{N}2^{*}2 =$ Pile reaction(3 Rows 8ft x 2)128 ft^2Pile reactionTensionRt=Pdmax/2-Mdmax*di / Ipiles = 39.2 kipsCompressionRc=Pdmax/2+Mdmax*di / Ipiles = 88.2 kipsLaterial ForceVpile = (Vd-Rsp)/2(2 pile take lateral force) 41.9 kipswhereWhereVile = (Vd-Rsp)/2(2 pile take lateral force) 41.9 kipsUnder the exploration of ftgs@ Top of ftg $q_{pt} = Kp x \gamma' x h1$ 0.69 ksfWhere $\gamma' = 120-62.5$ 57.50 pcf11.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcf1.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcf1.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcf24.98 kipsAllowllable Pile Loading (without load test)Allowllable Pile Loading (without load test)1.28 kips	Wsoil-3 (driving,				0.75		-
$\begin{split} P_{\text{PLLES}} = 8^{\text{P}}2^{\text{P}}2 = & (3 \text{ Rows 8ft x 2}) & 128 \text{ ft}^{\text{P}}2 \\ \text{Pile reaction} & \text{Rt=Pdmax/2-Mdmax*di / Ipiles =} & 39.2 kips \\ \hline \text{Compression} & \text{Rt=Pdmax/2-Mdmax*di / Ipiles =} & 88.2 kips \\ \text{Laterial Force} & Vpile = (Vd-Rsp)/2 & (2 pile take lateral force) & 41.9 kips \\ \text{where} & & & & & & & & & & & & & & & & & & &$		Moment Arm to	51° VVSOII-3 = - (2.60-	1.00) * 2/3 - 1.00	- 6.75	-8.8	δπ
Pile reactionTensionRt=Pdmax/2-Mdmax*di / Ipiles = 39.2 kipsCompressionRc=Pdmax/2+Mdmax*di / Ipiles = 88.2 kipsLaterial ForceVpile = (Vd-Rsp)/2(2 pile take lateral force) 41.9 kipswhereUnder the taterial resistance of ftgs@ Top of ftg $q_{pt} = Kp \times \gamma' \times h1$ 0.69 ksfLaterial resistance of ftgs@ Top of ftg $q_{pt} = Kp \times \gamma' \times h1$ 0.69 ksfWhere $\gamma' = 120-62.5$ 57.50 pcfh1 =3.00 ft@ Top of ftg $q_{pb} = Kp \times \gamma' \times h1$ 1.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcf $h2 =$ 6.00 ftRsp = (q_{pt}+q_{pb})/2 \times 2.5 \times L24.98 kips							
$\begin{array}{ccc} \mbox{Tension} & \mbox{Rt=Pdmax/2-Mdmax*di / lpiles =} & \mbox{39.2 kips} \\ \mbox{Compression} & \mbox{Rc=Pdmax/2+Mdmax*di / lpiles =} & \mbox{88.2 kips} \\ \mbox{Laterial Force} & \mbox{Vpile = (Vd-Rsp)/2} & \mbox{(2 pile take lateral force)} & \mbox{41.9 kips} \\ \mbox{where} & & & & & & & & & & & & & & & & & & &$	$I_{PILES} = 8^2 * 2 =$		(3 Rows 8ft x 2)			128	3 ft^2
$\begin{tabular}{ c c c c } \hline Compression & Rc=Pdmax/2+Mdmax*di / Ipiles = $88.2 kips$ \\ Laterial Force & Vpile = (Vd-Rsp)/2 (2 pile take lateral force) $41.9 kips$ \\ where & & & & & & & & & & & & & & & & & & $	Pile reaction						
Laterial Force whereVpile = (Vd-Rsp)/2(2 pile take lateral force) 41.9 kipsLaterial resistance of ftgs@ Top of ftg $q_{pt} = Kp x \gamma' x h1$ 0.69 ksfWhere $\gamma' = 120-62.5$ 57.50 pcfh1 =3.00 ft@ Top of ftg $q_{pb} = Kp x \gamma' x h1$ 1.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcfh1 =6.00 ftRsp = (q_{pt}+q_{pb})/2 x 2.5 x L24.98 kipsAllowllable Pile Loading (without load test)57.50 kips							
where Laterial resistance of ftgs @ Top of ftg $q_{pt} = Kp x \gamma' x h1$ 0.69 ksf Where $\gamma' = 120-62.5$ 57.50 pcf h1 = 3.00 ft @ Top of ftg $q_{pb} = Kp x \gamma' x h1$ 1.39 ksf Where $\gamma' = 120-62.5$ 57.50 pcf h2 = 6.00 ft $R_{sp} = (q_{pt}+q_{pb})/2 x 2.5 x L$ 24.98 kips Allowllable Pile Loading (without load test)		Compression					-
Laterial resistance of ftgs@ Top of ftg $q_{pt} = Kp x \gamma' x h1$ 0.69 ksfWhere $\gamma' = 120-62.5$ 57.50 pcfh1 =3.00 ft@ Top of ftg $q_{pb} = Kp x \gamma' x h1$ 1.39 ksfWhere $\gamma' = 120-62.5$ 57.50 pcfby there $\gamma' = 120-62.5$ 57.50 pcfh2 =6.00 ftR_{sp} = (q_{pt}+q_{pb})/2 x 2.5 x L24.98 kips			Vpile = (Vd-Rsp)/2	2 (2 pile take late	ral force)	41.9) kips
Where $\gamma' = 120-62.5$ 57.50 pcf h1 = 3.00 ft @ Top of ftg $q_{pb} = Kp \times \gamma' \times h1$ 1.39 ksf Where $\gamma' = 120-62.5$ 57.50 pcf h2 = 6.00 ft R _{sp} = (q_{pt}+q_{pb})/2 \times 2.5 \times L 24.98 kips Allowllable Pile Loading (without load test) $=$		ce of ftae	@ Top of the	a= Kn x√' x h1		0.60) kef
$\begin{array}{cccc} h1 = & 3.00 \ ft \\ @ \ Top \ of \ ftg & q_{pb} = Kp \ x \ \gamma' \ x \ h1 & 1.39 \ ksf \\ Where & \gamma' = 120 \ 62.5 & 57.50 \ pcf \\ h2 = & 6.00 \ ft \\ R_{sp} = (q_{pt} + q_{pb})/2 \ x \ 2.5 \ x \ L & 24.98 \ kips \\ \end{array}$ Allowllable Pile Loading (without load test)		oo or nys		-			
@ Top of ftg $q_{pb} = Kp x \gamma' x h1$ 1.39 ksf Where $\gamma' = 120-62.5$ 57.50 pcf $h2 =$ 6.00 ft $R_{sp} = (q_{pt}+q_{pb})/2 x 2.5 x L$ 24.98 kips Allowllable Pile Loading (without load test) 400 ft			vvileie	•			-
Where $\gamma' = 120-62.5$ 57.50 pcf h2 = 6.00 ft R _{sp} = (q _{pt} +q _{pb})/2 x 2.5 x L 24.98 kips Allowllable Pile Loading (without load test) 400 test			@ Top of ftg		I		
$h2 = 6.00 \text{ ft}$ $R_{sp} = (q_{pt}+q_{pb})/2 \times 2.5 \times L 24.98 \text{ kips}$ Allowllable Pile Loading (without load test)				-			
$R_{sp} = (q_{pt} + q_{pb})/2 \times 2.5 \times L \mbox{ 24.98 kips}$ Allowllable Pile Loading (without load test)			MICIO				-
Allowllable Pile Loading (without load test)			$R_{sp} = (q_{pt}+q_{pb})/2 x$				
	Allowllable Pile	Loading (withou					
		3 (Compression =			105.00) kips, OK
Tension = 69.00 kips, OK							-

	_		Project	Napa River	Flood Contro	ol Project
1GE	ENGINEERIN	G. INC.	Subject	Flood Wall	Design (Wall	#1, Type A)
		-,	Ву	David An	Date	Mar-05
Force at the I	ace of Wall					
		lf*2.25/10*2.25	/2+Pds-inside*2.25/	2)] = (include soil an	d footin(99.7
Vu _{MIN} = Hf x 1.	7 x[Rt+(Pdf*2.2	5/10+pds-inside	e)] = (include soil an	d footing		156.0
)*5.75^2/2] = (includ			1094.3
$Vu_{MAX} = Hf x 1$.7 x [Rc - (0.12*:	3+0.15*2.5)*5.7	75] = (include soil ar	d footing		185.6
where	U = Hf x 1.7 x					
		Hf =	Hydraulic facto			1.30
		EM-1110-2-	-2104P3-2, Equat	ion3.3		
Required flex	ure reinforcem	ent at footing	(@8ft space)			
for Mumax	As = Mumax/	Φfy(d-a/2)]				10.95
	where $\Phi =$					0.90
	fy =					60
	d =2.5*12-6					24
	a = 0.15d	(assumed)				4
	f'c =					4
	b = L	Width of foo	•			8.00
		As = 1.0 x 8 x '	12/8			12.00
Check	a=As*fy/(0.85 ФМп = Ф Asfy					2.2
	Ψ WIT = Ψ ASI	(u - a/z)			D/C = Mumax/Φl	1236.4 Mn 0.89
Shear Check						
		$\Phi Vn = \Phi (V)$	∕c + Vs)			
		$\Phi Vc = \Phi x 2$	2 x√f'c x b x d			291.4
		where $\Phi =$				0.85
					D/C = Vumax / ¢	oVc 0.64
for Mumin	As = Mumin/[⊅fv(d-a/2)]				0.89
	where $\Phi=$)()]				0.90
	fy =					60
	d =2.5*12-3					27
	a = 0.15d	(assumed)				4
	f'c =					4
	b = L	Width of foo	oting			8.00
	Use #6@12",	As = 0.44 x 8				3.52
Check	a=As*fy/(0.85					0.6
	ΦMn = Φ Asfy	/(d - a/2)				422.6
Shear Check					D/C = Mumin/ΦI	Mn 0.24
Shear Check					D/C = Vumin / Φ	Vc 0.54
4. Piles						
	Piles at spacing	8' (3 rows)				
	ars for compres					
from BDS equ	ation 8-31					
		Ast = [(Rc/	Ф-0.85f'cAg)/(fy-0.8	5f'c)]/0.8		-31.4
	where	Φ =				0.75
		$Ag = \pi D^2/4$				452.4
		(0.8for zer	ro eccentricity)			
	rebar no nee	ded				

	ENGINEERING	, INC.	Subject By	Flood Wall D David An	Design (Wall #1	, Type A) Mar-05
			Ву	David An	Date	Mor 05
equired reba	rs for tension pi	hars for tension niles		241101111		Mai-03
		les				
	$As = Rt / (\Phi x fy)$					0.91 in ²
	where Φ=	,				0.90
		(0.8for zero e	ccentricity)			0.00
	Try 12#6, As =		····,,,			5.28 in ²
heck	$Rtn = 0.8 x \Phi x$					228 kip
		·			D/C = Rt / Rtn	0.17 OF
				Rebar Ratio = (5.28 in^2		
	Use 12#6 for P	ile Longitudinal			, , , ,	
equired Pile	Shear Reinforce	mont				
Squireu File		at pile section, V	dn = Vd/2			70.7 kip
	Shear capacity		up = vu / 2			70.7 Kip
	Oncar capacity	$\Phi Vc = \Phi 2 x \sqrt{f}$	'c x Ae			41.3 kip
		$\Phi =$	0 / / /0			0.85
		Ae = 0.85Ag	(assumed)			384.5 in^
	Required shear	capacity of steel	,			004.0 III
	required shear	Φ Vs ≥ Vsd		$\Phi Vn = \Phi (Vc+Vs)$	= Φ x 2 x √f'c x A	
		where				
		Vsd = Vdp - Φ V	Vc			29.3 kip
		$Vs = \pi/2$ Av fy c				20.0 10
	Try #4 Spiral,	,	Av =			0.2 in^
			d = 24-3			21 in
	s ≤ Φ π/2 Av fy	d / Vsd				11.5 in
	Use #4 Spiral v	with Spacing s=	6"			OF
ile reinforcer	nent developme	nt length, ld				
	-	-				35.6 in
CI R12.2.2	ld = [fy x αβλ/(2	20√f'c)]db =				35.6 in
CI R12.2.3	ld = {3/40 x fy/√	f'c x αβγλ/[(c+Ktr)/db]} =			28.5 in
	where	α = reinforceme	ent location fac	ctor		1.0
		β = coating fact	or			1.0
		γ = reinforceme	ent size factor			1.0
		$\lambda = lightweight a$	aggregate con	crete factor		1.0
		c = cover				2.69 in
		(clear cover c >	[,] db)			
		Ktr = Atr x fyt /	(1500sn) =			0.592
		where	Atr =			0.79 in^
			fyt = fy			60.0 ks
			•	•		5.3 in
			n = number (of bars		10.0
		الالتحاديم مالم	ana atau - Ch			
		db = nominal di	iameter of bar (c+Ktr)/db =			0.75 in 4.376
C	= max{ ACI.F CI R12.2.2	Use #4 Spiral v le reinforcement developme = max{ ACI.R122, ACI.R12.2 CI R12.2.2 Id = [fy x $\alpha\beta\lambda/(2$ CI R12.2.3 Id = {3/40 x fy/	Try #4 Spiral, $s \le \Phi \pi/2$ Av fy d / VsdUse #4 Spiral with Spacing s=4le reinforcement development length, ld= max{ ACI.R122, ACI.R12.2.3}CI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{f^{\circ}c})$]db =CI R12.2.3Id = [3/40 x fy/\/f^{\circ} x $\alpha\beta\gamma\lambda/[(c+Ktr)]$ where α = reinforcement β = coating fact γ = reinforcement λ = lightweight c = cover $(clear cover c > CVerKtr = Atr x fyt / dt$	Try #4 Spiral,Av = d = 24-3 $s \le \Phi \pi/2$ Av fy d / VsdUse #4 Spiral with Spacing s=6"le reinforcement development length, ld= max{ ACI.R122, ACI.R12.2.3}CI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{f'c})$]db = CI R12.2.3CI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{f'c})$]db = CI R12.2.3Where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate cond c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = whereWhereAtr = fyt = fy s = rebar space (clear s > 2d)	Try #4 Spiral, $Av =$ $d = 24-3$ $s \le \Phi \pi/2$ Av fy d / VsdUse #4 Spiral with Spacing s=6"le reinforcement development length, ld= max{ ACI.R122, ACI.R12.2.3}CI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{f'c})$]db = CI R12.2.3CI R12.2.3Where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = whereAtr =	Try #4 Spiral,Av = d = 24-3 $s \le \Phi \pi/2 $ Av fy d / VsdUse #4 Spiral with Spacing s=6"le reinforcement development length, ld= max{ ACI.R122, ACI.R12.2.3}CI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{fc})]db =$ CI R12.2.3cl R12.2.3where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = whereMereAr = fyt = fy s = rebar spacing (clear s > 2db)

	Project Napa River Fl	lood Control Project
	Subject Flood Wall De	esign (Wall #1, Type
	By David An	Date Mar-05
WALL	#1, TYPE B (Pile Spacing	9')
Backfill Properties		
Buokini i roperties	Backfill Thickness = (17.00') - (-2.31')) = 19.31 ft
	Backfill Unit Weight	
	Φ	
	С	-
	$SMF=Tan(\Phi_d) / Tan\Phi = 2/3$	= 0.67
	Φ_{d}	0
	$Ka = Tan^2 (45^\circ - \Phi/2)$	
	$Ko = Tan^2 (45^\circ - \Phi_d/2)$	
	$Kp = Tan^2 (45^\circ + \Phi/2)$	= 4.02
Water Property	Water Unit Weight	= 62.5 pcf
Pile and Wall Data		
	Station	= 2+61
	Finish Grade Elevation(behind)) = 17.00 ft
	Finish Grade Elevation(front)	
	Top of CIDH Pile Elevation	n = -2.31 ft
	Pile Spacing	= 9.00 ft
	Pile Diameter	r = 3.00 ft
	100 Year Flood Leve	
	Water Elevation (Mean higher)	r) = 3.76 ft
	Water Elevation (Mean lower)	r) = -2.84 ft

			Project	Napa River	Flood Control	Project
MGE	ENGINEERING	INC.	Subject	Flood Wall I	Design (Wall	#1, Type B)
	_		Ву	David An	Date	Mar-05
Load	Case 1 Sho	ort Term (Und	Irained) In Serv	vice Conditio	on (Station 2-	+61)
	<	4.5' V _{D-4}	(from back face of D-4 Dozer (Constru		= 2.5 kips/ft)	Elev. +17.00'
	\land	N	Pem			– P _{D-4}
Water Elev. 4.0	00'		qem qesub			Backfill
						Elev. 1.00' Elev2.31'
]		
	ressure at Wall(S		i hi)	N	ote: Passive soil	resistance were ignored
Name	Thickness(ft)	Pressure(ksf)		aom Maiataail	nrocours of root	well
qem	13.00 6.31	0.618 0.768			pressure at rest	
qesub qw1a=qw2a	6.31	0.768		qw - Water pres	rged soil pressure	e at rest wall
Backfill Result Name Pem Pesub Pw1a	Forces Sum Force (kips) 36.2 39.4 11.2	Mom Arm(ft) 10.64 3.04 2.10	Moments(k-ft) 385 120 24			
Pd-4	12.3		141			
Pw2a	-11.2	2.10	-24			
At bot of wall	87.9	Safety Factor	646.3			
	ΣV	1.1	ΣΜ			
D-4 Dozer Loa	ding Summary	ΔP _{D-4}	Moment	1		
0.0	0.00	0.000	0.000	1	h	= 19.31 ft
0.1	1.93	0.176	3.052	1	a = 4.5' / 19.31'	
0.2	3.86	0.254	3.921	1		= 2.5 kips/
	-			1		
0.3	5.79	0.244	3.293	ΔP _{D-4}	₁ = (V _{D-4} /h) [(0.20	3b)/(0.16+b^2)^2]
0.3	5.79 7.73	0.244 0.198	3.293 2.297	ΔP _{D-2}		3b)/(0.16+b^2)^2] -2502 Page 3-49)
				ΔP _{D-4}		
0.4	7.73	0.198	2.297	ΔΡ _{D-4}		

Demand at Top of Pile: Vd = 97 kips Md = 711 k-ft

13.52

15.45

17.38

19.31

0.7

0.8

0.9

1.0

Σ

0.487

0.245

0.094

0.000

15.717

0.084

0.063

0.049

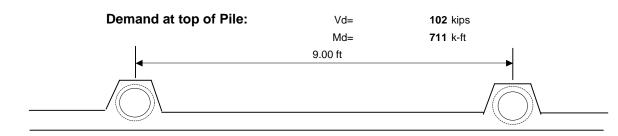
0.038

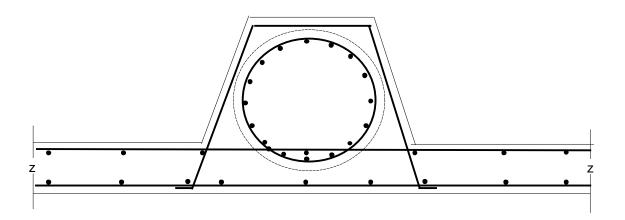
1.369

R /				Subject	Napa River Flo			/
	IGE	ENGINEERING,	INC.	-	Flood Wall De	-	#1, Type B)	
				Ву	David An	Date	Mar-05	\bigvee
	Load	Case 2 Lo	ong Term (Di	rained) In Serv	vice Condition (Station 2+6	1)	
		V _{LEFT} (from b	back face of wall	I) V _{right}				
	H-15 truck load	4.5	5ft 6ft		USE V=	-	0 kips	
				H-15 true	СК		Elev. +17.00'	
		\square		Pem			Pes	
			\backslash				Backfill	
	Water Elev. 1.00	,		qem qesub			DACKIII	
	$\overline{\nabla}$						Elev. 1.00'	
						V	Elev2.31'	
qw2a					qw1a			
	/				\backslash			
				Z: L:)	Nete		., .	
	Backfill Soil Pre		Pressure (ksf)		Note	: Passive soil r	esistance were i	gnorea.
	Name	I nickness(It)						
	Name qem	Thickness(ft) 16.00	0.761	1	qem - Moist soil pr	essure at rest v	wall	
		. ,			qem - Moist soil pro qesub - Submerge			
	qem	16.00	0.761			d soil pressure		
	qem qesub qw1a=qw2a	16.00 3.31 3.31	0.761 0.840 0.207		qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta	16.00 3.31 3.31 nt Forces Summ	0.761 0.840 0.207 nary	Momorto	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name	16.00 3.31 3.31 nt Forces Sumn Force	0.761 0.840 0.207 nary Arm to bot.	Moments 474	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem	16.00 3.31 3.31 nt Forces Summ Force 54.8	0.761 0.840 0.207 nary Arm to bot. 8.64	474	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub	16.00 3.31 3.31 nt Forces Sumn Force 54.8 23.8	0.761 0.840 0.207 nary Arm to bot. 8.64 1.63	474 39	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1	0.761 0.840 0.207 nary Arm to bot. 8.64	474 39 3	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10	474 39 3 0	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1	0.761 0.840 0.207 nary Arm to bot. 8.64 1.63 1.10 1.10	474 39 3 0 -3	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10	474 39 3 0 -3	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6	0.761 0.840 0.207 Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor	474 39 3 0 -3 512.5	qesub - Submerge	d soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I	16.00 3.31 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V	0.761 0.840 0.207 Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur	d soil pressure re ng Summary (at rest wall	
5 Truck Loa (for V _{LEFT})	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V Left) ΔP _{PH (LEFT)}	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur	d soil pressure re ng Summary (Z	Right)	
(for V _{LEFT}) 0.1	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.93	16.00 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V Left) ΔP _{PH (LEFT)} 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur H-15 Truck Loadin b (for V _{RIGHT}) 0.1	ng Summary (Z 1.93	Right) ΔP _{PH (RIGHT)} 0.000	0.000
(for V _{LEFT}) 0.1 0.2	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallding Summary (IZ1.933.86	16.00 3.31 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V Left) ΔP _{PH (LEFT)} 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2	ng Summary (Z 1.93 3.86	Right) ΔP _{PH (RIGHT)} 0.000 0.000	0.000
(for V _{LEFT}) 0.1 0.2 0.3	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallAt bot of wallZ1.933.865.79	16.00 3.31 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3	ng Summary (Z 1.93 3.86 5.79	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000	0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallCZ1.933.865.797.73	16.00 3.31 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V Left) $\Delta P_{PH (LEFT)}$ 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	d soil pressure re <u>Z</u> 1.93 3.86 5.79 7.73	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallCI.933.865.797.739.66	16.00 3.31 3.31 3.31 nt Forces Summ Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5	d soil pressure re <u>Z</u> 1.93 3.86 5.79 7.73 9.66	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59	16.00 3.31 3.31 3.31 3.31 a.31 3.31 a.31 a.31 Force 54.8 23.8 3.1 0.0 -3.1 78.6 ∑ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur qw - Water pressur 0.1 0.1 0.2 0.3 0.4 0.5 0.6	d soil pressure re <u>Z</u> 1.93 3.86 5.79 7.73 9.66 11.59	Arest wall ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52	16.00 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 b.a. a.31 a.31 a.31 a.31 a.31 a.31 a.00 -3.1 78.6 b.V Left) a.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur	d soil pressure re Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45	16.00 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 b.com 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur qw - Water pressur b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	ng Summary (Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45	Right) ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38	16.00 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 b.orce 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	d soil pressure re Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38	A PH (RIGHT) ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45	16.00 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 b.org 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur h-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	ng Summary (Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38	16.00 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 b.orce 54.8 23.8 3.1 0.0 -3.1 78.6 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	d soil pressure re Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38	A PH (RIGHT) ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall C 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38 19.31	16.00 3.31 3.31 3.31 3.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 a.31 b.ceft) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.761 0.840 0.207 mary Arm to bot. 8.64 1.63 1.10 1.10 Safety Factor 1.3 Moment 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	474 39 3 0 -3 512.5	qesub - Submerge qw - Water pressur h-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	d soil pressure re Z 1.93 3.86 5.79 7.73 9.66 11.59 13.52 15.45 17.38 19.31	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

				Project	Napa River	Flood Contr	rol Project
ИC	Έ	ENGINEERING,	INC.	Subject	Flood Wall I	Design (Wa	ll #1, Type B)
				Ву	David An	Date	Mar-05
Load	d Case	3 Long Te	erm (Drained)	In Service Co	ndition With	Flood (Sta	tion 2+61)
Water E	Elev. 15.3	30'					Elev. +17.00'
T		\	Λ	Pem			
Λ	=			qem		Soil Layer	1 (Backfill)
/			$\boldsymbol{\lambda}$	qesub			Elev. 1.00'
	/						Elev2.31'
					qw1a		
	I Soil Pre		oil pressure =γ K Pressure(ksf)	i hi)	No	ote: Passive so	oil resistance were ignor
Na		essure at Wall(S Thickness(ft) 16.00	oil pressure =γ K Pressure(ksf) 0.761	i hi)	No qem - Moist soil		-
Na qe	ame	Thickness(ft)	Pressure(ksf)	i hi)		pressure at re	est wall
Na qu qe	ame em	Thickness(ft) 16.00	Pressure(ksf) 0.761	i hi)	qem - Moist soil	pressure at re ged soil press	est wall
Na qu qe qv	ame em sub	Thickness(ft) 16.00 3.31	Pressure(ksf) 0.761 0.840	i hi)	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qt qe qv qv	ame em sub v1a v2a	Thickness(ft) 16.00 3.31 3.31 17.61	Pressure(ksf) 0.761 0.840 0.207 1.101	i hi)	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qe qv qv Backfil	ame em sub v1a v2a I Resulta	Thickness(ft) 16.00 3.31 3.31 17.61 nt Forces Summer	Pressure(ksf) 0.761 0.840 0.207 1.101 nary		qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qe qv qv qv Backfil Na	ame em sub v1a v2a	Thickness(ft) 16.00 3.31 3.31 17.61	Pressure(ksf) 0.761 0.840 0.207 1.101	i hi) Moments(k-ft) 474	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qe qv qv Backfil Na Pe	ame em sub v1a v2a I Resulta ame	Thickness(ft) 16.00 3.31 3.31 17.61 It Forces Summer Force (kips)	Pressure(ksf) 0.761 0.840 0.207 1.101 nary Mom Arm(ft)	Moments(k-ft)	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qe qv qv Backfil Na Pe	ame em sub v1a v2a I Resulta ame em	Thickness(ft) 16.00 3.31 3.31 17.61 nt Forces Summer Force (kips) 54.8	Pressure(ksf) 0.761 0.840 0.207 1.101 nary Mom Arm(ft) 8.64	Moments(k-ft) 474	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qq qv qv qv qv qv qv qv qv qv qv qv qv	ame em sub v1a v2a I Resulta ame em sub sub v1a v2a	Thickness(ft) 16.00 3.31 3.31 17.61 nt Forces Summer Force (kips) 54.8 23.8	Pressure(ksf) 0.761 0.840 0.207 1.101 mary Mom Arm(ft) 8.64 1.63 1.10 5.87	Moments(k-ft) 474 39	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall
Na qq qv qv qv qv qv qv qv qv qv qv qv qv	ame em sub v1a v2a I Resulta ame em sub sub	Thickness(ft) 16.00 3.31 3.31 17.61 nt Forces Summ Force (kips) 54.8 23.8 3.1	Pressure(ksf) 0.761 0.840 0.207 1.101 mary Mom Arm(ft) 8.64 1.63 1.10	Moments(k-ft) 474 39 3	qem - Moist soil qesub - Submei	pressure at re ged soil press	est wall

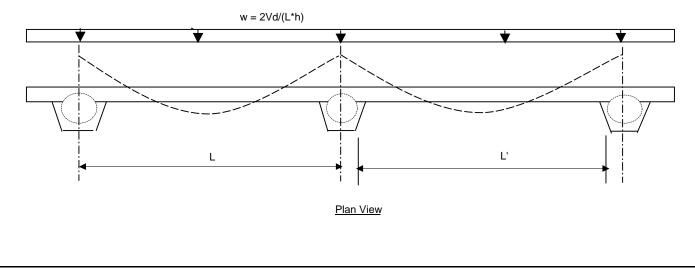
			I	Project	Napa River	Flood Con	trol Project
N	1GE	ENGINEERING	INC.	Subject	Flood Wall I	Design (W	all #1, Type B)
				Зу	David An	Date	Mar-05
	Load Case 4 Water El <u>ev</u> , 4.00			Service Cond Pem gem gesub	dition With Ea	rthquqke	(Station 2+61) qeq-p Elev. +17.00' qeq Soil Layer 1 (Backfill)
	$\frac{1}{1} \equiv 1$			1 \		/	Elev. 1.00'
a					qw1a		— Elev2.31'
			oil pressure =γ Ki	hi)	N	ote: Passive	soil resistance were ignore
	Name	Thickness(ft)	Pressure(ksf)				
	qem	13.00	0.618		qem - Moist soil	pressure at	rest wall
	qesub	3.31	0.697				sure at rest wall
	qw1a	3.31	0.207		qw - Water pres	sure	
	qw2a	3.31	0.207				
	qeq	19.31	0.277		qeq - Seismic c	omponents	
	$\alpha = \tan^{-1}[(C_1 + \sqrt{C_1})]$	1 ² +4C ₂))/2]			ŀ	K _h = 0.1	5 g
	(Equation 3-5	6 of EM 1110-2-2	2502, Page 3-67)			β = 0	
						Φ = 30	degree
	$C_1 = 2 (tan \Phi - K_h) /$	(1+K _h tanΦ)			C	C ₁ = 0.78	7
	(Equation 3-5	7 of EM 1110-2-2	2502, Page 3-67)		C	C ₂ = 0.68	1
						α = 52.0	6 degree
	$C_{2} = [tan \Phi(1-tan)$	Φ tar β)-(tan β -K _h)] / [tanΦ(1+K _h tan¢	Þ)]			
		· · · · · · · · · · · · · · · · · · ·	2502, Page 3-67)				
		8 of EM 1110-2-2					
	(Equation 3-5		n^2 / [2(tan α -tan β)]				
	(Equation 3-5 Dynamic Compo	nents qeq <i>=</i> γ K _h ł					
	(Equation 3-5 Dynamic Compo	nents qeq <i>=</i> γ K _h ł	n ² / [2(tanα-tanβ)] 2502, Page 3-68)				
	(Equation 3-5 Dynamic Compo	nents qeq <i>=</i> γ K _h ł					
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta	nents qeq =γ K _h ł 2 of EM 1110-2-: nt Forces Sum r	2502, Page 3-68) nary		-		
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name	nents qeq =γ K _h t 2 of EM 1110-2-: <u>nt Forces Sumr</u> Force	2502, Page 3-68) nary Arm to bot.	Moments	7		
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem	nents qeq =γ K _h t 2 of EM 1110-2-: nt Forces Sumr Force 36.2	2502, Page 3-68) nary Arm to bot. 7.64	277]		
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem Pesub	nents qeq =γ K _h t 2 of EM 1110-2-2 nt Forces Sumr Force 36.2 19.6	2502, Page 3-68) nary Arm to bot. 7.64 1.62	277 32			
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem Pesub Pw1a	nents qeq =γ K _h t 2 of EM 1110-2-2 nt Forces Sumr Force 36.2 19.6 3.1	2502, Page 3-68) mary Arm to bot. 7.64 1.62 1.10	277 32 3			
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem Pesub Pw1a Peq	nents qeq =γ K _h k 2 of EM 1110-2-: nt Forces Summ Force 36.2 19.6 3.1 24.1	2502, Page 3-68) mary Arm to bot. 7.64 1.62 1.10 12.88	277 32 3 310			
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem Pesub Pw1a Peq Pw2a	nents qeq =γ K _h t 2 of EM 1110-2-: nt Forces Sumr Force 36.2 19.6 3.1 24.1 -3.1	2502, Page 3-68) nary Arm to bot. 7.64 1.62 1.10 12.88 1.10	277 32 3 310 -3			
	(Equation 3-5 Dynamic Compo (Equation 3-6 Backfill Resulta Name Pem Pesub Pw1a Peq	nents qeq =γ K _h k 2 of EM 1110-2-: nt Forces Summ Force 36.2 19.6 3.1 24.1	2502, Page 3-68) mary Arm to bot. 7.64 1.62 1.10 12.88	277 32 3 310			




Project	Napa River Flo	od Control	Project	
Subject	Flood Wall Des	sign (Wall #	1, Type B)	
Ву	David An	Date	Mar-05	

Design Wall Section and Pile Reinforcement (Station 2+61)

1. Loads


	-				
	Load Case	1	2	3	4
Forces w/o	Shear (k)	87.9	78.6	-5.6	79.8
Safety Factor	Moments(kft)	646.3	512.5	3.5	618.2
	Safety Factor	1.1	1.3	1.1	1.1
Forces w/	Shear (k)	96.6	102.2	-6.1	87.8
Safety Factor	Moments(kft)	710.9	666.2	3.8	680.0

2. Reinforced Concrete Wall (unit width)

Flexure reinforcement requirement (bending about vertical axis)

			Project	Napa River Fl	ood Control P	roject	
MG	ENGINEERIN	IG. INC.	Subject	Flood Wall De	esign (Wall #1	l, Type B)	
			Ву	David An	Date	Mar-05	
	Mu ≤ ΦMn						
		′x 0.1 x w x ŕ	(used 3 equal s	pan continuous beam))	5.7	k-ft/ft
	where						
		w = Vd/(L'*h)					kip/ft
		L' = L-25/12x 2				4.8	
		h = Hf =	Hudroulio footor			19.3	
			Hydraulic factor 04P3-2, Equation	13.3		1.30	
	ΦMn = Φ As		741 5-2, Equation	0.0			
	where						
		d = 12in -2.5in		(wall thick = 12 in)		9.5	in
		a = 0.15d				1.4	in
Required re	einforcement						0
			-a/2)] (Required)			0.14	
		where $\Phi=$				0.90	
		fy =				60 0.31	ksi in ²
Check	use 1#5, As = a =Asfy/(0.85					0.31	
Check	where	f'c =					ksi
	Whiche	b =	unit width of wall			12	
	ΦMn = Φ Asf	y(d - a/2)					kft/ft
					D/C = Mu / ΦMn	0.43	ок
Shear chec	k						
		Vu = Hf x 1.7 x	Vd / h /2 =			5.8	kips/ft
		$\Phi Vc = \Phi x 2 x^{2}$	√f'cxbxd			12.3	kips
		where $\Phi =$				0.85	
					$D/C = Vu / \Phi Vc$	0.48	ок
		en wall and pil	les				
Use 36" CIL	H Piles at spacing	•				4.4	
	Rebar Size (# Number of Re					11 18	
	Spiral Spacin					-	in
		acity Mn (Mp) =		(from Xsection)		2,071	
					u = Hf x 1.7 x Md		
				$D/C = Mu/\Phi Mn = Hi$	f x 1.7 x Md/ФМn	0.84	ок
Use shear-f	riction design meth	nod					
		Vn = Avf x fy x	μ	BDS p8-26		1011	
	where	Avf =				28.08	
		fy =					ksi
		$\mu = 0.6 \lambda$ $\lambda =$		normal and and		0.6	
		λ =		normal concrete		1.0	
				D/C = Vu/ΦVn = ⊢	If x 1 7 v \/d/m\/n	0.26	OK

			Project	Napa River	Flood Control	Project	
ИGE			Subject	Flood Wall	#1, Type B)		
		,	Ву	David An	Date	Mar-05	
4. Piles							<u>.</u>
	0	é					
	Shear capacity	of pile $\Phi Vn = \Phi(Vc+)$	Ve)			273	kin
		where $\Phi =$	V3)			0.85	•
		Vc = $2 \times \sqrt{f'c} \times$	40			129	
		$V S = \pi/2 \text{ Av fy}$				123	
			Av Rebar Size (#)			5	
			Av =			0.31	
			d = 36" -3"			33	
			S =				in
			Ae = 0.85Ag			1018	in^
				D/C = Vu/ΦVn =	= Hf x 1.7 x Vd/Φ\	/n 0.83	OK
		Use #5@5" fe	or Spirals.				
Pile reinforce	ment developme	nt length, ld					
	R122, ACI.R12.2	-				74.0	in
ACI R12.2.2	$Id = [fy x \alpha \beta \lambda / (2$					74.0	in
ACI R12.2.3	ld = {3/40 x fy∕√	f'c x αβγλ/[(c+K	tr)/db]} =			36.5	in
	where		nent location factor			1.0	I
		β = coating fa	ctor			1.0	
			nent size factor			1.0	
		$\lambda = lightweigh$	t aggregate concrete	factor		1.0	
		c = cover				2.69	in
		(clear cover c					
		Ktr = Atr x fyt				0.354	
		where	Atr =			0.79	
			fyt = fy			60.0	
			s = rebar spacing			5.0	in
			(clear s > 2db) n = number of bar	~		18.0	
		dh – nominal	diameter of bar	5		1.56	
		ub – nominai	(c+Ktr)/db =			1.951	
		Bar #	Area (SI)				
		3	0.11				
		4	0.20				
		5	0.31				
		6	0.44				
		7	0.60				
		8	0.79				
		9 10	1.00				
		10	1.27				
		4.4	1 66				
		11 14	1.56 2.25				

Nana River / Nana Creek Fl	and Protection Project Structural De	esign Calculations for 100% Submittal (March 2	/005)
Thapa Kiver / Thapa Creek P	obu i rotection i roject, structural De	2. Sign Calculations for 10070 Subinitian (March 2	1005)

	Project Napa River Flood	1 Control Project
IGE ENGINEERING, INC.	Subject Flood Wall Desig	gn (Wall #1, Type B)
	By David An D	ate Mar-05
WALL #1, TY	PE B (Typical, Pile Spacing	g 12')
Backfill Properties		
	Backfill Thickness = (17.00') - (1.00') =	16.00 ft
	Backfill Unit Weight =	125 pcf
	Φ =	37 degree
	C =	0 pcf
	SMF= $Tan(\Phi_d) / Tan\Phi = 2/3 =$	0.67
	$\Phi_d =$	27 degree
	$Ka = Tan^2 (45^\circ - \Phi/2) =$	0.25
	$Ko = Tan^2 (45^\circ - \Phi_d/2) =$	0.38
	$Kp = Tan^2 (45^\circ + \Phi/2) =$	4.02
Water Property	Water Unit Weight =	62.5 pcf
Pile and Wall Data	, i i i i i i i i i i i i i i i i i i i	·
	Station =	3+15
	Finish Grade Elevation(behind) =	17.00 ft
	Finish Grade Elevation(front) =	4.00 ft
	Top of CIDH Pile Elevation =	1.00 ft
	Pile Spacing =	12.00 ft
	Pile Diameter =	3.00 ft
	100 Year Flood Level =	15.37 ft
	Water Elevation (Mean higher) =	3.76 ft
	Water Elevation (Mean lower) =	-2.84 ft

			Project	Napa River	Flood Control	l Project	
ИGE	ENGINEERING	INC.	Subject	Flood Wall Design (Wall		l #1, Type B)	
			Ву	David An	Date	Mar-05	
Load	Case 1 Sho	ort Term (Und	drained) In Ser	vice Conditio	on (Station 3-	+15)	
		4.5' V _{D-4}	(from back face of	wall)			
	F	>	D-4 Dozer (Constr	uction Equipment	= 2.5 kips/ft)		
		▼	Pem			Elev. +17.00'	
			YYYYYYYYYYYYYYYYY		▲ /	– P _{D-4}	
	~ \	\				5	
Water Elev. 7.0	0'		qem			Backfill	
$\overline{\nabla}$			qesub			Elev. 4.00'	
		$\overline{\boldsymbol{X}}$	<u> </u>		/	Elev. 4.00	
				qw1a			
				qwia			
			\	١			
				\			
Backfill Soil Pr	essure at Wall(S	Soil pressure =γ K	(i hi)	N	ote: Passive soil	resistance were ignored	
Name	Thickness(ft)	Pressure(ksf)]				
qem	10.00	0.476		qem - Moist soi	pressure at rest	wall	
qesub	6.00	0.618		qesub - Subme	rged soil pressure	e at rest wall	
qw1a=qw2a	6.00	0.375		qw - Water pres	sure		
Backfill Result	ant Forces Sum Force (kips)	mary Mom Arm(ft)	Moments(k-ft)	Т			
Pem	28.5	9.33	266	-			
Pesub	39.4	2.87	113	-			
Pw1a	13.5	2.00	27	_			
Pd-4	16.4	2.00	156	_			
Pw2a	-13.5	2.00	-27	_			
At bot of wall	84.3	Safety Factor	535.7	_			
		-		-			
D-4 Dozer Load	ΣV	1.1	Σ Μ				
b	Z	ΔP _{D-4}	Moment	7			
0.0	0.00	0.000	0.000	7	h	= 16.00 ft	
0.1	1.60	0.176	2.529	1	a = 4.5' / 16.00'		
0.2	3.20	0.254	3.249	1		= 2.5 kips/i	
0.3	4.80	0.244	2.729	ΔP _D	$_{4} = (V_{D-4} / h) [(0.20)$)3b)/(0.16+b^2)^2]	
0.4	6.40	0.198	1.904	1		2-2502 Page 3-49)	
0.5	8.00	0.151	1.208	1	, · · · · • •		
0.6	9.60	0.113	0.721				

Demand at Top of Pile: Vd = 93 kips Md = 589 k-ft

11.20

12.80

14.40

16.00

0.084

0.063

0.049

0.038

1.369

0.7

0.8

0.9

1.0

Σ

0.404

0.203

0.078

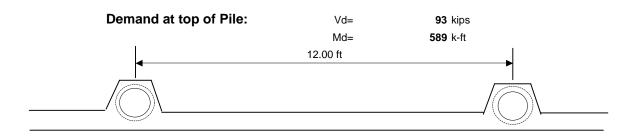
0.000

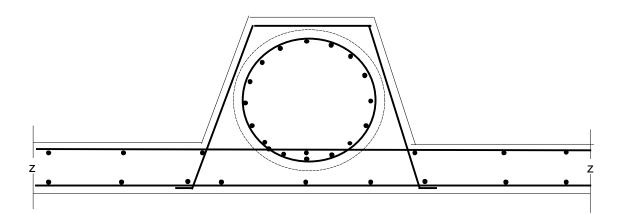
13.023

				Subject	Napa River Flo		-	- /
	IGE	ENGINEERING,	INC.		Flood Wall Des		#1, Type B)	
				Ву	David An	Date	Mar-05	
	Load	Case 2 Lo	ong Term (Dr	ained) In Serv	vice Condition (S	Station 3+1	5)	
		V _{LEFT} (from	back face of wall) V _{right}				
	H-15 truck load	4.	5ft 6ft	H-15 truc	USE V=		0 kips	
		\sim	V	Pem			Elev. +17.00' Pes	
			\backslash	Fem				
	Water Elev. 4.00	, I		qem qesub			Backfill	
	$\frac{\nabla}{1}$			·			Elev. 4.00' Elev. 1.00'	
qw2a					qw1a			
	Backfill Soil Pre			(i hi)	Note:	Passive soil r	esistance were i	gnored.
	Name	Thickness(ft)	Pressure(ksf)	-	Martin and Inc.			
	qem	13.00 3.00	0.618	-	qem - Moist soil pre			
	qesub qw1a=qw2a	3.00	0.890	-	qesub - Submergeo qw - Water pressure		at lest wall	
	yw ia=ywza	3.00	0.100					
				3	qw - water pressure	6		
	Backfill Resulta	nt Forces Sumr	nary	-	dw - Maier hiessui	6		
	Backfill Resulta Name	nt Forces Sumr Force	nary Arm to bot.	Moments		G		
				Moments 354		G		
	Name	Force	Arm to bot.			5		
	Name Pem	Force 48.2	Arm to bot. 7.33	354		5		
	Name Pem Pesub	Force 48.2 23.5	Arm to bot. 7.33 1.47	354 35		5		
	Name Pem Pesub Pw1a	Force 48.2 23.5 3.4	Arm to bot. 7.33 1.47	354 35 3		5		
	Name Pem Pesub Pw1a Ph-15	Force 48.2 23.5 3.4 0.0	Arm to bot. 7.33 1.47 1.00	354 35 3 0		5		
	Name Pem Pesub Pw1a Ph-15 Pw2a	Force 48.2 23.5 3.4 0.0 -3.4	Arm to bot. 7.33 1.47 1.00 1.00	354 35 3 0 -3		5		
5 Truck Loa	Name Pem Pesub Pw1a Ph-15 Pw2a	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor	354 35 3 0 -3 388.4	H-15 Truck Loadin		Right)	
<mark>5 Truck Loa</mark> (for V _{LEFT})	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor	354 35 3 0 -3 388.4			Right) ΔΡ _{ΡΗ (RIGHT)}	Momen
	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor 1.3	354 35 3 0 -3 388.4	H-15 Truck Loadin	ng Summary (Momen 0.000
(for V_{LEFT})	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)}	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor 1.3 Moment	354 35 3 0 -3 388.4	H-15 Truck Loadin	ng Summary (Z	ΔP _{PH (RIGHT)}	
(for V _{LEFT}) 0.1	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor 1.3 Moment 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1	g Summary (Z 1.60	ΔP _{PH (RIGHT)} 0.000	0.000
(for V _{LEFT}) 0.1 0.2	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor 1.3 Moment 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2	g Summary (Z 1.60 3.20	ΔP _{PH (RIGHT)} 0.000 0.000	0.000
(for V _{LEFT}) 0.1 0.2 0.3	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3	g Summary (Z 1.60 3.20 4.80	ΔP _{PH (RIGHT)} 0.000 0.000 0.000	0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	g Summary (Z 1.60 3.20 4.80 6.40	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40 8.00	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5	g Summary (Z 1.60 3.20 4.80 6.40 8.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40 8.00 9.60	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6	g Summary (Z 1.60 3.20 4.80 6.40 8.00 9.60	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20 12.80	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	g Summary (Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20 12.80	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7	g Summary (Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ding Summary (I Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20 12.80 14.40	Force 48.2 23.5 3.4 0.0 -3.4 71.8 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Arm to bot. 7.33 1.47 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	354 35 3 0 -3 388.4	H-15 Truck Loadin b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	g Summary (Z 1.60 3.20 4.80 6.40 8.00 9.60 11.20 12.80 14.40	ΔP (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

	GE				Napa River l		ioi i ioject
		ENGINEERING,	INC.	Subject	Flood Wall I	Design (Wa	ull #1, Type B)
		,		Ву	David An	Date	Mar-05
	Load Case	3 Long Te	erm (Drained)	In Service Co	ndition With	Flood (Sta	ation 3+15)
v	Vater Elev. 15.3	37'		Pem			Elev. +17.00'
		<mark>```</mark>		qem		Soil Layer	1 (Backfill)
				qesub			Elev. 4.00'
			X				Elev. 1.00'
	1						
L							
	ackfill Soil Pre	essure at Wall(S	Soil pressure =γ K	i hi)	N	ote: Passive s	oil resistance were ignore
	Backfill Soil Pre	Thickness(ft)	Pressure(ksf)	i hi)			-
	Name qem	Thickness(ft) 13.00	Pressure(ksf) 0.618	i hi)	qem - Moist soil	pressure at re	est wall
	Name qem qesub	Thickness(ft) 13.00 3.00	Pressure(ksf) 0.618 0.690	i hi)	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a	Thickness(ft) 13.00 3.00 3.00	Pressure(ksf) 0.618 0.690 0.188	i hi)	qem - Moist soil	pressure at re ged soil press	est wall
[Name qem qesub	Thickness(ft) 13.00 3.00	Pressure(ksf) 0.618 0.690	i hi)	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta	Thickness(ft) 13.00 3.00 3.00 14.37 ant Forces Sumi	Pressure(ksf) 0.618 0.690 0.188 0.898 mary		qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta Name	Thickness(ft) 13.00 3.00 3.00 14.37 ant Forces Sumi Force (kips)	Pressure(ksf) 0.618 0.690 0.188 0.898 mary Mom Arm(ft)	Moments(k-ft)	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta Name Pem	Thickness(ft) 13.00 3.00 3.00 14.37 ant Forces Summer Force (kips) 48.2 48.2	Pressure(ksf) 0.618 0.690 0.188 0.898 mary Mom Arm(ft) 7.33	Moments(k-ft) 354	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta Name Pem Pesub	Thickness(ft) 13.00 3.00 3.00 14.37 Int Forces Summer Force (kips) 48.2 23.5	Pressure(ksf) 0.618 0.690 0.188 0.898 mary Mom Arm(ft) 7.33 1.47	Moments(k-ft) 354 35	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta Name Pem Pesub Pw1a	Thickness(ft) 13.00 3.00 3.00 14.37 ant Forces Summ Force (kips) 48.2 23.5 3.4	Pressure(ksf) 0.618 0.690 0.188 0.898 mary Mom Arm(ft) 7.33 1.47 1.00	Moments(k-ft) 354	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall
	Name qem qesub qw1a qw2a Backfill Resulta Name Pem Pesub	Thickness(ft) 13.00 3.00 3.00 14.37 Int Forces Summer Force (kips) 48.2 23.5	Pressure(ksf) 0.618 0.690 0.188 0.898 mary Mom Arm(ft) 7.33 1.47	Moments(k-ft) 354 35 3	qem - Moist soil qesub - Submer	pressure at re ged soil press	est wall

				Project	Napa River H	Flood Cont	rol Project
N	1GE	ENGINEERING	INC.	Subject	Flood Wall I	Design (W	all #1, Type B)
. –		2.10.1122.1110,		Ву	David An	Date	Mar-05
	Load Case 4 - Water Elev, 7.00			Service Con Pem qem qesub	dition With Ea	rthquqke	(Station 3+15) qeq-p Elev. +17.00' qeq Soil Layer 1 (Backfill)
a					qw1a		Elev. 4.00' Elev. 1.00'
	Backfill Soil Pre		oil pressure =γ Ki	i hi)	No	te: Passive	soil resistance were ignore
	Name	Thickness(ft)	Pressure(ksf)				
	qem	10.00	0.476		qem - Moist soil		
	qesub	3.00	0.547		qesub - Submer		sure at rest wall
	qw1a	3.00	0.188		qw - Water pres	sure	
	qw2a qeq	3.00 16.00	0.188 0.229		qeq - Seismic co	mpopente	
	464	10.00	0.220		qeq - Seisinic co	mponents	
		2 10 11/01			к	h = 0.15	5 g
	α =tan ⁻¹ [(C₁+√(C	1 ^{+4C₂))/2]}					
			2502, Page 3-67)			β = 0	
			2502, Page 3-67)		ļ	$\beta = 0$ $\Phi = 30$	degree
		56 of EM 1110-2-2	2502, Page 3-67)				-
	(Equation 3-5 $C_1 = 2 (tan\Phi-K_h) /$	56 of EM 1110-2-2 / (1+К _h tanФ)	2502, Page 3-67) 2502, Page 3-67)		l Q C	Þ = 30	7
	(Equation 3-5 C ₁ =2 (tanΦ-K _h) / (Equation 3-5	56 of EM 1110-2-2 / (1+K _h tanΦ) 57 of EM 1110-2-2	2502, Page 3-67)		c C	P = 30 $_1 = 0.78$	7
	(Equation 3-5 C ₁ =2 (tanΦ-K _h) / (Equation 3-5	56 of EM 1110-2-2 / (1+K _h tanΦ) 57 of EM 1110-2-2			c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (tan\Phi-K_h) / (Equation 3-5)$ $C_2 = [tan\Phi(1-tan)]$	56 of EM 1110-2-2 / (1+K _h tanΦ) 57 of EM 1110-2-2 Φ tarβ)-(tanβ-K _h)	2502, Page 3-67)	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [\tan \Phi (1 - \tan (Equation 3-5))]$	56 of EM 1110-2-2 / (1+K _h tanΦ) 57 of EM 1110-2-2 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-2	2502, Page 3-67)] / [tanΦ(1+K _h tan 2502, Page 3-67)	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [\tan \Phi(1 - \tan (Equation 3-5)]$ Dynamic Compo	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 onents qeq =γ K _h h	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) h ² / [2(tanα-tanβ)]	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [\tan \Phi(1 - \tan (Equation 3-5)]$ Dynamic Compo	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 onents qeq =γ K _h h	2502, Page 3-67)] / [tanΦ(1+K _h tan 2502, Page 3-67)	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [\tan \Phi(1 - \tan (Equation 3-5)]$ Dynamic Compo	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68)	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) /$ (Equation 3-5 $C_2 = [\tan \Phi(1 - \tan \theta) (Equation 3 - 5)$ Dynamic Compo (Equation 3 - 6)	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) h ² / [2(tanα-tanβ)] 2502, Page 3-68)	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (\tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [\tan \Phi (1 - \tan \Phi (1 - \tan \Phi)) - (Equation 3 - 5)$ Dynamic Compo (Equation 3 - 6) Backfill Resulta	 i6 of EM 1110-2-3 / (1+K_h tanΦ) i7 of EM 1110-2-3 iΦ tarβ)-(tanβ-K_h) i8 of EM 1110-2-3 i0 on ents qeq =γ K_h h i2 of EM 1110-2-3 	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary	Φ)]	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	(Equation 3-5 $C_1 = 2 (tan \Phi - K_h) / (Equation 3-5)$ $C_2 = [tan \Phi (1 - tan (Equation 3-5))$ Dynamic Comport (Equation 3-6) Backfill Resulta Name	 i6 of EM 1110-2-3 / (1+K_h tanΦ) i7 of EM 1110-2-3 iΦ tarβ)-(tanβ-K_h) i8 of EM 1110-2-3 i9 on ents qeq =γ K_h k i9 of EM 1110-2-3 i9 of EM 1110-2-3 	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) 1 ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot.	Φ)] Moments	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	$(Equation 3-5)$ $C_{1} = 2 (tan \Phi - K_{h}) / (Equation 3-5)$ $C_{2} = [tan \Phi (1-tan (Equation 3-5))$ $Dynamic Component (Equation 3-6)$ $Backfill Resulta$ $Name$ Pem	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3 52 of EM 1110-2-3 ant Forces Summ Force 28.5	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) 1 ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 6.33	Φ)] <u>Moments</u> 181	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	$(Equation 3-5)$ $C_{1} = 2 (tan\Phi-K_{h}) / (Equation 3-5)$ $C_{2} = [tan\Phi(1-tan (Equation 3-5))$ $Dynamic Compo (Equation 3-6)$ $Backfill Resulta$ $Name$ Pem $Pesub$	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 59 of EM 1110-2-3 52 of EM 1110-2-3 ant Forces Summ Force 28.5 18.4	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 6.33 1.47	Φ)] <u>Moments</u> 181 27	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	$(Equation 3-5)$ $C_{1} = 2 (tan \Phi - K_{h}) / (Equation 3-5)$ $C_{2} = [tan \Phi (1-tan (Equation 3-5))$ $Dynamic Compoon (Equation 3-6)$ $Backfill Resultan Name Pem Pesub Pesub Pw1a$	56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h) 58 of EM 1110-2-3 58 of EM 1110-2-3 50 of EM 1110-2-3 52 of EM 1110-2-3 53 54 52 of EM 1110-2-3 55 55 55 55 55 55 55 55 55 55 55 55 55	2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 6.33 1.47 1.00 10.67 1.00	Φ)] <u>Moments</u> 181 27 3	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7
	$(Equation 3-5)$ $C_{1} = 2 (tan \Phi - K_{h}) / (Equation 3-5)$ $C_{2} = [tan \Phi (1-tan (Equation 3-5))$ $Dynamic Compoo (Equation 3-6)$ $Backfill Resulta$ $Name$ Pem $Pesub$ $Pw1a$ Peq	i6 of EM 1110-2-3 / (1+K _h tanΦ) i7 of EM 1110-2-3 iΦ tarβ)-(tanβ-K _h) i8 of EM 1110-2-3 i9 tarβ)-(tanβ-K _h) i8 of EM 1110-2-3 i9 tarβ i9 tarβ)-(tanβ-K _h) i9 tarβ)-(tanβ-K _h)-(tanβ-K _h) i9 tarβ)-(tanβ-K _h)-(tanβ-K _h)-(tanβ-K _h)-(tanβ-K _h)-(tanβ-K _h)-(tanβ-K _h)-(2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) 1 ² / [2(tanα-tanβ)] 2502, Page 3-68) mary Arm to bot. 6.33 1.47 1.00 10.67	Ф)] <u>Moments</u> 181 27 3 235	c C	P = 30 $_1 = 0.78$ $_2 = 0.68$	7




Project	Napa River Flo	od Control	Project	
Subject	Flood Wall Des	sign (Wall #	\$1, Type B)	
Ву	David An	Date	Mar-05	

Design Wall Section and Pile Reinforcement (Station 3+15)

1. Loads

	Load Case	1	2	3	4
Forces w/o	Shear (k)	84.3	71.8	-2.3	69.0
Safety Factor	Moments(kft)	535.7	388.4	20.9	442.9
	Safety Factor	1.1	1.3	1.1	1.1
Forces w/	Shear (k)	92.8	93.3	-2.5	75.9
Safety Factor	Moments(kft)	589.3	505.0	23.0	487.2

2. Reinforced Concrete Wall (unit width)

2a. As continuous beam

Flexure reinforcement requirement (bending about vertical axis)

	_			Napa River F	lood Control	Project	
MGE		, INC.	Subject	Flood Wall D	esign (Wall #	1, Type B)	
			Ву	David An	Date	Mar-05	\bigvee
					-		
	Mu ≤ ФМn Mu = Hf x 1.7 x	01xwxf	(used 3 equal so	an continuous bean	n)	10.1	k-ft/ft
	where	0.1 × ₩ × 1	(used 5 equal sp	an continuous bean	')	10.1	K-11/11
		w = Vd/(L'*h)				0.74	kip/ft
		L' = L-25/12x 2				7.8	ft
		h =				16.0	
		Hf =	Hydraulic factor			1.30	
	ΦMn = Φ As x i		4P3-2, Equation	3.3			
	where	iy (u - a/z)					
	Where	d = 12in -2.5in		(wall thick = 12 ir	n)	9.5	in
		a = 0.15d		,	,	1.4	in
Required re	nforcement						
			a/2)] (Required)			0.26	
		where Φ=				0.90	
	use 1#5, As = (fy =				60 0.31	ksi in ²
Check	a = Asfy/(0.85f')					0.31	
eneek	where	f'c =					ksi
		b =	unit width of wall			12	in
	$\Phi Mn = \Phi Asfy($	d - a/2)				12.9	kft/ft
					$D/C = Mu / \Phi Mr$	n 0.78	ОК
Shear check	Ĺ	Vu = Hf x 1.7 x ^v	v/d / h /2 _			6.4	kin o/
		vu = 111 x 1.7 x	vu / 11/2 =			0.4	kips/
		$\Phi Vc = \Phi x 2 x \sqrt{1}$	f'c x b x d			12.3	kips
		where $\Phi =$				0.85	
					$D/C = Vu / \Phi Vc$	0.53	ок
	ntilovor boom						
20. AS Ca	ntilever beam						
typical expan	ision/construction jo	pint	* * *	¥ ¥	typical expans	ion/construction	ioint
31	<u>\</u>			··· /			,
		(``)\				
]		-	V			
			6'-0"				
			4	>			
		Mmoy	•			10.60	1.44/44
	Mu = Hf x 1.7 x		•	•		12.62	
	Mu = Hf x 1.7 x where	$Mmax = wl^2/2$	•			5.71	k/ft
		Mmax = wl^2/2 w =	•			5.71 0.74	k/ft k/ft/ft
		Mmax = wl^2/2 w = l = 6 - 25/12	4			5.71	k/ft k/ft/ft
	where	Mmax = wl^2/2 w = l = 6 - 25/12	4			5.71 0.74	k/ft k/ft/ft ft
	where	Mmax = wl^2/2 w = l = 6 - 25/12 fy (d-a/2) =	4	(wall thick = 12 ir))	5.71 0.74 3.9	k/ft k/ft/ft ft
	where	Mmax = wl^2/2 w = l = 6 - 25/12 fy (d-a/2) = Φ =	4	(wall thick = 12 ir)	5.71 0.74 3.9 0.9	k/ft k/ft/ft ft
Required re	where Mn = Φ x As x i assume	Mmax = wl^2/2 w = l = 6 - 25/12 fy (d-a/2) = Φ = d = 12in -2.5in a = 0.15d	•	(wall thick = 12 ir)	5.71 0.74 3.9 0.9 9.5 1.4	k/ft k/ft/ft ft in in
Required re	where Mn = Φ x As x i assume	$Mmax = wl^{2}/2$ w = l = 6 - 25/12 fy (d-a/2) = Φ = d = 12in -2.5in a = 0.15d As = Mu/[Φ fy(d-	•	(wall thick = 12 ir))	5.71 0.74 3.9 0.9 9.5 1.4 0.32	k/ft k/ft/ft ft in in
Required re	where Mn = Φ x As x i assume	$Mmax = wl^{2}/2$ w = l = 6 - 25/12 fy (d-a/2) = Φ = d = 12in -2.5in a = 0.15d As = Mu/[Φ fy(d- fy =	•	(wall thick = 12 in)	5.71 0.74 3.9 0.9 9.5 1.4 0.32	k/ft k/ft/ft ft in in in ² ksi

	_		Project	Napa River	Flood Contro	l Project	
MGE	ENGINEERING	, INC.	Subject	Flood Wall	Design (Wall	#1, Type B)	
	_		Ву	David An	Date	Mar-05	
Check	a =Asfy/(0.85f'c	*h)				0.65	in
Oneck	where	f'c =					ksi
	Where	b =	unit width of wall				in
	ΦMn = Φ Asfy(kft/ft
	+ Will = + 7 (01) (0				D/C = Mu / Ф		OK
Shear check						-	-
		Vu = Hf x 1.7 x	w x l =			6.4	kips/
		$\Phi Vc = \Phi x 2 x^{2}$	√f'c x b x d			12.3	kips
		where $\Phi =$				0.85	5
					$D/C = Vu / \Phi$	Vc 0.53	оκ
Consider 2	a And 2h II	sa #6@12" f	or both faces.				
Deflection		36 #0@12 1	or both laces.				
	Δmax =wl^4/(8	EI)				0.01	in
	where	E = 57√f'c =				3605.00) ksi
		l = 12 x 12^3 /	12 =			1728.00) in^4
							ок
2 Composi	ana hatwaar						
	ons betweer	-	ies				
030 00 010111	Rebar Size (#):	112.00				11	
	Number of Reb	ar:				18	
	Spiral Spacing:						, in
	Moment capaci			(from Xsection)	2,071	
	Moment capaci	(vip) =			, Mu = Hf x 1.7 x		
				D/C = Mu/ΦMn =	= Hf x 1.7 x Md/Φl		• OK
Use shear-friction	on design metho	b					
		Vn = Avf x fy x	μ	BDS p8-26		1011	kips
	where	Avf =				28.08	3 in^2
		fy =				60) ksi
		$\mu = 0.6 \lambda$				0.6	;
		λ =		normal concret	te	1.0)
				$D/C = Vu/\Phi Vn$	= Hf x 1.7 x Vd/Φ	Vn 0.24	OK
4. Piles							
	Shear capacity	of pile					
		$\Phi Vn = \Phi(Vc+V)$	s)			246	i kips
		where $\Phi =$				0.85	5
		Vc = 2 x √f'c x /	Ae			129	kips
		$Vs = \pi/2 Av fy d$	d / s			161	kips
			Av Rebar Size (#))		5	
			Av =			0.31	in^2
			d = 36" -3"			33	in
			S =			6	in
			Ae = 0.85Ag			1018	in^2
			-	$D/C = Vu/\Phi Vn$	= Hf x 1.7 x Vd/Φ	Vn 0.84	ок
			- Chinal-				
		Use #5@6" for	r Spirals.				

Subject Flood Wall Design (V By David An DatePile reinforcement development length, Id Id = max{ ACI.R12.2, ACI.R12.2.3}ACI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{fc})$]db = ACI R12.2.3Id = (3/40 x fy/\fr c x $\alpha\beta\gamma\lambda/[(c+Ktr)/db]$] =where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = whereAtr = fyt = fy s = rebar spacing (clear s > 2db) n = number of bars db = nominal diameter of bar (c+Ktr)/db =	ood Control Project	
ByDavid AnDatePile reinforcement development length, IdId = max{ ACI.R12.2, ACI.R12.2.3}ACI R12.2.2Id = [fy x $\alpha\beta\lambda/(20\sqrt{fc})$]db =ACI R12.2.3Id = [3/40 x fy//fc x $\alpha\beta\gamma\lambda/[(c+Ktr)/db]$] =where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover(clear cover c > db)Ktr = Atr x fyt / (1500sn) =whereAtr = $fyt = fy$ s = rebar spacing(clear s > 2db) n = number of barsdb = nominal diameter of bar	Wall #1, Type B))
Id = max{ACI.R122, ACI.R12.2.3} ACI R12.2.2 Id = [fy x $\alpha\beta\lambda/(20\sqrt{fc})$]db = ACI R12.2.3 Id = {3/40 x fy/\fc x $\alpha\beta\gamma\lambda/[(c+Ktr)/db]$ } = where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = where Atr = fyt = fy s = rebar spacing (clear s > 2db) n = number of bars db = nominal diameter of bar	Mar-05	
ACI R12.2.2 $Id = [fy \times \alpha\beta\lambda/(20\sqrt{f}c)]db =$ ACI R12.2.3 $Id = {3/40 \times fy/\sqrt{f}c \times \alpha\beta\gamma\lambda/[(c+Ktr)/db]} =$ where $\alpha = reinforcement location factor$ $\beta = coating factor$ $\gamma = reinforcement size factor$ $\lambda = lightweight aggregate concrete factor$ c = cover (clear cover $c > db$) Ktr = Atr $\times fyt / (1500sn) =$ where $Atr =$ fyt = fy s = rebar spacing (clear $s > 2db$) n = number of bars db = nominal diameter of bar		
ACI R12.2.3 Id = {3/40 x fy//f'c x $\alpha\beta\gamma$ //[(c+Ktr)/db]} = where α = reinforcement location factor β = coating factor γ = reinforcement size factor λ = lightweight aggregate concrete factor c = cover (clear cover c > db) Ktr = Atr x fyt / (1500sn) = where Atr = fyt = fy s = rebar spacing (clear s > 2db) n = number of bars db = nominal diameter of bar	74.0) in
$ \begin{array}{lll} \mbox{where} & \alpha = \mbox{reinforcement location factor} \\ \beta = \mbox{coating factor} \\ \gamma = \mbox{reinforcement size factor} \\ \lambda = \mbox{lightweight aggregate concrete factor} \\ c = \mbox{cover} \\ (\mbox{clear cover } c > \mbox{db}) \\ \mbox{Ktr} = \mbox{Atr } x \mbox{fyt} / (1500 \mbox{sn}) = \\ \mbox{where} & \mbox{Atr} = \\ \mbox{fyt} = \mbox{fyt} = \mbox{fy} \\ \mbox{s} = \mbox{rebar spacing} \\ (\mbox{clear s} > 2\mbox{db}) \\ \mbox{n} = \mbox{number of bars} \\ \mbox{db} = \mbox{nominal diameter of bar} \\ \end{array} $	74.0) in
$\beta = \text{coating factor}$ $\gamma = \text{reinforcement size factor}$ $\lambda = \text{lightweight aggregate concrete factor}$ $c = \text{cover}$ $(\text{clear cover } c > \text{db})$ $\text{Ktr} = \text{Atr } x \text{ fyt / (1500sn)} =$ $\text{where} \qquad \text{Atr} =$ $fyt = fy$ $s = \text{rebar spacing}$ $(\text{clear } s > 2\text{db})$ $n = \text{number of bars}$ $\text{db} = \text{nominal diameter of bar}$	36.5	i in
$\begin{split} \gamma &= \text{reinforcement size factor} \\ \lambda &= \text{lightweight aggregate concrete factor} \\ c &= \text{cover} \\ (\text{clear cover } c > \text{db}) \\ \text{Ktr} &= \text{Atr } x \text{ fyt} / (1500\text{sn}) = \\ \text{where} & \text{Atr} = \\ & \text{fyt} = \text{fy} \\ & \text{s} = \text{rebar spacing} \\ & (\text{clear } s > 2\text{db}) \\ & \text{n} = \text{number of bars} \\ \text{db} = \text{nominal diameter of bar} \end{split}$	1.0)
$\begin{split} \lambda &= \text{lightweight aggregate concrete factor} \\ c &= \text{cover} \\ (\text{clear cover } c > \text{db}) \\ \text{Ktr} &= \text{Atr x fyt} / (1500\text{sn}) = \\ \text{where} & \text{Atr} = \\ & \text{fyt} = \text{fy} \\ & \text{s} = \text{rebar spacing} \\ & (\text{clear s} > 2\text{db}) \\ & \text{n} = \text{number of bars} \\ \text{db} = \text{nominal diameter of bar} \end{split}$	1.0)
$c = cover$ $(clear cover c > db)$ $Ktr = Atr x fyt / (1500sn) =$ $where \qquad Atr =$ $fyt = fy$ $s = rebar spacing$ $(clear s > 2db)$ $n = number of bars$ $db = nominal diameter of bar$	1.0)
$ \begin{array}{ll} (\text{clear cover } c > db) \\ \text{Ktr} = \text{Atr } x \ \text{fyt} / (1500 \text{sn}) = \\ \text{where} & \text{Atr} = \\ & fyt = fy \\ & s = \text{rebar spacing} \\ & (\text{clear } s > 2db) \\ & n = \text{number of bars} \\ db = \text{nominal diameter of bar} \end{array} $	1.0	
$\begin{aligned} Ktr &= Atr \times fyt / (1500sn) = \\ where & Atr = \\ & fyt = fy \\ & s = rebar spacing \\ & (clear \ s > 2db) \\ & n = number of bars \\ & db = nominal diameter of bar \end{aligned}$	2.69	in in
where $Atr =$ fyt = fy s = rebar spacing (clear s > 2db) n = number of bars db = nominal diameter of bar		
$\begin{aligned} & fyt = fy \\ & s = rebar spacing \\ & (clear s > 2db) \\ & n = number of bars \\ & db = nominal diameter of bar \end{aligned}$	0.354	
s = rebar spacing (clear s > 2db) n = number of bars db = nominal diameter of bar	0.79	
(clear s > 2db) n = number of bars db = nominal diameter of bar	60.0	in
n = number of bars db = nominal diameter of bar	5.0	,
db = nominal diameter of bar	18	
	1.56	
	1.951	
Bar # Area (SI)		
3 0.11		
4 0.20		
5 0.31		
6 0.44		
7 0.60		
8 0.79		
9 1.00		
10 1.27		
11 1.56		
14 2.25 18 4.00		
18 4.00		

	Project	Napa River Flo	od Conti	ol Project		
MGE ENGINEERING, INC.	Subject	Flood Wall Des	sign (Wa	ll #1, Type C)		
	Ву	David An	Date	Mar-05		
					×	
	WALL #1,	ТҮРЕ С				
Backfill Properties						
	Backfill Thic	kness = (12.88') - (1.00') =	: 1	1.88 ft		
		Backfill Unit Weight =		125 pcf		
		Φ =		37 degree		
		C =		0 pcf		
	SMI	$F = Tan(\Phi_d) / Tan\Phi = 2/3 =$		0.67		
		$\Phi_d =$		27 degree		
		Ka = $Tan^2 (45^\circ - \Phi/2) =$		0.25		
		Ko = Tan ² (45° - $\Phi_{d}/2$) =		0.38		
		$Kp = Tan^2 (45^\circ + \Phi/2) =$		4.02		
Water Property						
		Water Unit Weight =		62.5 pcf		
Pile and Wall Data						
		Station =	ک	4+83		
		Grade Elevation (behind) =		2.88 ft		
		h Grade Elevation(front) =		4.00 ft		
	То	p of CIDH Pile Elevation =		1.00 ft		
		Pile Spacing =		2.00 ft		
		Pile Diameter =		2.00 ft		
		100 Year Flood Level =		5.55 ft		
		Elevation (Mean higher) =		3.76 ft		
	Wate	r Elevation (Mean lower) =		2.84 ft		

Water Elev. 7.00'	By Term (Undrained 3.5' V _{D-4} (from ba	d) In Servi ack face of w zer (Construc	David An ice Conditio	-	Mar-05 +83) Elev. +12.88' P _{D-4}
Load Case 1 Short Water Elev. 7.00'	By Term (Undrained 3.5' V _{D-4} (from ba D-4 Doz	d) In Serv ack face of w zer (Construc	ice Conditio	on (Station 4	+83) - Elev. +12.88' - P _{D-4}
Water Elev. 7.00'	3.5' V _{D-4} (from ba	ack face of w zer (Construc	rall)	-	Elev. +12.88' P _{D-4}
Water Elev. 7.00'	D-4 Doz	zer (Construc		= 2.5 kips/ft)	P _{D-4}
	qem	Pem			P _{D-4}
		<u>\</u>			
	X.				Backfill Elev. 4.00'
			qw1a	V	- Elev. 1.00'
Backfill Soil Pressure at Wall(Soil	pressure =γ Ki hi)		Nc	ote: Passive soil	resistance were igno
	Pressure(ksf)				0
qem 5.88	0.280	(qem - Moist soil	pressure at rest	wall
qesub 6.00	0.422	(qesub - Submer	ged soil pressure	e at rest wall
qw1a=qw2a 6.00	0.375	(qw - Water pres	sure	
Backfill Resultant Forces Summa	ry				
		(1 . (1)			
Name Force (kips)		ents(k-ft)			
NameForce (kips)IPem9.9	7.96	79			
NameForce (kips)IPem9.9Pesub25.3	7.96 2.80	79 71			
NameForce (kips)IPem9.9Pesub25.3Pw1a13.5	7.96 2.80 2.00	79 71 27			
Name Force (kips) I Pem 9.9 Pesub 25.3 Pw1a 13.5 Pd-4 16.4	7.96 2.80 2.00	79 71 27 116			
Name Force (kips) I Pem 9.9 Pesub 25.3 Pw1a 13.5 Pd-4 16.4 Pw2a -13.5	7.96 2.80 2.00 2.00	79 71 27			

0.084

0.063

0.049

0.038

8.32

9.50

10.69

11.88

0.7

0.8

0.9

1.0

0.300

0.151

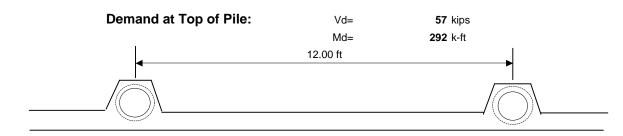
0.058

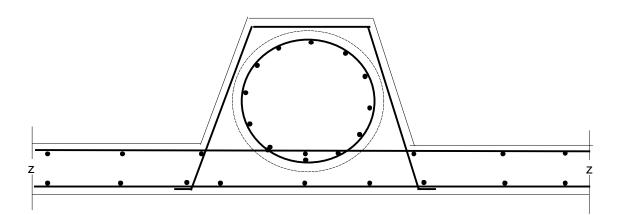
0.000

R/				Subject	Napa River Fl		0	/
	1GE	ENGINEERING	, INC.	Ву	Flood Wall D	Date		
				,	David An		Mar-05	\bigvee
	Load	Case 2 Lo	ong Term (Dr	ained) In Servi	ce Condition ((Station 4+8	3)	
			V _{LEFT}	V _{RIGHT}				
	H-15 truck load		2# 6#		USE V	/= (0 kips	
		-	2ft 6ft	H-15 truck	5		Elev. +12.88'	
		Ν	v	Pem			Pes	
		`	\backslash					
				qem			Backfill	
	Water Elev. 4.00)'		qesub				
	$\overline{\nabla}$			N			Elev. 4.00'	
						U	Elev. 1.00'	
qw2a					qw1a			
	/							
	/			\				
					\			
			Soil pressure = γ K	(i hi) 1	Note	e: Passive soil r	esistance were i	gnored.
	Name	Thickness(ft)	Pressure(ksf)					
	qem	8.88	0.422		qem - Moist soil p			
	qem qesub	3.00	0.494		qesub - Submerge	ed soil pressure		
	qem					ed soil pressure		
	qem qesub qw1a=qw2a	3.00 3.00	0.494 0.188		qesub - Submerge	ed soil pressure		
	qem qesub	3.00 3.00	0.494 0.188	Moments	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta	3.00 3.00 nt Forces Sum	0.494 0.188 mary	Moments 134	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name	3.00 3.00 nt Forces Sum Force	0.494 0.188 mary Arm to bot.		qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem	3.00 3.00 nt Forces Sum Force 22.5	0.494 0.188 mary Arm to bot. 5.96	134	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub	3.00 3.00 nt Forces Sum Force 22.5 16.5	0.494 0.188 mary Arm to bot. 5.96 1.46	134 24	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4	0.494 0.188 mary Arm to bot. 5.96 1.46	134 24 3	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00	134 24 3 0 -3 158.1	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 1.00	134 24 3 0 -3	qesub - Submerge	ed soil pressure		
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 1.00 Safety Factor	134 24 3 0 -3 158.1	qesub - Submergi qw - Water pressu	ed soil pressure ure	at rest wall	
	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left)	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 1.00 Safety Factor 1.3	134 24 3 0 -3 158.1	qesub - Submergi qw - Water pressu	ed soil pressure ure ing Summary (at rest wall	Momen
(for V _{LEFT})	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Dading Summary (water of the second sec	3.00 3.00 mt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left) ΔP _{PH (LEFT)}	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 1.00 Safety Factor 1.3	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT})	ed soil pressure ure ing Summary (Z	Right)	Momen
(for V _{LEFT}) 0.1	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall pading Summary (Z 1.19	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left) 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 1.00 Safety Factor 1.3 Moment 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT}) 0.1	ing Summary (Z 1.19	Right) ΔP _{PH (RIGHT)} 0.000	0.000
for V _{LEFT}) 0.1 0.2	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallDading Summary (Z1.192.38	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2	ing Summary (Z 1.19 2.38	Right) ΔP _{PH (RIGHT)} 0.000 0.000	0.000
for V _{LEFT}) 0.1 0.2 0.3	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallDeading Summary (for the second s	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left) 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerga qw - Water pressu H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3	ing Summary (Z 1.19 2.38 3.56	Right) ΔP _{PH (RIGHT)} 0.000 0.000	0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4	qemqesubqw1a=qw2aBackfill ResultaNamePemPesubPw1aPh-15Pw2aAt bot of wallDading Summary (Z1.192.383.564.75	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	ing Summary (Z 1.19 2.38 3.56 4.75	At rest wall ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Dading Summary (I Z 1.19 2.38 3.56 4.75 5.94	3.00 3.00 Int Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5	ing Summary (Z 1.19 2.38 3.56 4.75 5.94	At rest wall ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall oding Summary (I Z 1.19 2.38 3.56 4.75 5.94 7.13	3.00 3.00 Int Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13	Right) ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall Dading Summary (I Z 1.19 2.38 3.56 4.75 5.94	3.00 3.00 Int Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6	ing Summary (Z 1.19 2.38 3.56 4.75 5.94	At rest wall ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) $\Delta P_{PH (LEFT)}$ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50	A PPH (RIGHT) ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall dime 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69	3.00 3.00 Int Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69	At rest wall ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) $\Delta P_{PH (LEFT)}$ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	H-15 Truck Load b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50	A PH (RIGHT) ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall dime 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69	AI rest wall ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	qem qesub qw1a=qw2a Backfill Resulta Name Pem Pesub Pw1a Ph-15 Pw2a At bot of wall ading Summary (f Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69 11.88	3.00 3.00 nt Forces Sum Force 22.5 16.5 3.4 0.0 -3.4 39.0 ∑ V Left) $\Delta P_{PH (LEFT)}$ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.494 0.188 mary Arm to bot. 5.96 1.46 1.00 Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	134 24 3 0 -3 158.1	qesub - Submerge qw - Water presse b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	ing Summary (Z 1.19 2.38 3.56 4.75 5.94 7.13 8.32 9.50 10.69 11.88	AI rest wall ΔPPH (RIGHT) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N				Project	Napa River I	Flood Cont	rol Project
	IGE		INC.	Subject	Flood Wall I	Design (Wa	all #1, Type C)
				Ву	David An	Date	Mar-05
	Load Case	3 Long Te	erm (Drained)	In Service Co	ondition With	Flood (Sta	ation 4+83)
	Water Elev. 15.	55'		Pem			Elev. +12.88'
		\				Soil Lava	r 1 (Backfill)
				qem qesub		Soli Laye	r 1 (Backfill) _ Elev. 4.00' Elev. 1.00'
2a	1				qw1a		
		essure at Wall(S	oil pressure =γ K	i hi)	No	ote: Passive s	oil resistance were ignore
	Name	Thickness(ft)	Pressure(ksf)				
	Name qem	8.88	0.422		qem - Moist soil		
	qem qesub	8.88 3.00	0.422 0.494		qesub - Submer	ged soil press	
	qem qesub qw1a	8.88 3.00 3.00	0.422 0.494 0.188			ged soil press	
	qem qesub	8.88 3.00	0.422 0.494		qesub - Submer	ged soil press	
	qem qesub qw1a	8.88 3.00 3.00 14.55	0.422 0.494 0.188 0.909		qesub - Submer	ged soil press	
	qem qesub qw1a qw2a	8.88 3.00 3.00 14.55	0.422 0.494 0.188 0.909	Moments(k-ft)	qesub - Submer	ged soil press	
	qem qesub qw1a qw2a Backfill Resulta	8.88 3.00 3.00 14.55 ant Forces Sumr	0.422 0.494 0.188 0.909 nary	Moments(k-ft) 134	qesub - Submer	ged soil press	
	qem qesub qw1a qw2a Backfill Resulta Name	8.88 3.00 3.00 14.55 ant Forces Summ Force (kips)	0.422 0.494 0.188 0.909 mary Mom Arm(ft)		qesub - Submer	ged soil press	
	qem qesub qw1a qw2a Backfill Resulta Name Pem	8.88 3.00 3.00 14.55 ant Forces Sumr Force (kips) 22.5	0.422 0.494 0.188 0.909 mary Mom Arm(ft) 5.96	134	qesub - Submer	ged soil press	
	qem qesub qw1a qw2a Backfill Resulta Name Pem Pesub	8.88 3.00 3.00 14.55 ant Forces Summ Force (kips) 22.5 16.5	0.422 0.494 0.188 0.909 mary Mom Arm(ft) 5.96 1.46	134 24	qesub - Submer	ged soil press	
	qem qesub qw1a qw2a Backfill Resulta Name Pem Pesub Pw1a	8.88 3.00 3.00 14.55 ant Forces Summ Force (kips) 22.5 16.5 3.4	0.422 0.494 0.188 0.909 nary Mom Arm(ft) 5.96 1.46 1.00	134 24 3	qesub - Submer	ged soil press	

				Project	Napa River I	Flood Contr	ol Project	
N	1GE	ENGINEERING	INC.	Subject	Flood Wall I	Design (Wal	ll #1, Type C)	1,
				Ву	David An	Date	Mar-05	\mathbb{V}
	Load Case 4 -			Pem	dition With Ea	rthquqke (S	Station 4+83) qeq-p Elev. +12.88' qeq Soil Layer 1 (Bac	
	Water Elev. 7.00 $\sqrt{1}$	0'		qesub			Elev. 4.00'	
2a					qw1a		— Elev. 1.00'	
			oil pressure =γ K	i hi)	No	ote: Passive so	oil resistance were	ignore
	Name	Thickness(ft)	Pressure(ksf)					
	qem	5.88	0.280		qem - Moist soil			
	qesub	3.00	0.351		qesub - Submer		ure at rest wall	
	qw1a	3.00	0.188		qw - Water pres	sure		
		3.00	0.188					
	qw2a		0.470		c · · ·			
	dw∠a qeq	11.88	0.170		qeq - Seismic co	omponents		
		11.88	0.170			components $S_h = 0.15$	g	
	qeq α =tan ⁻¹ [(C ₁ +√(C	11.88 1 ² +4C ₂))/2]	0.170 2502, Page 3-67)		К		g	
	qeq α =tan ⁻¹ [(C ₁ +√(C	11.88 1 ² +4C ₂))/2]			к	G _h = 0.15	g degree	
	qeq α =tan ⁻¹ [(C ₁ +√(C	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-3			K	$\beta_{h} = 0.15$ $\beta = 0$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + C_1 + \sqrt{C_1 + / C_1 + \sqrt{C_1 + C_1 + C_1$	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-: / (1+K _h tanΦ)			K C	$S_h = 0.15$ $\beta = 0$ $\Phi = 30$	degree	
	$\frac{qeq}{\alpha = tan^{-1}[(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + C_1 + (C_1 + C_1 + $	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3	2502, Page 3-67) 2502, Page 3-67)		K C C	$S_{h} = 0.15$ $\beta = 0$ $\Phi = 30$ $S_{1} = 0.787$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 +))})}) .) . }) . } } } } } } } } } }$	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 +))})}) .) . }) . } } } } } } } } } }$	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h	2502, Page 3-67) 2502, Page 3-67)	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	$\frac{qeq}{\alpha = tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))})})})})})})})})}}}}}}}}}}}}}}}}}}$	11.88 1 ² +4C ₂))/2] 56 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-3	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67)	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))}))) }) }) }) } } } } } } } }$	11.88 1 ² +4C ₂))/2] 66 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-3 onents qeq =γ K _h	2502, Page 3-67) 2502, Page 3-67)] / [tanΦ(1+K _h tan 2502, Page 3-67) η ² / [2(tanα-tanβ)]	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 +))}))) }) }) }) } } } } } } } }$	11.88 1 ² +4C ₂))/2] 66 of EM 1110-2-3 / (1+K _h tanΦ) 57 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-3 onents qeq =γ K _h	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67)	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + (C_1 +)})})}) .) . }) } }) } } } } } } } $	11.88 1 ² +4C ₂))/2] i6 of EM 1110-2- / (1+K _h tanΦ) i7 of EM 1110-2- Φ tarβ)-(tanβ-K _h i8 of EM 1110-2- pnents qeq =γ K _h h i2 of EM 1110-2-	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) ^{4² / [2(tanα-tanβ)] 2502, Page 3-68)}	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2)})}})})})])))))))))))))))))))))))))))$	11.88 1 ² +4C ₂))/2] 6 of EM 1110-2- / (1+K _h tanΦ) 57 of EM 1110-2- Φ tarβ)-(tanβ-K _h 58 of EM 1110-2- 58 of EM 1110-2- 52 of EM 1110-2- 52 of EM 1110-2- 53 of EM 1110-2- 54 of EM 1110-2- 55 of EM 1110-2- 56 of EM 1110-2- 57 of EM 1110-2- 57 of EM 1110-2- 58 of EM 1110-2- 59 of EM 1110-2- 50 of EM 110-2- 50 of EM 110-2- 50 of EM 110-2- 50 of EM 100 of	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) 1 ² / [2(tanα-tanβ)] 2502, Page 3-68) nary	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + (C_1 +)})})}) .) . }) } }) } } } } } } } $	11.88 1 ² +4C ₂))/2] 66 of EM 1110-2-3 7 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h 8 of EM 1110-2-3 9 onents qeq =γ K _h 9 onents qeq =γ K _h 9 of EM 1110-2-3 9 onents qeq summer Force	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot.	Φ)]	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 +))})}}) .)) . } } } } } } } } } } } $	11.88 1 ² +4C ₂))/2] 66 of EM 1110-2-3 7 (1+K _h tanΦ) 57 of EM 1110-2-3 4Φ tarβ)-(tanβ-K _h 58 of EM 1110-2-3 58 of EM 1110-2-3 52 of EM 1110-2-3 52 of EM 1110-2-3 53 54 55 57 57 58 59 59 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 4.96	Φ)] <u>Moments</u> 49	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2)})}})})})])))))))))))))))))))))))))))$	11.88 1 ² +4C ₂))/2] 66 of EM 1110-2-3 7 of EM 1110-2-3 Φ tarβ)-(tanβ-K _h 8 of EM 1110-2-3 9 onents qeq =γ K _h 9 onents qeq =γ K _h 9 of EM 1110-2-3 9 onents qeq summer Force	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot.	Φ)] Moments	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + \sqrt{(C_1 + 2C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + \sqrt{(C_1 + (C_1 + (C_1 + (C_1 + +)})})}))) }) }) } } } } } } } $	11.88 1 ² +4C ₂))/2] i6 of EM 1110-2- / (1+K _h tanΦ) i7 of EM 1110-2- iΦ tarβ)-(tanβ-K _h i8 of EM 1110-2- i9 tarβ)-(tanβ-K _h i9 tarβ)-(tanβ-K _h)-(tanβ-K _h)-	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 4.96 1.44	Φ)] <u>Moments</u> <u>49</u> 16	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + (C_1 + \sqrt{(C_1 + 2C_1 +$	11.88 1 ² +4C ₂))/2] i6 of EM 1110-2-: / (1+K _h tanΦ) i7 of EM 1110-2-: iΦ tarβ)-(tanβ-K _h i8 of EM 1110-2-: i8 of EM 1110-2-: i9 ents qeq =γ K _h h i2 of EM 1110-2-: i9 ents qeq = 10 k _h h i3 i = 10 k _h h i4 forces Summ Force 9.9 11.3 3.4	2502, Page 3-67) 2502, Page 3-67))] / [tanΦ(1+K _h tan 2502, Page 3-67) 1 ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 4.96 1.44 1.00	Φ)] <u>Moments</u> <u>49</u> <u>16</u> <u>3</u>	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	
	qeq $\alpha = \tan^{-1}[(C_1 + (C_1 + \sqrt{(C_1 + 2C_1 +$	11.88 $_{1}^{2}$ +4C ₂))/2] i6 of EM 1110-2-: / (1+K _h tanΦ) i7 of EM 1110-2-: Φ tarβ)-(tanβ-K _h) i8 of EM 1110-2-: pnents qeq =γ K _h 1 i2 of EM 1110-2-: ant Forces Summ Force 9.9 11.3 3.4 12.1	2502, Page 3-67) 2502, Page 3-67) 9] / [tanΦ(1+K _h tan 2502, Page 3-67) n ² / [2(tanα-tanβ)] 2502, Page 3-68) nary Arm to bot. 4.96 1.44 1.00 7.92	Ф)] <u>Moments</u> <u>49</u> <u>16</u> <u>3</u> <u>96</u>	K C C	$\beta_{h} = 0.15$ $\beta = 0$ $\phi = 30$ $\beta_{1} = 0.787$ $\beta_{2} = 0.681$	degree	




Project	Napa River Flo	od Con	trol Project	
Subject	Flood Wall Des	sign (W	all #1, Type C)	
Ву	David An	Date	Mar-05	

Design Wall Section and Pile Reinforcement (Station 4+83)

1. Loads

	Load Case	1	2	3	4
Forces w/o	Shear (k)	51.5	39.0	-37.0	33.4
Safety Factor	Moments(kft)	265.2	158.1	-223.5	161.5
	Safety Factor	1.1	1.3	1.1	1.1
Forces w/	Shear (k)	56.7	50.7	-40.7	36.7
Safety Factor	Moments(kft)	291.7	205.6	-245.9	177.6

2. Reinforced Concrete Wall (unit width)

2a. As continuous beam

Flexure reinforcement requirement (bending about vertical axis)

	_		Napa River Flood Control Project			roject	l
/IGE	ENGINEERING	, INC.	Subject	Flood Wall E	Design (Wall #	1, Type C)	,
			Ву	David An	Date	Mar-05	
	Mu ≤ ΦMn Mu = Hf x 1.7 x where	x 0.1 x w x ŕ	(used 3 equal spa	an continuous bear	n)	8.3	k-ft/f
	Where	w = Vd/(L'*h)				0.61	kip/f
		L' = L-25/12x 2				7.8	ft
		h =				11.9	ft
		Hf =	Hydraulic factor			1.30	
			4P3-2, Equation	3.3			
	ΦMn = Φ As x	ty (d - a/2)					
	where	d = 12in -2.5in		(wall thick = 12 in	2)	9.5	in
		a = 0.15d		(wall thick = 12 li	1)	9.5 1.4	
Required rei	inforcement	a – 0.150				1.4	
		As = Mu/[Φfy(d-	a/2)] (Required)			0.21	in ²
		where $\Phi =$	a, _)] (. (oquod)			0.90	
		fy =					ksi
	use 1#5, As =	-				0.31	in ²
Check	a =Asfy/(0.85f	c*b)				0.29	in
	where	f'c =				4	ksi
		b =	unit width of wall			12	in
	$\Phi Mn = \Phi Asfy($	(d - a/2)				13.0	kft/ft
					D/C = Mu / ΦMn	0.63	ок
Shear check	C	Vu = Hf x 1.7 x \	/d / h /2 -			F 2	kino
		Vu – TITX 1.7 X V	vu / 11/2 –			5.5	kips
		$\Phi Vc = \Phi x 2 x \sqrt{2}$	f'c x b x d			12.3	kips
		where $\Phi =$				0.85	
					D/C = Vu / ΦVc	0.43	ок
	ntilever beam						
2b. As ca							
	sion/construction j	oint	* * *	¥ ¥	typical expans	ion/construction	joint
	nsion/construction j	oint [★ ★ ★	¥ ¥	/ typical expans	ion/construction	joint
	ision/construction j	oint [★ ★ ★	¥ ¥ 	✓ typical expans	ion/construction	joint
	ision/construction j	oint [★ ★ ★		ypical expans	ion/construction	joint
	ision/construction j	oint [♦ ♦ ♦ 6'-0" 		✓ typical expans	ion/construction	joint
		/(6'-0"		✓ typical expans		
	Mu = Hf x 1.7 x	< Mmax =	6'-0"	¥ ¥ ¥	✓ typical expans	15.19	kft/ft
		< Mmax = Mmax = wl^2/2	 ♦ ♦ ♦ 6'-0" 	¥ ¥ 	✓ typical expans	15.19 6.87	kft/ft k/ft
	Mu = Hf x 1.7 x	< Mmax = Mmax = wl^2/2 w =	6'-0"		✓ typical expans	15.19 6.87 0.61	kft/ft k/ft k/ft/f
	Mu = Hf x 1.7 y where	< Mmax = Mmax = wl^2/2 w = l = 6 - 15/12	6'-0"		/ typical expans	15.19 6.87	kft/ft k/ft k/ft/f
	Mu = Hf x 1.7 x	< Mmax = Mmax = wl^2/2 w = l = 6 - 15/12	6'-0"		✓ typical expans	15.19 6.87 0.61 4.8	kft/ft k/ft k/ft/f
	Mu = Hf x 1.7 y where	< Mmax = Mmax = wl^2/2 w = I = 6 - 15/12 fy (d-a/2) = Φ =	6'-0"	(wall thick = 12 ii		15.19 6.87 0.61 4.8 0.9	kft/ft k/ft k/ft/f ft
	$Mu = Hf \times 1.7 x$ where $Mn = \Phi \times As x$	$d = \frac{1}{2} $ Mmax = $\frac{1}{2} $ Mmax = $\frac{1}{2$	6'-0"	(wall thick = 12 in		15.19 6.87 0.61 4.8 0.9 9.5	kft/ff k/ft k/ft/f ft
typical expan	Mu = Hf x 1.7 x where Mn = Φ x As x assume	< Mmax = Mmax = wl^2/2 w = I = 6 - 15/12 fy (d-a/2) = Φ =	6'-0"	(wall thick = 12 in		15.19 6.87 0.61 4.8 0.9	kft/ft k/ft k/ft/f ft
	Mu = Hf x 1.7 x where Mn = Φ x As x assume	$ Mmax = Mmax = wl^2/2 w = l = 6 - 15/12 fy (d-a/2) = \Phi = d = 12in - 2.5in a = 0.15d $		(wall thick = 12 in		15.19 6.87 0.61 4.8 0.9 9.5	kft/ft k/ft/f ft in in
typical expan	Mu = Hf x 1.7 x where Mn = Φ x As x assume	$d = \frac{1}{2} $ Mmax = $\frac{1}{2} $ Mmax = $\frac{1}{2$		(wall thick = 12 in		15.19 6.87 0.61 4.8 0.9 9.5 1.4 0.38	kft/ft k/ft/f ft in in

			Project	Napa River	Flood Control	Project	
ЛGI	Engineerin	GINC	Subject	Flood Wall	Flood Wall Design (Wall #1,		
	ENGINEERIN	0, 110.	Ву	David An	Date	Mar-05	
Check	a =Asfy/(0.85	'c*b)				0.65 i	
	where	f'c =				4 k	
		b =	unit width of wall			12 i	
	ΦMn = Φ Asfy	/(d - a/2)				18.2 k	
					D/C = Mu / ΦMr	n 0.93 (
Shear chee	ck					Say OK	
		Vu = Hf x 1.7	x w x l =			6.4 k	
		$\Phi Vc = \Phi x 2$	x√f'cxbxd			12.3 k	
		where $\Phi =$				0.85	
					D/C = Vu / ΦVo		
Conside	er 2a. And 2b.,	Use #6@12"	for both faces.				
Deflecti	on check						
	$\Delta max = wl^4/($	8EI)				0.01 i	
	where	E = 57√f'c =				3605.00 k	
		I = 12 x 12^3	/ 12 =			1728.00 i	
						(
3. Conne	ections betwee	en wall and p	oiles				
	DH Piles at spacing	-					
	Rebar Size (#):				10	
	Number of Re	bar:				14	
	Spiral Spacing	g:				5 i	
	Moment capa	city Mn (Mp) =		(from Xsection)	1	824 k	
					$Mu = Hf \times 1.7 \times Mc$		
l lee shear-	friction design meth	od		D/C = Mu/ΦMn =	: Hf x 1.7 x Md/ФМn	0.87 (
Use shear-	menor design men	Vn = Avf x fy	Xμ	BDS p8-26		640 k	
	where	Avf =				17.78 i	
		fy =				60 k	
		$\mu = 0.6 \lambda$				0.6	
		λ =		normal concret	e	1.0	
				$D/C = Vu/\Phi Vn$	= Hf x 1.7 x Vd/ΦVr	0.23 (
4. Piles							
	Shear capacit	y of pile					
		$\Phi Vn = \Phi(Vc+$	·Vs)			153 k	
		where $\Phi =$				0.85	
		Vc = 2 x √f'c >				57 k	
		$\lambda = -0 \lambda + 6$	/d/s			123 k	
		$Vs = \pi/2 Av fy$				5	
		$VS = \pi/2 AV I$	Av Rebar Size (#	ŧ)			
		$VS = \pi/2$ AV ly	Av =	ŧ)		0.31 i	
		$VS = \pi/2 \text{ AV Iy}$	Av = d = 24" -3"	¢)		21 i	
		$vs = \pi z A v i$	Av = d = 24" -3" s =	¢)		21 i 5 i	
		$vs = \pi i 2 A v i j$	Av = d = 24" -3"		= Hf x 1.7 x Vd/ФVr	21 i 5 i 452 i	

ACI R12.2.3 Id	it developm 2, ACI.R12 = [fy xαβλ/	ent length, ld .2.3} (20√f'c)]db = √f'c x αβγλ/[(c+K	nent location factor	Flood Wall I David An	Design (Wa Date	ull #1, Type C) Mar-05 60.2 60.2 28.5
Pile reinforcemen Id = max{ ACI.R12 ACI R12.2.2 Id ACI R12.2.3 Id	h t developm 2, ACI.R12 = [fy x αβλ/ = {3/40 x fy,	ent length, ld .2.3} $(20\sqrt{f'c})$]db = $\sqrt{f'c} \propto \alpha\beta\gamma\lambda/[(c+K)]$ α = reinforcen β = coating fa	tr)/db]} = nent location factor	David An	Date	60.2
ld = max{ ACI.R12 ACI R12.2.2 ld ACI R12.2.3 ld	2, ACI.R12 = [fy x αβλ/ = {3/40 x fy/	.2.3} (20 \sqrt{f} c)]db = \sqrt{f} c x $\alpha\beta\gamma\lambda/[(c+K)$ α = reinforcen β = coating fa	nent location factor			60.2
ACI R12.2.2 ld ACI R12.2.3 ld	= [fy x $\alpha\beta\lambda$ / = {3/40 x fy/	(20√f'c)]db = √f'c x αβγλ/[(c+K α = reinforcen β = coating fa	nent location factor			60.2
ACI R12.2.3 Id	= {3/40 x fy/	\mathcal{M} f'c x $\alpha\beta\gamma\mathcal{M}$ [(c+K α = reinforcen β = coating fa	nent location factor			
		α = reinforcen β = coating fa	nent location factor			28.5
w	here	β = coating fa				
			ctor			1.0
		γ = reinforcen				1.0
						1.0
			t aggregate concret	e factor		1.0
		c = cover				2.69
		(clear cover c				0.004
		Ktr = Atr x fyt				0.601
		where	Atr =			0.79 60.0
			fyt = fy	a		3.8
			s = rebar spacin (clear s > 2db)	y		3.0
			n = number of baseline for the second seco	are		14
		db = nominal	diameter of bar			1.27
			(c+Ktr)/db =			2.592
		use	(c+Ktr)/db =			2.5
		Bar #	Area (SI)			
		3 4	0.11 0.20			
		4 5	0.20			
		6	0.44			
		7	0.60			
		8	0.79			
		9	1.00			
		10	1.27			
		11	1.56			
		14	2.25			
		18	4.00			

Project	Napa River Flood Control Project			
Subject	Wall #2 to #6 Design			
Ву	David An	Date	Feb-05	\bigvee

WALL #2 TO #6 DESIGN

	Project	Napa River Flo	od Cor	ntrol Project
1GE ENGINEERING, INC.	Subject	Opper wan Design (H=6)		
	Ву	David An	Date	Feb-05
	Upper Wall D	esian		
	Design Height H			
Backfill Properties				
		Backfill Thickness =	:	6.00 ft
		Backfill Unit Weight =	:	125 pcf
		Φ=		37 degree
		C =		0 pcf
	SM	$F = Tan(\Phi_d) / Tan\Phi = 2/3 =$		0.67
		$\Phi_{d} =$		27 degree
		Ka = Tan² (45° - Φ/2) =		0.25
		Ko = Tan ² (45° - $\Phi_{d}/2$) =		0.38
		$Kp = Tan^2 (45^\circ + \Phi/2) =$:	4.02
Water Property				
		Water Unit Weight =		62.5 pcf
Wall and Footing Data				
Design He	ight (ft)			6
Toe Cover	(ft)			1.5
Top Wall T	hick (ft)			1.0
100 Year F	Flood Level to Top of	f Wall (ft)		2.00

			Project	Napa River Flo	ood Control Project	
1G E	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=6')	
			Ву	David An	Date Feb-05	
Load case ba	ased on DOAFlood Load	Walls and Chanr Case 1 Const	ruction Condition Design Height, H=	Load Conditions & (Unusal Condition 6.00 ft	-	ps/ft
	Lower Promenad		<hr/>	P _{D-4} for wall	F.G.	
	re at Wall (Soil press		`qem2	Note	: Passive soil resistance v	were
Name	Layer	Thickness(ft)	Pressure(ksf)			
qem1 qem2	Backfill Backfill	6.00 1.50	0.285 0.357	qem - Moist soil	pressure at rest wall	
qem1	Backfill Backfill	6.00 1.50 /all	0.285 0.357 h = a = 2' / 6.0' = V _{D-4} =	= 6.00 = 0.33 2.5) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w	6.00 1.50 /all ΔP _{D-4} = (V _D .	0.285 0.357 h = a = 2' / 6.0' = V _{D-4} = 4 /h) [(0.203b)/(0.16	= 6.00 = 0.3; 2.5 +b^2)^2] (EM 111	D ft 3 ≤ 0.4	
qem1 qem2	Backfill Backfill For bottom of w	6.00 1.50 /all $\Delta P_{D-4} = (V_{D-4})$ Z = bh	0.285 0.357 h = a = 2' / 6.0' = V_{D-4} = 4 /h) [(0.203b)/(0.16)	6.00 0.33 2.5 +b^2)^2] (EM 111 Moment) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w b 0.0	6.00 1.50 vall $\Delta P_{D-4} = (V_{D-4})$ Z = bh 0.00	0.285 0.357 h = a = 2' / 6.0' = V _{D-4} = 4 /h) [(0.203b)/(0.16) \Delta P _{D-4 wal} 0.000	= 6.00 = 0.33 2.5 +b^2)^2] (EM 111 Moment 0.000) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D-4})$ $\frac{Z = bh}{0.00}$ 0.60	0.285 0.357 h = a = 2' / 6.0' = V_{D-4} = 4 /h) [(0.203b)/(0.16) \Delta P_{D-4 wall} 0.000 0.176	= 6.00 = 0.33 2.5 +b^2)^2] (EM 1110 Moment 0.000 0.948) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2	$\frac{6.00}{1.50}$ /all $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20	0.285 0.357 $h =$ $a = 2' / 6.0' =$ $V_{D-4} =$ $V_{D-4} =$ $\Delta P_{D-4 \text{ wall}}$ 0.000 0.176 0.254	= 6.00 = 0.33 2.5 +b^2)^2] (EM 1111 Moment 0.000 0.948 1.218) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D})$ $Z = bh$ 0.00 0.60 1.20 1.80	0.285 0.357 $h =$ $a = 2' / 6.0' =$ $V_{D-4} =$ $V_{D-4} =$ $4 /h) [(0.203b)/(0.16)$ $\Delta P_{D-4 \text{ wal}}$ 0.000 0.176 0.254 0.244	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D-4})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40	$\begin{array}{c} 0.285\\ \hline 0.357\\ h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ 4 /h) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \text{ wall}}\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.254\\ \hline 0.244\\ \hline 0.198\end{array}$	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00	0.285 0.357 $h =$ $a = 2' / 6.0' =$ $V_{D-4} =$ $V_{D-4} =$ $4 /h) [(0.203b)/(0.16)$ $\Delta P_{D-4 \text{ wal}}$ 0.000 0.176 0.254 0.244	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111) Moment 0.000 0.948 1.218 1.023 0.714 0.453) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00 3.60	$\begin{array}{c} 0.285\\ \hline 0.357\\ \hline h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 \ /h) [(0.203b)/(0.16)\\ \hline \\ \hline \Delta P_{D-4 \ wall}\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.254\\ \hline 0.244\\ \hline 0.198\\ \hline 0.151\\ \hline 0.113\\ \end{array}$	6.00 6.00 6.03 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714 0.453 0.270) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00	0.285 0.357 $h =$ $a = 2' / 6.0' =$ $V_{D-4} =$ $4 /h) [(0.203b)/(0.16)$ $\Delta P_{D-4 \text{ wall}}$ 0.000 0.176 0.254 0.254 0.244 0.198 0.151	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111) Moment 0.000 0.948 1.218 1.023 0.714 0.453) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	$\frac{6.00}{1.50}$ <i>i</i> all $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00 3.60 4.20	$\begin{array}{c} 0.285\\ \hline 0.357\\ h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 \ /h) \ [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \ wall}\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.254\\ \hline 0.244\\ \hline 0.198\\ \hline 0.151\\ \hline 0.113\\ \hline 0.084\\ \end{array}$	6.00 6.00 6.00 7.2. 6.00 2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	$\frac{6.00}{1.50}$ /all $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ $\frac{0.60}{1.20}$ $\frac{1.80}{2.40}$ $\frac{3.60}{4.20}$ $\frac{4.80}{3.80}$	$\begin{array}{c} 0.285\\ 0.357\\ h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 \ /h) \left[(0.203b) / (0.16) \\ \hline \Delta P_{D-4 \ wal} \\ 0.000\\ \hline 0.176\\ 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.244\\ \hline 0.198\\ \hline 0.151\\ \hline 0.113\\ \hline 0.0113\\ \hline 0.084\\ \hline 0.063 \end{array} \right]$	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714 0.453 0.270 0.151 0.076) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_D)$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40	$\begin{array}{c} 0.285\\ 0.357\\ h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ \sqrt{b} \\ \sqrt$	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714 0.453 0.270 0.151 0.076 0.029) ft 3 ≤ 0.4 5 kips/ft	
qem1 qem2	Backfill Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	$\frac{6.00}{1.50}$ /all $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00	$\begin{array}{c} 0.285\\ \hline 0.357\\ \hline h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 \ /h) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \ wall}\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.000\\ \hline 0.000\\ \hline 0.000\\ \hline 0.003\\ \hline 0.003\\ \hline 1.369\\ \end{array}$	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714 0.453 0.270 0.151 0.076 0.029 0.000) ft 3 ≤ 0.4 5 kips/ft 0-2-2502 Page 3-49)	
qem1 qem2	Backfill Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	$\frac{6.00}{1.50}$ <i>y</i> all $\Delta P_{D-4} = (V_{D})$ $Z = bh$ 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 mary for Bottom	$\begin{array}{c} 0.285\\ 0.357\\ h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 /h) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \ wall}\\ 0.000\\ 0.176\\ 0.254\\ 0.254\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.113\\ 0.0254\\ 0.151\\ 0.113\\ 0.084\\ 0.063\\ 0.049\\ 0.0038\\ 1.369\\ \hline of Wall \\ \end{array}$	6.00 6.00 6.00 7.2. 6.00 7.2. 7.14 0.000 0.948 1.218 1.023 0.714 0.453 0.270 0.151 0.076 0.029 0.000 4.883) ft 3 ≤ 0.4 5 kips/ft 0-2-2502 Page 3-49)	
qem1 qem2	Backfill Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	$\frac{6.00}{1.50}$ /all $\Delta P_{D-4} = (V_{D})$ $\frac{Z = bh}{0.00}$ 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00	$\begin{array}{c} 0.285\\ \hline 0.357\\ \hline h = \\ a = 2' / 6.0' = \\ V_{D-4} = \\ V_{D-4} = \\ 4 \ /h) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \ wall}\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.000\\ \hline 0.176\\ \hline 0.254\\ \hline 0.000\\ \hline 0.000\\ \hline 0.000\\ \hline 0.003\\ \hline 0.003\\ \hline 1.369\\ \end{array}$	6.00 6.00 6.00 2.5 +b^2)^2] (EM 111 Moment 0.000 0.948 1.218 1.023 0.714 0.453 0.270 0.151 0.076 0.029 0.000) ft 3 ≤ 0.4 5 kips/ft 0-2-2502 Page 3-49)	
qem1 qem2	Backfill Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sumr	$\frac{6.00}{1.50}$ vall $\Delta P_{D-4} = (V_{D-4})$ $Z = bh$ 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 mary for Bottom Force (kips)	$\begin{array}{c} 0.285\\ 0.357\\ \\ h = \\ a = 2' / 6.0' = \\ \\ V_{D-4} = \\ \\ \sqrt{D-4} = \\ \\ 4 /h) [(0.203b)/(0.16)\\ \\ \hline \\ \Delta P_{D-4 \ wall}\\ 0.000\\ \hline \\ 0.176\\ 0.254\\ \hline \\ 0.254\\ 0.244\\ \hline \\ 0.254\\ \hline \\ 0.000\\ \hline \\ 0.0176\\ \hline \\ 0.000\\ \hline \\ 0.000\\ \hline \\ 0.000\\ \hline \\ 0.038\\ \hline \\ 1.369\\ \hline \\ \hline \\ of Wall\\ \hline \\ Mom \ Arm(ft) \end{array}$	6.00 6.00 6.00 7.2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7) ft 3 ≤ 0.4 5 kips/ft 0-2-2502 Page 3-49)	
qem1 qem2	Backfill Backfill Backfill For bottom of w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Summ Name Pem1	6.00 1.50 vall $\Delta P_{D-4} = (V_D)$ Z = bh 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 The second sec	$\begin{array}{c} 0.285\\ 0.357\\ \\ h = \\ a = 2' / 6.0' = \\ \\ V_{D-4} = \\ \\ \sqrt{D-4} = \\ \\ 4 /h) [(0.203b)/(0.16)\\ \\ \hline \\ \Delta P_{D-4 \ wall}\\ 0.000\\ \hline \\ 0.176\\ 0.254\\ \hline \\ 0.254\\ 0.244\\ \hline \\ 0.254\\ \hline \\ 0.000\\ \hline \\ 0.0176\\ \hline \\ 0.000\\ \hline \\ 0.000\\ \hline \\ 0.000\\ \hline \\ 0.038\\ \hline \\ 1.369\\ \hline \\ \hline \\ of Wall\\ \hline \\ Mom \ Arm(ft) \end{array}$	6.00 6.00 6.00 7.2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7) ft 3 ≤ 0.4 5 kips/ft	

Project Napa River Flood Control Project Subject Upper Wall Design (H=6') By David An Date Feb-05

D-4 Load---- For bottom of footing

h =	7.50 ft
a = 2' / 7.5' =	0.27 ≤ 0.4
V _{D-4} =	2.5 kips/ft

 $\Delta P_{D\text{-}4} = (V_{D\text{-}4} \text{ /h}) [(0.203b) / (0.16 + b^2)^2] \quad (\text{EM 1110-2-2502 Page 3-49})$

b	Z = bh	$\Delta P_{D-4 \text{ wall}}$	Moment
0.0	0.00	0.000	0.000
0.1	0.75	0.176	1.185
0.2	1.50	0.254	1.523
0.3	2.25	0.244	1.279
0.4	3.00	0.198	0.892
0.5	3.75	0.151	0.566
0.6	4.50	0.113	0.338
0.7	5.25	0.084	0.189
0.8	6.00	0.063	0.095
0.9	6.75	0.049	0.036
1.0	7.50	0.038	0.000
Σ		1.369	6.103

Resultant Summary for Bottom of Footing

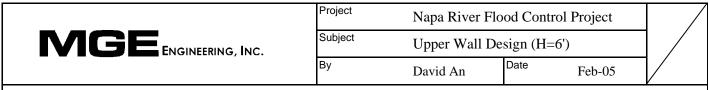
- recultant cummary for Bottom of Footing					
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2	
Pem2	1.3	2.50	3.3		
Pd-4 ftg	1.4		6.1	$P_{d-4 ftg}$	
At bot of ftg	2.7		9.4	P'em2	
	ΣV		ΣΜ		

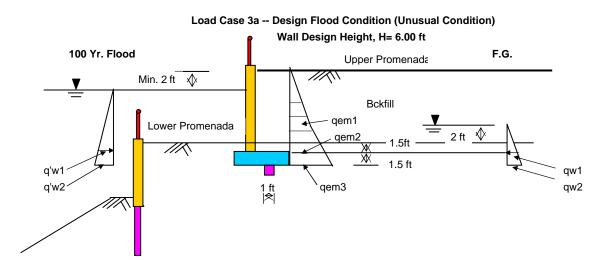
Demand at Bottom of Footing: Vd = 2.7 kips Md = 9.4 k-ft

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=6') By Date David An Feb-05 Load Case 2 -- Normal Condition W/Maintenance Vehicle (Usual Condition) Wall Design Height, H= 6.00 ft H-15 truck load USE V= 16 kips VLEFT V_{RIGHT} 6ft F.G. Upper Promenada 7//\` P_{H-15} Bckfill Lower Promenada qem1 1.5 ft 1.5 ft 1 ft |兌| qem2 Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignored. Thickness(ft) Layer Pressure(ksf) Name qem1 Backfill 6.00 0.285 qem - Moist soil pressure at rest wall qem2 Backfill 1.50 0.357 H-15 Load----For bottom of footing h =6.00 ft a=2'/6.00' = 0.33 ≤ 0.4 For VLEFT a=8'/6.00' = For V_{RIGHT} 1.33 > 0.4 $\Delta P_{HZleft} = (0.28V/h^2) [b^2/(0.16+b^2)^3]$ (EM 1110-2-2502 Page 3-48) $\Delta P_{HZright} = (V/h^2) [a^2b^2/(a^2+b^2)^3]$ (EM 1110-2-2502 Page 3-48) b (for V_{LEFT}) Ζ $\Delta P_{PH (LEFT)}$ Moment b (for V_{RIGHT}) Ζ $\Delta P_{PH (RIGHT)}$ Moment 0.1 0.60 0.152 0.821 0.1 0.60 0.001 0.008 0.2 1.20 0.373 1.792 0.2 1.20 0.005 0.025 0.3 1.80 0.430 1.806 0.3 1.80 0.011 0.044 0.4 2.40 0.365 1.313 0.4 2.40 0.016 0.059 0.5 3.00 0.271 0.813 0.5 3.00 0.022 0.065 0.6 3.60 0.191 0.459 0.6 3.60 0.025 0.061 0.240 0.7 4.20 0.133 0.7 4.20 0.028 0.050 0.8 4.80 0.093 0.8 4.80 0.029 0.035 0.112 0.9 5.40 0.066 0.040 0.9 5.40 0.029 0.017 1.0 6.00 0.048 0.000 1.0 6.00 0.027 0.000 Σ Σ 2.123 7.394 0.193 0.363

Ρ	roject	Napa River Flood Control Project				
S	ubject	Upper Wall Design (H=6')				
B	у	David An	Date	Feb-05		

Resultant Summary for Bottom of Wall


Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem1	0.9	2.00	1.7	
P _{H-15 wall}	2.3			H-15 wal
				и И
At bot of wall	3.2		1.7	/ P'em2
	ΣV		ΣΜ	


Demand at Bottom of Wall: Vd = 3.2 kips Md = 1.7 k-ft

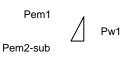
Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	1.3	2.50	3.3	
P _{H-15 ftg}	2.3			H-15-ftg
				"
At bot of ftg	3.7		3.3	P'em2
	ΣV		ΣΜ	

Demand at Bottom of Footing: Vd = 3.7 kips Md = 3.3 k-ft

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	2.50	0.119
qem2	Backfill	3.50	0.284
qem3	Backfill	1.50	0.355
qw1	Backfill	3.50	0.002
qw2	Backfill	1.50	0.003
q'w1	Backfill	4.00	0.003
q'w2	Backfill	1.50	0.004

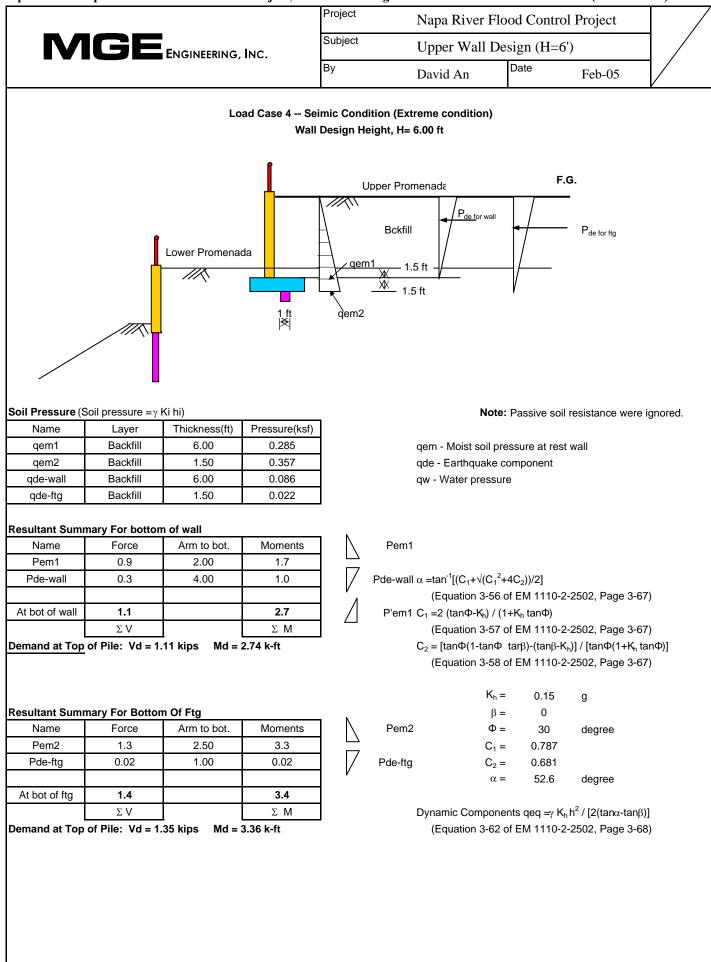

Note: Passive soil resistance were ignored.

qem1 - Moist soil pressure at rest wall

qem2 & qem3 - Submerged soil pressure at rest wall qw - Water pressure

Resultant Summary For Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)		
Pem1	0.1	4.33	0.64		
Pem2	0.7	1.51	1.07		
Pw1	0.004	1.17	0.005		
P'w1	-0.01	0.50	0.00		
At bot of wall	0.85		1.7		
	ΣV		ΣΜ		
Demand at Bottom of Wall: Vd = .85 kips Md = 1.71 k-ft					



Resultant Summary For Bottom Of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	
Pem1	0.1	5.83	0.87	
Pem2	0.7	3.01	2.12	
Pem3	0.5	0.72	0.35	Pem3-sub
Pw1	0.00	2.67	0.01	1
Pw2	0.0	0.71	0.00	Pw2
P'w1	-0.01	1.33	0.0	
P'w2	0.00	0.71	0.00	P'w2
At bot of ftg	1.34		3.3	
	ΣV		ΣM]
Domand at Bot	tom of Wall: Vd	-134 kins M	d = 3 34 k-ft	-

Demand at Bottom of Wall: Vd = 1.34 kips Md = 3.34 k-ft

				Project	Napa River F	lood Control	Project	/
				Subject	Subject Upper Wall Des		esign (H=6')	
			Ву	David An	Date	Feb-05		
			-	Wall Design (U I Design Height, H=	••••			
I. Loads								
Load Case	1			2	3	3	4	
	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ft
Hori. Force (k)	2.2	2.7	3.2	3.7	0.9	1.3	1.1	1.4
Moments(kft)	6.6	9.4	1.7	3.3	1.7	3.3	2.7	3.4
	Е Н2 —	Lower Pro	menade]			
				W2 W3 W				
			e.		H1	= 4.50	ft	
	B =	1.30						
	W1 =	2.00	ft		H2	= 1.50	ft	
	W1 = W2 =	2.00 2.00	ft ft			= 1.50	ft	
	W1 =	2.00	ft ft ft		H2	= 1.50	ft	

2. Resistances

Location	Dime	ension	Moight(k/ft)	Arm to toe (ft)	Mot (kft/ft)	
Location	Thick/Depth	Width/Height	Weight(k/ft)	Ann to toe (it)	Mot (kft/ft)	
Toe cover	1.50	2.00	0.375	1.00	0.38	
Heel Soil	6.00	1.95	1.463	4.28	6.25	
Footing	1.50	5.25	1.181	2.63	3.10	
Concrete Key	1.00	1.00	0.15	4.00	0.60	
Wall Stem	1.30	7.17	1.398	2.65	3.70	
Total			4.57		14.03	

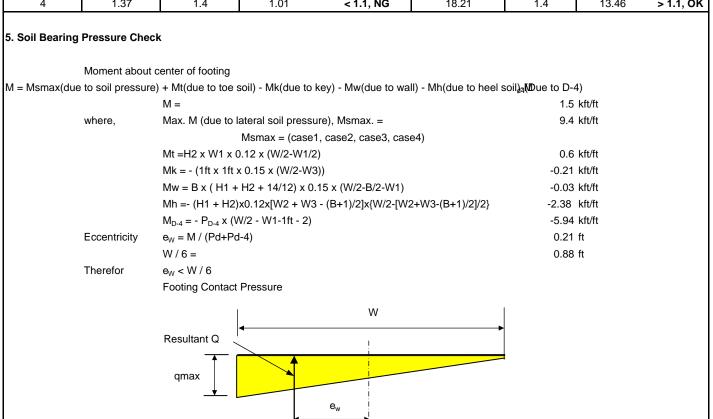
Due to D-4 Vertical weight

Distributed weight, Pd-4 =

Resistance of overturning due to D-4 = distributed weight x (W1 + 1 + 2ft)

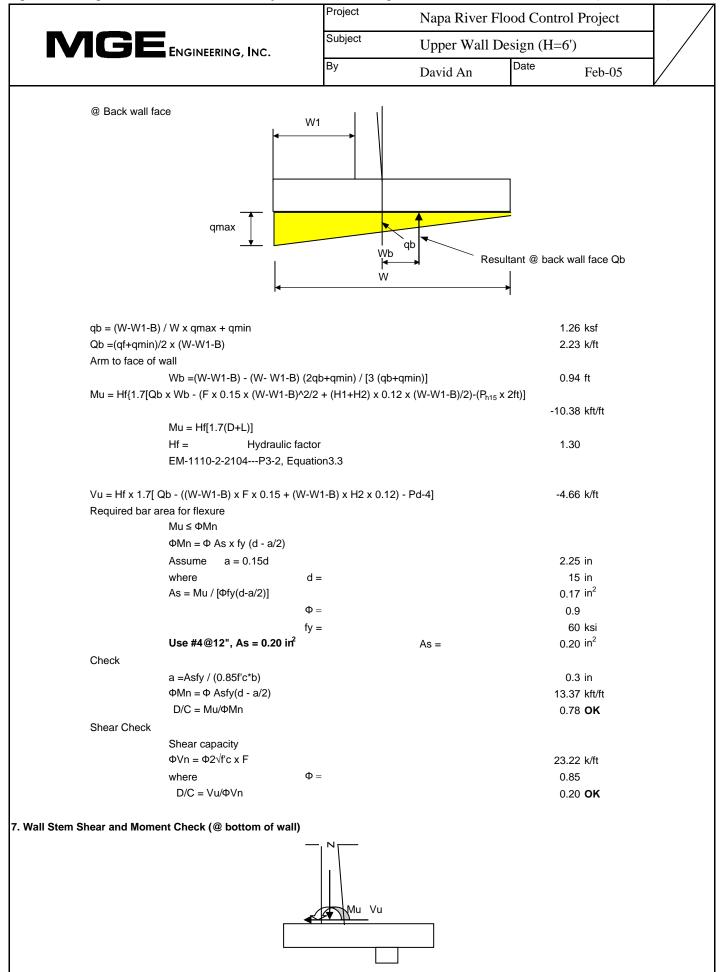
2.50 k/ft 12.50 kft/ft

Project	Napa River Flo	od Control	Project	
Subject	Upper Wall Design (H=6')			
Ву	David An	Date	Feb-05	


3. Overturning Check

Load Case	Resistance Moment	Overturning Moment	Safety Factor	
1	26.53	9.4	2.81	Safety Factor > 1.5, OK
2	14.03	3.3	4.20	Safety Factor > 1.5, OK
3	14.03	3.3	4.20	Safety Factor > 1.5, OK
4	14.03	3.4	4.18	Safety Factor > 1.5, OK

4. Sliding Check


μ =	0.3
$Ffr = P_d \times \mu$	1.4 kips/ft
where, P _d weight of concrete & soil	
Resistance Due to D-4	
$Fd-4 = Pd_4 \times \mu$	0.750 kips/ft
Pd.4distributed weight due to D-4	
Resistance Due to Concrete Key	
$Fcr = 2\sqrt{f'c \times 1} ft$	18.21 kips/ft
where, f'c =	4000 psi
where, f'c =	4000 psi
Resistance Due Sliding Force	Resistance Due to Sliding Force

Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Safe	ety Factor	Resistance Due to Concrete Key (kips)	Sliding Force (kips)	Safety	/ Factor
1	1.37	2.7	0.51	< 1.33, NG	18.21	2.7	6.73	> 1.33, OK
2	1.37	3.7	0.38	< 1.5, NG	18.21	3.7	4.99	> 1.5, OK
3	1.37	1.3	1.02	< 1.5, NG	18.21	1.3	13.62	> 1.5, OK
4	1.37	1.4	1.01	< 1.1, NG	18.21	1.4	13.46	> 1.1, OK

Page 52 of 234

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=6') By Date David An Feb-05 Q = Pd + Pd-47.07 kips $1 + (6 e_w / W) =$ 1.24 ft $1 - (6 e_w / W) =$ 0.76 ft qmax = Q [1 + (6ew / W)] / W 1.67 ksf qmin = Q [1 - (6ew / W)] / W 1.03 ksf assumed allowable soil brearing pressure controlling 2.00 ksf qa = D/C = qmax/qa =0.83 <1, OK 6. Footing Shear and Moment Check (@ face of wall) @ Front wall face W1 Toe soil cover Resultant @ front wall face Qf qmax qf Wf qf = (W2+W3) / W x (qmax - qmin) + qmin1.42 ksf $Qf = (qf+qmax)/2 \times W1$ 3.09 k/ft Arm to face of wall 1.03 ft Wf = W1 (2qmax+qf) / [3 (qmax+qf)] $Mu = Hf\{1.7 [Qf x Wf - (W1x F x 0.15 x W1/2 - W1 x h2 x 0.12 x W1/2)]\}$ 5.22 kft/ft Mu = Hf[1.7(D+L)]Hf = Hydraulic factor 1.30 EM-1110-2-2104---P3-2, Equation3.3 $Vu = Hf\{1.7[Qf - (W1 x F x 0.15 - W1 x 1ft x 0.12)]\}$ 5.04 k/ft Required bar area for flexure Mu ≤ ΦMn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d 2.25 in where d = 15 in $As = Mu / [\Phi fy(d-a/2)]$ 0.08 in² Φ= 0.9 60 ksi fy =Use #4@12", As = 0.20 in² 0.20 in² As = Check a = Asfy / (0.85f'c*b)0.3 in Φ Mn = Φ Asfy(d - a/2) 13.37 kft/ft $D/C = Mu/\Phi Mn$ 0.39 **OK** Shear Check Shear capacity $\Phi Vn = \Phi 2 \sqrt{f'c x F}$ 23.22 k/ft where Φ= 0.85 $D/C = Vu/\Phi Vn$ 0.22 **OK**

Mu = Hf x 1.7 Where	M = max(case1, case2, cas Mu = Hf[1.7(D+L)]	Subject By e3, case4)	Upper Wall David An	Date	Feb-05
Mu = Hf x 1.7	x M M = max(case1, case2, cas Mu = Hf[1.7(D+L)]		David An		
	M = max(case1, case2, cas Mu = Hf[1.7(D+L)]	e3, case4)		1	
	M = max(case1, case2, cas Mu = Hf[1.7(D+L)]	e3, case4)		1	
Where	Mu = Hf[1.7(D+L)]	e3, case4)		•	14.6 kft/ft
	Hf = Hydraulic f	actor		1	1.30
	EM-1110-2-2104P3-2, Ec	quation3.3			
Vu = Hf x 1.7 x	x Vmax Vmax = ma	ax(case1, case2, ca	se3, case4)		7.0 k/ft
Required bar a	area for flexure				
	Mu ≤ ΦMn				
	Φ Mn = Φ As x fy (d - a/2)				
	Assume a = 0.15d				1.89 in
	where	d =			12.6 in
	$As = Mu / [\Phi fy(d-a/2)]$).28 in ²
		Φ =			0.9
		fy =			60 ksi
	U	f'c =			000 psi
	Use #5@12", As = 0.31 in ²		As =	C).31 in ²
Check	a = Aab / (0.954a*b)				0.5 in
	a =Asfy / (0.85f'c*b) ФМп = Ф Asfy(d - a/2)				0.5 in 7.26 kft/ft
	Φ MIN = Φ Asiy(a - a/2) D/C = Mu/ Φ Mn).84 OK
Shear Check	$D/0 = Wu/\PsiWIII$			L. L.	1.04 U N
Gilda Gildok	Shear capacity				
	$\Phi Vn = \Phi 2 \sqrt{f'c x B}$			20	0.13 k/ft
	where	Φ=).85
	$D/C = Vu/\Phi Vn$).35 OK
	2, 2 T W/ F Y H				

	Project	Napa River Flo	od Cor	trol Project
	Subject	Upper Wall De	sign (H	[=8')
	Ву	David An	Date	Feb-05
	Upper Wall D	esign		
	Design Height H	-		
Backfill Properties				
		Backfill Thickness =		8.00 ft
		Backfill Unit Weight =		125 pcf
		Φ =		37 degree
		C =		0 pcf
	SM	$IF = Tan(\Phi_d) / Tan\Phi = 2/3 =$		0.67
		$\Phi_d =$		27 degree
		Ka = Tan² (45° - Φ/2) =		0.25
		Ko = Tan ² (45° - $\Phi_{d}/2$) =		0.38
		$Kp = Tan^2 (45^\circ + \Phi/2) =$		4.02
Water Property				
		Water Unit Weight =		62.5 pcf
Wall and Footing Data				
Design He	ight (ft)			8
Toe Cover				1.5
Top Wall T				1.0
100 Year F	Flood Level to Top	of Wall (ft)		2.00

			Project	Napa River F	Flood Contro	l Project
IGE	ENGINEERING	, INC.	Subject	Upper Wall I	Design (H=8'	')
			Ву	David An	Date	Feb-05
Load case bas		d Walls and Chan	Upper Pro	Load Conditions (Unusal Conditions 8.00 ft D-4 Dozer (Cons menada	on) struction Equipm F.0	nent = 2.5 kips/f
		1 ft ≷	qem2 1.4	5 ft	V	
	at Wall (Soil press			No	ote: Passive soil	resistance wer
Name	Lover					
	Layer	Thickness(ft)	Pressure(ksf)			ot woll
qem1 qem2	Backfill Backfill	Thickness(ft) 8.00 1.50	Pressure(ksf) 0.380 0.452	qem - Moist sc	oil pressure at re	st wall
qem1	Backfill	8.00 1.50 wall	0.380	= 8. = 0.	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v	8.00 1.50 wall $\Delta P_{D.4} = (V_D$	0.380 0.452 h = a = 2' / 8.0' = V _{D-4} = . ₄ /h) [(0.203b)/(0.16	= 8. = 0. 2 :+b^2)^2] (EM 11	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v	8.00 1.50 wall ΔP _{D-4} = (V _D Z = bh	0.380 0.452 h = a = 2' / 8.0' = V _{D-4} = -4 /h) [(0.203b)/(0.16	= 8. = 0. 2 5+b^2)^2] (EM 11 Moment	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v	8.00 1.50 wall $\Delta P_{D-4} = (V_D + V_D + V_D$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ \hline \Delta P_{D-4 \text{ wal}}\\ \hline 0.000 \end{array}$	= 8. = 0. 2 ++b^2)^2] (EM 11 <u>Moment</u> 0.000	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v b 0.0 0.1	$\frac{8.00}{1.50}$ wall $\Delta P_{D-4} = (V_D + V_D + $	0.380 0.452 $h =$ $a = 2' / 8.0' =$ $V_{D-4} =$ $V_{D-4 \text{ wal}}$ 0.000 0.176	= 8. = 0. 2 +b^2)^2] (EM 11 Moment 0.000 1.264	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2	$\begin{array}{c} 8.00 \\ 1.50 \end{array}$ wall $\Delta P_{D-4} = (V_D \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \end{array}$	0.380 0.452 $h =$ $a = 2' / 8.0' =$ $V_{D-4} =$ $V_{D-4} =$ $\Delta P_{D-4 \text{ wal}}$ 0.000 0.176 0.254	= 8. = 0. +b^2)^2] (EM 11 Moment 0.000 1.264 1.624	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3	$\begin{array}{c} 8.00 \\ 1.50 \end{array}$ wall $\Delta P_{D.4} = (V_D \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ h = \\ a = 2' / 8.0' = \\ V_{D-4} = \\ V_{D-4} = \\ A / h \right) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \text{ wal}}\\ 0.000\\ \hline 0.176\\ 0.254\\ 0.244\\ \end{array}$	= 8. = 0. 2 +b^2)^2] (EM 11 Moment 0.000 1.264 1.624 1.364	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2	$\begin{array}{c} 8.00 \\ 1.50 \end{array}$ wall $\Delta P_{D-4} = (V_D \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.203b)/(0.16\\ \\ \hline \Delta P_{D-4 \text{ wal}} \\ 0.000\\ 0.176\\ \hline 0.254\\ 0.254\\ \hline 0.244\\ \hline 0.198 \end{array}$	= 8. = 0. 2 +b^2)^2] (EM 11 Moment 0.000 1.264 1.624	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4	$\begin{array}{c} 8.00 \\ 1.50 \end{array}$ wall $\Delta P_{D-4} = (V_D \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ h = \\ a = 2' / 8.0' = \\ V_{D-4} = \\ V_{D-4} = \\ A / h \right) [(0.203b)/(0.16)\\ \hline \Delta P_{D-4 \text{ wal}} \\ 0.000\\ \hline 0.176\\ 0.254\\ \hline 0.244 \end{array}$	= 8. = 0. 2 +b^2)^2] (EM 11 <u>Moment</u> 0.000 1.264 1.624 1.364 0.952	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5	$\begin{array}{c} 8.00 \\ 1.50 \end{array}$ wall $\Delta P_{D-4} = (V_D \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4 \ wal}\\ \hline 0.000\\ 0.176\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.244\\ \hline 0.198\\ \hline 0.151\\ \end{array}$	= 8. = 0. 2 (EM 11 0.000 1.264 1.624 1.624 1.364 0.952 0.604	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6	$\begin{array}{c} 8.00 \\ 1.50 \\ \hline \\ \textbf{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ V_{D-4} = \\ 0.000\\ 0.176\\ 0.254\\ 0.254\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.113\\ \end{array}$	= 8. = 0. 22 ++b^2)^2] (EM 11 Moment 0.000 1.264 1.624 1.624 1.364 0.952 0.604 0.360	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	$\begin{array}{c} 8.00 \\ 1.50 \\ \hline \\ \textbf{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ 5.60 \\ \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \end{array}$ h = a = 2' / 8.0' = $V_{D-4} = \\ V_{D-4} = \\ 0.203b)/(0.16)\\ \hline \Delta P_{D-4 \text{ wall}}\\ 0.000\\ 0.176\\ 0.254\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.113\\ 0.084\\ \end{array}$	= 8. = 0. 2 +b^2)^2] (EM 11 Moment 0.000 1.264 1.624 1.364 0.952 0.604 0.360 0.202	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	$\begin{array}{c} 8.00 \\ 1.50 \\ \end{array}$ wall $\Delta P_{D.4} = (V_D \\ \hline Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ 5.60 \\ 6.40 \\ \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.203b)/(0.16)\\ \hline \\ \Delta P_{D-4 \ wal}\\ 0.000\\ \hline \\ 0.176\\ 0.254\\ \hline \\ 0.254\\ \hline \\ 0.244\\ \hline \\ 0.254\\ \hline \\ 0.244\\ \hline \\ 0.151\\ \hline \\ 0.151\\ \hline \\ 0.113\\ \hline \\ 0.084\\ \hline \\ 0.063\\ \end{array}$	 8. 0. 2. 2. 4. 4	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$\begin{array}{c} 8.00\\ 1.50\\ \hline \\ \textbf{wall}\\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh\\ 0.00\\ 0.80\\ \hline \\ 1.60\\ 2.40\\ \hline \\ 3.20\\ 4.00\\ \hline \\ 4.80\\ \hline \\ 5.60\\ \hline \\ 6.40\\ \hline \\ 7.20\\ \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ V_{D-4} = \\ 0.000\\ 0.176\\ 0.254\\ 0.254\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.113\\ 0.084\\ 0.063\\ 0.049\\ \end{array}$	 8. 0. 2. 4.+b^2)^2] (EM 11 Moment 0.000 1.264 1.364 0.952 0.604 0.360 0.202 0.102 0.039 	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	$\begin{array}{c c} 8.00 \\ \hline 1.50 \\ \hline \\ \textbf{wall} \\ \hline \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ \hline \\ 0.80 \\ \hline \\ 1.60 \\ 2.40 \\ \hline \\ 3.20 \\ \hline \\ 4.00 \\ \hline \\ 4.80 \\ \hline \\ 5.60 \\ \hline \\ 6.40 \\ \hline \\ 7.20 \\ \hline \\ 8.00 \\ \hline \end{array}$	$\begin{array}{c} 0.380\\ \hline 0.452\\ \hline \\ h = \\ a = 2' / 8.0' = \\ V_{D-4} = \\ V_{D-4} = \\ V_{D-4} = \\ 0.203b / (0.16)\\ \hline \\ 0.203b / (0.16)\\ \hline \\ 0.254\\ \hline \\ 0.255\\ \hline 0.255\\ \hline \\ 0.255\\ \hline \\ 0.255\\ \hline 0$	 8. 0. 2. 4. 4	.00 ft .25 ≤ 0.4 2.5 kips/ft	
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	$\begin{array}{c} 8.00 \\ 1.50 \\ \hline \\ \textbf{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ 5.60 \\ 6.40 \\ 7.20 \\ 8.00 \\ \hline \\ \textbf{mary for Bottom} \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.000\\ 0.176\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.151\\ 0.113\\ 0.084\\ 0.063\\ 0.049\\ 0.003\\ 1.369\\ \end{array}$	 8. 0. 2. 2. 4. 4	.00 ft .25 ≤ 0.4 2.5 kips/ft 110-2-2502 Page	e 3-49)
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sum	$\begin{array}{c} 8.00 \\ 1.50 \\ \hline \\ \textbf{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ 5.60 \\ 6.40 \\ 7.20 \\ 8.00 \\ \hline \\ \textbf{mary for Bottom} \\ \hline \\ Force (kips) \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.203b / (0.16)\\ \hline \\ 0.203b / (0.16)\\ \hline \\ 0.254\\ 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.25$	 8. 0. 2. 4. 4	.00 ft .25 ≤ 0.4 2.5 kips/ft 110-2-2502 Page	e 3-49)
qem1 qem2	Backfill Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sum Name Pem1	$\begin{array}{c c} 8.00 \\ \hline 1.50 \\ \hline \\ \text{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ \hline 0.80 \\ \hline 1.60 \\ 2.40 \\ \hline 3.20 \\ 4.00 \\ \hline 4.80 \\ \hline 5.60 \\ \hline 6.40 \\ \hline 7.20 \\ \hline 8.00 \\ \hline \\ \hline \\ \text{mary for Bottom} \\ \hline \\ Force (kips) \\ \hline 1.5 \\ \hline \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.000\\ 0.176\\ 0.254\\ 0.244\\ 0.198\\ 0.151\\ 0.151\\ 0.113\\ 0.084\\ 0.063\\ 0.049\\ 0.003\\ 1.369\\ \end{array}$	 8. 0. 2. 4.1 Moment 0.000 1.264 1.624 1.364 0.952 0.604 0.360 0.202 0.102 0.039 0.000 6.510 	.00 ft .25 ≤ 0.4 2.5 kips/ft 110-2-2502 Page	e 3-49)
qem1 qem2	Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sum	$\begin{array}{c} 8.00 \\ 1.50 \\ \hline \\ \textbf{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ 0.80 \\ 1.60 \\ 2.40 \\ 3.20 \\ 4.00 \\ 4.80 \\ 5.60 \\ 6.40 \\ 7.20 \\ 8.00 \\ \hline \\ \textbf{mary for Bottom} \\ \hline \\ Force (kips) \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.203b / (0.16)\\ \hline \\ 0.203b / (0.16)\\ \hline \\ 0.254\\ 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.25$	 8. 0. 2. 4. 4	.00 ft .25 ≤ 0.4 2.5 kips/ft 110-2-2502 Page	e 3-49)
qem1 qem2	Backfill Backfill Backfill For bottom of v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sum Name Pem1	$\begin{array}{c c} 8.00 \\ \hline 1.50 \\ \hline \\ \text{wall} \\ \\ \Delta P_{D-4} = (V_D \\ \hline \\ Z = bh \\ 0.00 \\ \hline 0.80 \\ \hline 1.60 \\ 2.40 \\ \hline 3.20 \\ 4.00 \\ \hline 4.80 \\ \hline 5.60 \\ \hline 6.40 \\ \hline 7.20 \\ \hline 8.00 \\ \hline \\ \hline \\ \text{mary for Bottom} \\ \hline \\ Force (kips) \\ \hline 1.5 \\ \hline \end{array}$	$\begin{array}{c} 0.380\\ 0.452\\ \\ h = \\ a = 2' / 8.0' = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ V_{D-4} = \\ \\ 0.203b / (0.16)\\ \hline \\ 0.203b / (0.16)\\ \hline \\ 0.254\\ 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline \\ 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.254\\ \hline 0.25$	 8. 0. 2. 4.1 Moment 0.000 1.264 1.624 1.364 0.952 0.604 0.360 0.202 0.102 0.039 0.000 6.510 	.00 ft .25 ≤ 0.4 2.5 kips/ft 110-2-2502 Page	e 3-49)

Demand at Bottom of Wall: Vd = 2.9 kips Md = 10.6 k-ft

Project Napa River Flood Control Project Subject Upper Wall Design (H=8') By David An

D-4 Load---- For bottom of footing

h = a = 2' / 9.5' =

9.50 ft 0.21 ≤ 0.4

V_{D-4} = 2.5 kips/ft

 $\Delta P_{D-4} = (V_{D-4} / h) [(0.203b)/(0.16 + b^2)^2] \quad (\text{EM 1110-2-2502 Page 3-49})$

b	Z = bh	$\Delta P_{D-4 \text{ wall}}$	Moment
0.0	0.00	0.000	0.000
0.1	0.95	0.176	1.501
0.2	1.90	0.254	1.929
0.3	2.85	0.244	1.620
0.4	3.80	0.198	1.130
0.5	4.75	0.151	0.717
0.6	5.70	0.113	0.428
0.7	6.65	0.084	0.240
0.8	7.60	0.063	0.121
0.9	8.55	0.049	0.046
1.0	9.50	0.038	0.000
Σ		1.369	7.731

Resultant Summary for Bottom of Footing

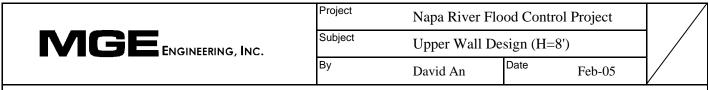
Rooditaint outin				
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	2.1	3.17	6.8	
Pd-4 ftg	1.4		7.7	$P_{d-4 ftg}$
				11
At bot of ftg	3.5		14.5	P'em2
	ΣV		ΣΜ	

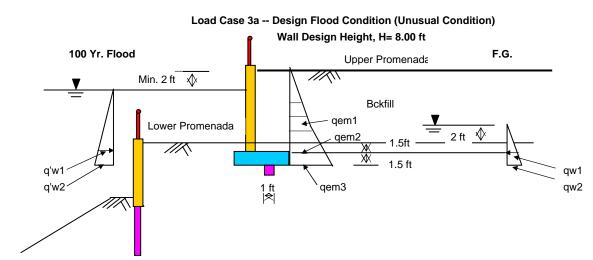
Demand at Bottom of Footing: Vd = 3.5 kips Md = 14.5 k-ft

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=8') By Date David An Feb-05 Load Case 2 -- Normal Condition W/Maintenance Vehicle (Usual Condition) Wall Design Height, H= 8.00 ft H-15 truck load USE V= 16 kips VLEFT V_{RIGHT} 6ft F.G. Upper Promenada 7//\` P_{H-15} Bckfill Lower Promenada qem1 1.5 ft 1.5 ft 1 ft |兌| qem2 Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignored. Thickness(ft) Layer Pressure(ksf) Name qem1 Backfill 8.00 0.380 qem - Moist soil pressure at rest wall qem2 Backfill 1.50 0.452 H-15 Load----For bottom of footing h =8.00 ft a=2'/8.00' = 0.25 ≤ 0.4 For VLEFT a=8'/8.00' = For V_{RIGHT} 1.00 > 0.4 $\Delta P_{HZleft} = (0.28V/h^2) [b^2/(0.16+b^2)^3]$ (EM 1110-2-2502 Page 3-48) $\Delta P_{HZright} = (V/h^2) [a^2b^2/(a^2+b^2)^3]$ (EM 1110-2-2502 Page 3-48) b (for V_{LEFT}) Ζ $\Delta P_{PH (LEFT)}$ Moment b (for V_{RIGHT}) Ζ $\Delta P_{PH (RIGHT)}$ Moment 0.1 0.80 0.114 0.821 0.1 0.80 0.001 0.008 0.2 1.60 0.280 1.792 0.2 1.60 0.004 0.025 0.3 2.40 0.323 1.806 0.3 2.40 0.008 0.044 0.4 3.20 0.273 1.313 0.4 3.20 0.012 0.059 0.5 4.00 0.203 0.813 0.5 4.00 0.016 0.065 0.6 4.80 0.143 0.459 0.6 4.80 0.019 0.061 0.240 0.7 5.60 0.100 0.7 5.60 0.021 0.050 0.8 6.40 0.070 0.112 0.8 6.40 0.022 0.035 0.9 7.20 0.050 0.040 0.9 7.20 0.021 0.017 1.0 8.00 0.036 0.000 1.0 8.00 0.021 0.000 Σ Σ 1.592 7.394 0.145 0.363

P	Project	Napa River Flood Control Project						
S	Subject	Upper Wall Design (H=8')						
B	8y	David An	Date	Feb-05				

Resultant Summary for Bottom of Wall


Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem1	1.5	2.67	4.1	
P _{H-15 wall}	1.7			H-15 wal
				Ш И
At bot of wall	3.3		4.1	/ P'em2
	ΣV		ΣΜ	


Demand at Bottom of Wall: Vd = 3.3 kips Md = 4.1 k-ft

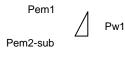
Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	2.1	3.17	6.8	
P _{H-15 ftg}	1.7			H-15-ftg
				"
At bot of ftg	3.9		6.8	P'em2
	ΣV		ΣΜ	

Demand at Bottom of Footing: Vd = 3.9 kips Md = 6.8 k-ft

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	4.50	0.214
qem2	Backfill	3.50	0.379
qem3	Backfill	1.50	0.450
qw1	Backfill	3.50	0.002
qw2	Backfill	1.50	0.003
q'w1	Backfill	6.00	0.004
q'w2	Backfill	1.50	0.005

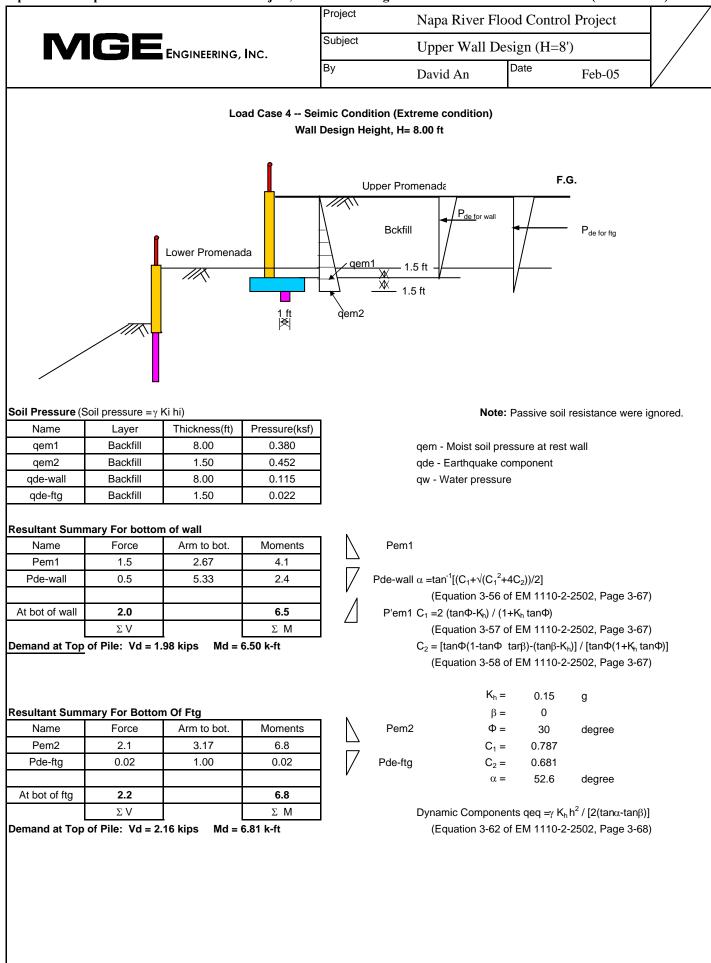

Note: Passive soil resistance were ignored.

qem1 - Moist soil pressure at rest wall

qem2 & qem3 - Submerged soil pressure at rest wall qw - Water pressure

Resultant Summary For Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)							
Pem1	0.5	5.00	2.41							
Pem2	1.0	1.59	1.65							
Pw1	0.004	1.17	0.005							
P'w1	-0.01	0.50	-0.01							
At bot of wall	1.51		4.1							
	ΣV		ΣΜ							
Demand at Bott	Demand at Bottom of Wall: Vd = 1.51 kips Md = 4.05 k-ft									



Resultant Summary For Bottom Of Footing

Resultant Sum	mary for Bollon	ii Oi i ootiing		_	
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	1	
Pem1	0.5	6.50	3.13		
Pem2	1.0	3.09	3.21		
Pem3	0.6	0.73	0.45		Pem3-sub
Pw1	0.00	2.67	0.01	1 —	
Pw2	0.0	0.71	0.00		Pw2
P'w1	-0.01	2.00	0.0		
P'w2	-0.01	0.72	0.00		P'w2
At bot of ftg	2.14		6.8]	
	ΣV		ΣM]	
Demand at Bot	tom of Wall· Vd	-214 kins M	d – 6 78 k-ft	-	

Demand at Bottom of Wall: Vd = 2.14 kips Md = 6.78 k-ft

				Project	Napa River Flo	ood Control I	Project	/
	IGE	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=8')		
				Ву	David An	Date	Feb-05	
I. Loads			-	Wall Design (Up Design Height, H=				
	1	1		2	3		4	
Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg
Hori. Force (k)	2.9	3.5	3.3	3.9	1.5	2.1	2.0	2.2
Moments(kft)	10.6	14.5	4.1	6.8	4.1	6.8	6.5	6.8
	H 	¥		D-4	Upper Promenade			
	– F H2 – H1 – 14	Lower Pro	omenade		Upper Promenade			
	г н2 - Н2 -			1/15				
	= B	1.43	ft W1	W2 W3] H1 =	= 6.50		
	ے۔ ۲ ۲ ۳ ۳ ۳ ۳ ۳ ۳ ۳ ۳	1.43 2.75	ft ft	W2 W3] H1 = H2 =	= 6.50 = 1.50	ft	
	= B	1.43	ft ft	W2 W3] H1 =	= 6.50 = 1.50	ft	

2. Resistances

Location	Dime	ension			Mot (left/ft)	
Location	Thick/Depth	Width/Height	weight(k/it)	Arm to toe (ft)	Mot (kft/ft)	
Toe cover	1.50	2.75	0.515625	1.38	0.71	
Heel Soil	8.00	3.32	3.317	5.84	19.37	
Footing	1.50	7.50	1.688	3.75	6.33	
Concrete Key	1.00	1.00	0.15	5.75	0.86	
Wall Stem	1.43	9.17	1.971	3.47	6.83	
Total			7.64		34.11	

Due to D-4 Vertical weight

Distributed weight, Pd-4 =

Resistance of overturning due to D-4 = distributed weight x (W1 + 1 + 2ft)

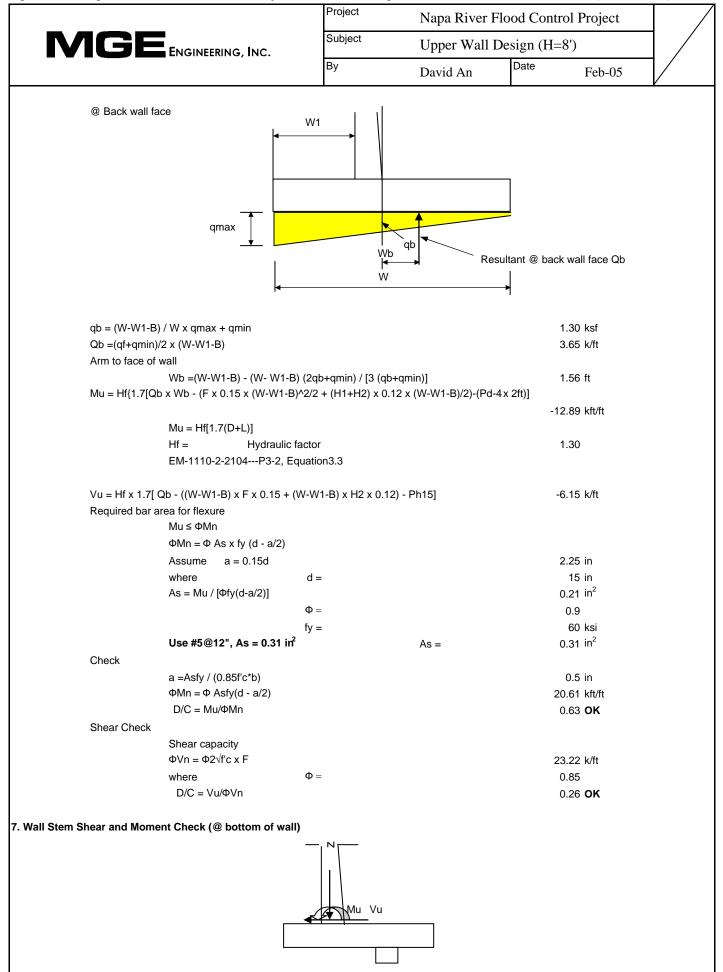
2.50 k/ft 14.38 kft/ft

Project	Napa River Fl	ood Cont	rol Project	
Subject	Upper Wall D	esign (H=	=8')	
Ву	David An	Date	Feb-05	\bigvee

3. Overturning Check

Load Case	Resistance Moment	Overturning Moment		Safety Factor
1	48.48	14.5	3.34	Safety Factor > 1.5, OK
2	34.11	6.8	5.02	Safety Factor > 1.5, OK
3	34.11	6.8	5.03	Safety Factor > 1.5, OK
4	34.11	6.8	5.01	Safety Factor > 1.5, OK

4. Sliding Check


	μ =	0.3
	$Ffr = P_d \times \mu$	2.3 kips/ft
	where, P _d weight of concrete & soil	
Resistance D	ue to D-4	
	$Fd-4 = Pd_4 \times \mu$	0.750 kips/ft
	Pd.4distributed weight due to D-4	
Resistance D	ue to Concrete Key	
	$Fcr = 2\sqrt{f'c \times 1} ft$	18.21 kips/ft
	where, f'c =	4000 psi

Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Safe	ety Factor	Resistance Due to Concrete Key (kips)	Sliding Force (kips)	Safety	/ Factor
1	2.29	3.5	0.65	< 1.33, NG	18.21	3.5	5.18	> 1.33, OK
2	2.29	3.9	0.59	< 1.5, NG	18.21	3.9	4.69	> 1.5, OK
3	2.29	2.1	1.07	< 1.5, NG	18.21	2.1	8.52	> 1.5, OK
4	2.29	2.2	1.06	< 1.1, NG	18.21	2.2	8.43	> 1.1, OK

3	2.29	2.1	1.07	< 1.5, NG	18.21	2.1	8.52	> 1.5, OK
4	2.29	2.2	1.06	< 1.1, NG	18.21	2.2	8.43	> 1.1, OF
Soil Bearin	g Pressure Che	ck						
Soli Dearing	g riessure one	UK.						
	Moment about	t center of footing						
l = Msmax(du	ie to soil pressur	e) + Mt(due to toe	soil) - Mk(due to	key) - Mw(due to wall) - Mh(due to heel s	soil) ₄ (Due to D-	4)	
		M =				4.2	kft/ft	
	where,	Max. M (due to I	lateral soil pressu	ıre), Msmax. =		14.5	5 kft/ft	
			Msmax = (case?	I, case2, case3, case	4)			
		Mt =H2 x W1 x 0	0.12 x (W/2-W1/2	2)		1.2	? kft/ft	
		Mk = - (1ft x 1ft :	x 0.15 x (W/2-W3	3))		-0.30) kft/ft	
		Mw = B x (H1 +	H2 + 14/12) x 0.	15 x (W/2-B/2-W1)		0.56	6 kft/ft	
		Mh =- (H1 + H2))x0.12x[W2 + W3	- (B+1)/2]x{W/2-[W2	+W3-(B+1)/2]/2}	-6.73	kft/ft	
		$M_{D-4} = - P_{D-4} \times (W_{D-4})$	N/2 - W1-1ft - 2)			-5.00) kft/ft	
	Eccentricity	$e_W = M / (Pd+Pc)$	d-4)			0.42	ft	
		W / 6 =				1.25	5 ft	
	Therefor	e _W < W / 6						
		Footing Contact	Pressure					
				W				
		Resultant Q	 ←	1				
		qmax						
			-	e _w				

Page 64 of 234

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=8') By Date David An Feb-05 Q = Pd + Pd-410.14 kips $1 + (6 e_w / W) =$ 1.33 ft $1 - (6 e_w / W) =$ 0.67 ft qmax = Q [1 + (6ew / W)] / W 1.80 ksf qmin = Q [1 - (6ew / W)] / W 0.90 ksf assumed allowable soil brearing pressure controlling 2.00 ksf qa = D/C = qmax/qa =0.90 <1, OK 6. Footing Shear and Moment Check (@ face of wall) @ Front wall face W1 Toe soil cover Resultant @ front wall face Qf qmax qf Wf qf = (W2+W3) / W x (qmax - qmin) + qmin1.47 ksf $Qf = (qf+qmax)/2 \times W1$ 4.50 k/ft Arm to face of wall 1.42 ft Wf = W1 (2qmax+qf) / [3 (qmax+qf)] $Mu = Hf\{1.7 [Qf x Wf - (W1x F x 0.15 x W1/2 - W1 x h2 x 0.12 x W1/2)]\}$ 10.76 kft/ft Mu = Hf[1.7(D+L)]Hf = Hydraulic factor 1.30 EM-1110-2-2104---P3-2, Equation3.3 $Vu = Hf\{1.7[Qf - (W1 x F x 0.15 - W1 x 1ft x 0.12)]\}$ 7.49 k/ft Required bar area for flexure Mu ≤ ΦMn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d 2.25 in where d = 15 in $As = Mu / [\Phi fy(d-a/2)]$ 0.17 in² Φ= 0.9 60 ksi fy =Use #4@12", As = 0.20 in² 0.20 in² As = Check a = Asfy / (0.85f'c*b)0.3 in Φ Mn = Φ Asfy(d - a/2) 13.37 kft/ft $D/C = Mu/\Phi Mn$ 0.81 **OK** Shear Check Shear capacity $\Phi Vn = \Phi 2 \sqrt{f'c x F}$ 23.22 k/ft where Φ= 0.85 $D/C = Vu/\Phi Vn$ 0.32 **OK**

1GE		Quiliant		er Flood Control Project	
	ENGINEERING, INC.	Subject Upper Wall		Design (H=8')	
		Ву	David An	Date	Feb-05
Mu = Hf x 1.7	хM			2	3.4 kft/ft
Where	M = max(case1, case2, case	e3, case4)			
	Mu = Hf[1.7(D+L)]				
	Hf = Hydraulic factor			1.30	
	EM-1110-2-2104P3-2, Equation3.3				
Vu = Hf x 1.7	x Vmax Vmax = ma	ax(case1, case2, ca	se3, case4)		7.2 k/ft
Required bar	area for flexure				
	Mu ≤ ΦMn				
	Φ Mn = Φ As x fy (d - a/2)				
	Assume a = 0.15d				.13 in
	where	d =		-	4.2 in
	$As = Mu / [\Phi fy(d-a/2)]$.40 in ²
		$\Phi =$			0.9
		fy =			60 ksi
		f'c =			000 psi
	Use #6@12", As = 0.44 in ²		As =	0	.44 in ²
Check					
	a =Asfy / (0.85f'c*b)				0.6 in
	Φ Mn = Φ Asfy(d - a/2)				.48 kft/ft
	$D/C = Mu/\Phi Mn$			0	.85 OK
Shear Check					
	Shear capacity				
	ΦVn = Φ2√f'c x B	.			.19 k/ft
	where	Φ =			.85
	$D/C = Vu/\Phi Vn$			0	.32 OK

	Project	Napa River Flo	ood Cor	ntrol Project
	Subject	Upper Wall De	esign (H	I=10')
ENGINEERING, INC.	Ву	David An	Date	Feb-05
	Upper Wall De	esian		
	esign Height H=	-		
Backfill Properties				
-		Backfill Thickness =	=	10.00 ft
		Backfill Unit Weight =	=	125 pcf
		Φ=		37 degree
		C =		0 pcf
	SM	$F = Tan(\Phi_d) / Tan\Phi = 2/3 =$	=	0.67
		Φ_{d} =		27 degree
		Ka = Tan ² (45° - Φ/2) =		0.25
		Ko = Tan ² (45° - $\Phi_{d}/2$) =	=	0.38
		$Kp = Tan^2 (45^\circ + \Phi/2) =$	=	4.02
Water Property				
		Water Unit Weight =	-	62.5 pcf
Wall and Footing Data				
Design Heigl	ht (ft)			10
Toe Cover (f	t)			1.5
Wall Thick (f	t)			1.0
100 Year Flo	ood Level to Top o	f Wall (ft)		2.00

1GE			Project	Napa River Flo	ood Control Project
	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=10')
	· ······		Ву	David An	Date Feb-05
Load case ba	ased on DOAFlood	Walls and Chanr	-		-
			0esign Height, H= 1		
	Lower Promenad	da 1 ft X	Upper Pror Bckfill qem1 1.1 qem2 1.5	5 ft	F.G. P _{D-4 for ftg}
Soil Pressur	e at Wall (Soil press	ure =γ Ki hi) Thickness(ft)	Pressure(ksf)	Note:	Passive soil resistance we
qem1	Backfill	10.00	0.475	qem - Moist soil p	pressure at rest wall
qem2	Backfill	1.50	0.547		
D-4 Load	For bottom of w		h = a = 2' / 10.0' = V _{D-4} = ₄ /h) [(0.203b)/(0.16	= 0.20 2.5	ft ≤ 0.4 kips/ft)-2-2502 Page 3-49)
	h	7 hh		Mamont	1
	b 0.0	Z = bh 0.00	ΔP _{D-4 wal} 0.000	Moment 0.000	4
	0.1	1.00	0.176	1.580	
	0.2	2.00	0.254	2.030	
	0.3	3.00	0.244	1.705]
	0.4	4.00	0.198	1.189	
	0.5	5.00	0.151	0.755	
	0.6	6.00	0.113	0.450	
	0.7	7.00	0.084	0.252	
	0.7 0.8	7.00 8.00	0.084 0.063	0.252 0.127	
	0.7 0.8 0.9	7.00 8.00 9.00	0.084 0.063 0.049	0.252 0.127 0.049	
	0.7 0.8 0.9 1.0	7.00 8.00	0.084 0.063 0.049 0.038	0.252 0.127 0.049 0.000	
	0.7 0.8 0.9	7.00 8.00 9.00	0.084 0.063 0.049	0.252 0.127 0.049	
	0.7 0.8 0.9 1.0 Σ	7.00 8.00 9.00	0.084 0.063 0.049 0.038 1.369	0.252 0.127 0.049 0.000	
	0.7 0.8 0.9 1.0 Σ	7.00 8.00 9.00 10.00	0.084 0.063 0.049 0.038 1.369	0.252 0.127 0.049 0.000	Pem2
	0.7 0.8 0.9 1.0 Σ	7.00 8.00 9.00 10.00 mary for Bottom Force (kips) 2.4	0.084 0.063 0.049 0.038 1.369 of Wall	0.252 0.127 0.049 0.000 8.138	Pem2
	0.7 0.8 0.9 1.0 Σ Resultant Sum r Name	7.00 8.00 9.00 10.00 nary for Bottom Force (kips)	0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	0.252 0.127 0.049 0.000 8.138 Moments(k-ft)	Pem2
	0.7 0.8 0.9 1.0 Σ Resultant Sum r Name Pem1	7.00 8.00 9.00 10.00 mary for Bottom Force (kips) 2.4	0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	0.252 0.127 0.049 0.000 8.138 Moments(k-ft) 7.9	Pem2

МСЕ	ENGINEERING, INC.
	ENGINEERING, INC.

Project Napa River Flood Control Project Subject Upper Wall Design (H=10') By Date David An Feb-05

D-4 Load----For bottom of footing

h = 11.50 ft a = 2' / 11.5' = 0.17 ≤ 0.4 $V_{D-4} =$

2.5 kips/ft

 $\Delta P_{D\text{-}4} = (V_{D\text{-}4} \,/\, h) \; [(0.203b)/(0.16 + b^2)^2] \quad (\text{EM 1110-}2\text{-}2502 \; \text{Page 3-}49)$

b	Z = bh	$\Delta P_{D-4 \text{ wall}}$	Moment
0.0	0.00	0.000	0.000
0.1	1.15	0.176	1.818
0.2	2.30	0.254	2.335
0.3	3.45	0.244	1.961
0.4	4.60	0.198	1.368
0.5	5.75	0.151	0.868
0.6	6.90	0.113	0.518
0.7	8.05	0.084	0.290
0.8	9.20	0.063	0.146
0.9	10.35	0.049	0.056
1.0	11.50	0.038	0.000
Σ		1.369	9.359

Resultant Summary for Bottom of Footing

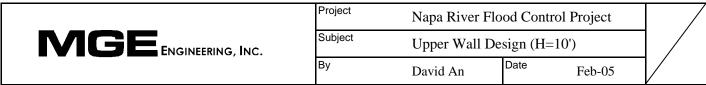
Recallent Callin	nary for Bottom	lerreeting		
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	3.1	3.83	12.1	
Pd-4 ftg	1.4		9.4	$P_{d-4 ftg}$
At bot of ftg	4.5		21.4	P'em2
	ΣV		ΣΜ	

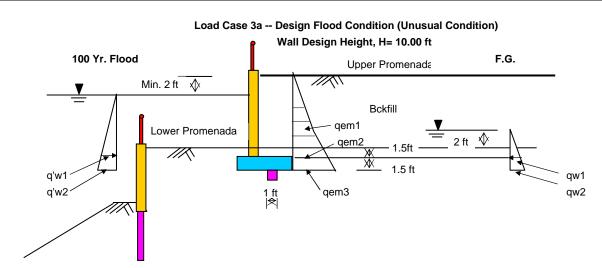
Demand at Bottom of Footing: Vd = 4.5 kips Md = 21.4 k-ft

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=10') By Date David An Feb-05 Load Case 2 -- Normal Condition W/Maintenance Vehicle (Usual Condition) Wall Design Height, H= 10.00 ft H-15 truck load USE V= 16 kips VLEFT VRIGHT 6ft F.G. Upper Promenada 7//\` P_{H-15} Bckfill Lower Promenada qem1 1.5 ft 1.5 ft 1 ft |兌| qem2 Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignored. Thickness(ft) Layer Pressure(ksf) Name qem1 Backfill 10.00 0.475 qem - Moist soil pressure at rest wall qem2 Backfill 1.50 0.547 H-15 Load----For bottom of footing 10.00 ft h =a=2'/10.00' = $0.20 \le 0.4$ For VLEFT a=8'/10.00' = For V_{RIGHT} 0.80 > 0.4 $\Delta P_{HZleft} = (0.28V/h^2) [b^2/(0.16+b^2)^3]$ (EM 1110-2-2502 Page 3-48) $\Delta P_{HZright} = (V/h^2) [a^2b^2/(a^2+b^2)^3]$ (EM 1110-2-2502 Page 3-48) b (for V_{LEFT}) Ζ $\Delta P_{PH (LEFT)}$ Moment b (for V_{RIGHT}) Ζ $\Delta P_{PH (RIGHT)}$ Moment 0.1 1.00 0.091 0.821 0.1 1.00 0.001 0.008 0.2 2.00 0.224 1.792 0.2 2.00 0.003 0.025 0.3 3.00 0.258 1.806 0.3 3.00 0.006 0.044 0.4 4.00 0.219 1.313 0.4 4.00 0.010 0.059 0.5 5.00 0.163 0.813 0.5 5.00 0.013 0.065 0.6 6.00 0.115 0.459 0.6 6.00 0.015 0.061 0.240 0.7 7.00 0.080 0.7 7.00 0.017 0.050 0.8 8.00 0.056 0.8 8.00 0.017 0.035 0.112 0.9 9.00 0.040 0.040 0.9 9.00 0.017 0.017 1.0 10.00 0.029 0.000 1.0 10.00 0.016 0.000 Σ Σ 1.274 7.394 0.116 0.363

Project	Napa River Flood Control Project	/
Subject	Upper Wall Design (H=10')	
Ву	David An Date Feb-05	

Resultant Summary for Bottom of Wall


				- \
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem1	2.4	3.33	7.9	
P _{H-15 wall}	1.4			H-15 wal
				"
At bot of wall	3.8		7.9	P'em2
	ΣV		ΣΜ	


Demand at Bottom of Wall: Vd = 3.8 kips Md = 7.9 k-ft

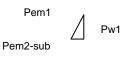
Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	3.1	3.83	12.1	
P _{H-15 ftg}	1.4			H-15-ftg
				"
At bot of ftg	4.5		12.1	/ P'em2
	ΣV		ΣΜ	

Demand at Bottom of Footing: Vd = 4.5 kips Md = 12.1 k-ft

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	6.50	0.309
qem2	Backfill	3.50	0.475
qem3	Backfill	1.50	0.545
qw1	Backfill	3.50	0.002
qw2	Backfill	1.50	0.003
q'w1	Backfill	8.00	0.005
q'w2	Backfill	1.50	0.006

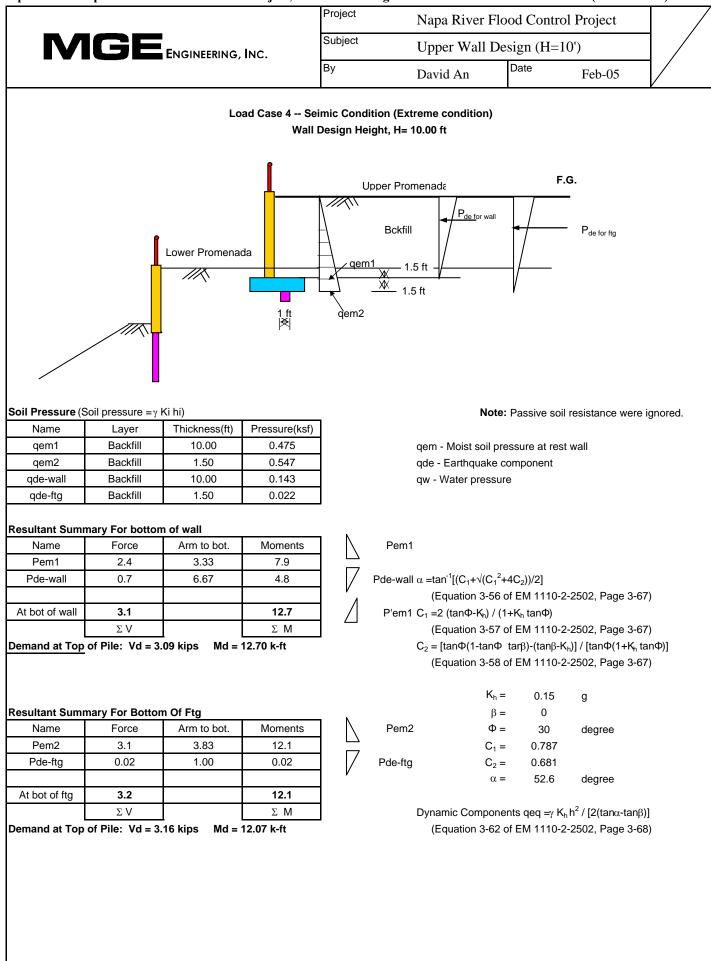

Note: Passive soil resistance were ignored.

qem1 - Moist soil pressure at rest wall

qem2 & qem3 - Submerged soil pressure at rest wall qw - Water pressure

Resultant Summary For Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)			
Pem1	1.0	5.67	5.69			
Pem2	1.4	1.63	2.23			
Pw1	0.004	1.17	0.005			
P'w1	-0.02	0.50	-0.01			
At bot of wall	2.36		7.9			
	ΣV		ΣΜ			
Demand at Bottom of Wall: Vd = 2.36 kips Md = 7.92 k-ft						



Resultant Summary For Bottom Of Footing

Resultant oun	mary for Botton			_
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	
Pem1	1.0	7.17	7.20	
Pem2	1.4	3.13	4.29	
Pem3	0.8	0.73	0.56	Pem3-sub
Pw1	0.00	2.67	0.01	
Pw2	0.0	0.71	0.00	Pw2
P'w1	-0.02	2.67	-0.1	
P'w2	-0.01	0.73	-0.01	P'w2
At bot of ftg	3.13		12.0	
	ΣV		ΣM]
Domond at Bat	tom of Wally Vd	- 2 12 kino M	d _ 10 k ft	-

Demand at Bottom of Wall: Vd = 3.13 kips Md = 12. k-ft

				Project	Napa River Flo	ood Control I	Project	/
	IGE	Engineering,	INC.	Subject	Upper Wall De	esign (H=10))	
				Ву	David An	Date	Feb-05	
			-	Vall Design (U) Design Height, H=				
I. Loads								
Load Case	1			2	3		4	4
	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ft
Hori. Force (k)	3.7	4.5	3.8	4.5	2.4	3.1	3.1	3.2
Moments(kft)	16.1	21.4	7.9	12.1	7.9	12.0	12.7	12.1
				В				
	_ н 	Lower Pro	omenade]			
				W2 W3 W W				
	ш ш В=	1.57	ft W1	W2 W3] H1 =			
	B = W1 =	1.57 3.50	ft ft	W2 W3	H2 =	= 1.50	ft	
	ш ш В=	1.57	ft ft	W2 W3		= 1.50	ft	

2. Resistances

Location	Dimension		Moight(k/ft)	Arm to toe (ft)	Mot (kft/ft)
Location	Thick/Depth	Width/Height	Weight(k/ft)	Ann to toe (it)	
Toe cover	1.50	3.50	0.65625	1.75	1.15
Heel Soil	10.00	4.43	5.542	7.28	40.36
Footing	1.50	9.50	2.138	4.75	10.15
Concrete Key	1.00	1.00	0.15	7.50	1.13
Wall Stem	1.57	11.17	2.624	4.28	11.24
Total			11.11		64.03

Due to D-4 Vertical weight

Distributed weight, Pd-4 =

Resistance of overturning due to D-4 = distributed weight x (W1 + 1 + 2ft)

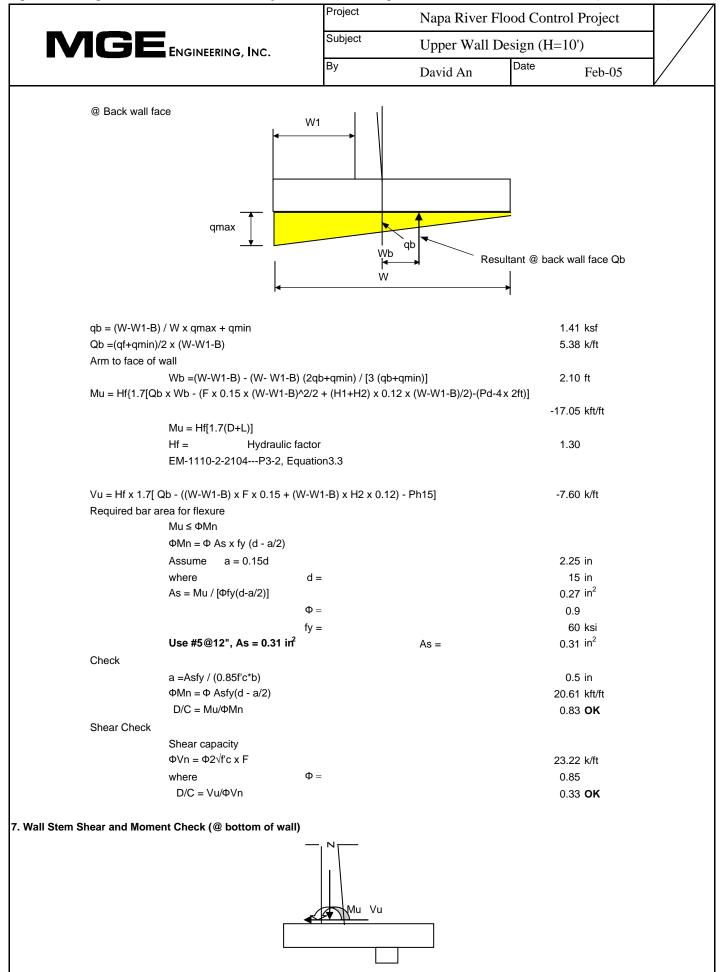
2.50 k/ft 16.25 kft/ft

Project	Napa River Flo	od Control	Project	
Subject	Upper Wall De	sign (H=10'	')	
Ву	David An	Date	Feb-05	

3. Overturning Check

Load Case	Resistance Moment	Overturning Moment		Safety Factor
1	80.28	21.4	3.75	Safety Factor > 1.5, OK
2	64.03	12.1	5.31	Safety Factor > 1.5, OK
3	64.03	12.0	5.33	Safety Factor > 1.5, OK
4	64.03	12.1	5.31	Safety Factor > 1.5, OK

4. Sliding Check


$Ffr = P_d \times \mu$	3.3 kips/ft
where, P _d weight of concrete & soil	
Resistance Due to D-4	
$Fd-4 = Pd_4 \times \mu$	0.750 kips/ft
Pd.4distributed weight due to D-4	
Resistance Due to Concrete Key	
$Fcr = 2\sqrt{f'c \times 1} ft$	18.21 kips/ft
where, f'c =	4000 psi

	Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Saf	ety Factor	Concrete Key (kips)	Sliding Force (kips)	Safet	y Factor
ĺ	1	3.33	4.5	0.74	< 1.33, NG	18.21	4.5	4.04	> 1.33, OK
ĺ	2	3.33	4.5	0.74	< 1.5, NG	18.21	4.5	4.02	> 1.5, OK
ĺ	3	3.33	3.1	1.07	< 1.5, NG	18.21	3.1	5.82	> 1.5, OK
ĺ	4	3.33	3.2	1.05	< 1.1, NG	18.21	3.2	5.76	> 1.1, OK

4	3.33	3.2	1.05	< 1.1, NG	18.21	3.2	5.76	> 1.1, OP
. Soil Bearing	Pressure Che	ck						
	Moment abour	t center of footing						
1 = Msmax(due	e to soil pressur	e) + Mt(due to toe	soil) - Mk(due to	key) - Mw(due to wal	I) - Mh(due to heel s	oil) ₄ MDue to D-4	4)	
		M =				6.2	kft/ft	
	where,	Max. M (due to I	ateral soil press	ure), Msmax. =		21.4	kft/ft	
			Msmax = (case	1, case2, case3, case	e4)			
		Mt =H2 x W1 x ().12 x (W/2-W1/2	2)		1.9	kft/ft	
		Mk = - (1ft x 1ft x	x 0.15 x (W/2-W	3))		-0.41	kft/ft	
		Mw = B x (H1 +	H2 + 14/12) x 0	.15 x (W/2-B/2-W1)		1.22	kft/ft	
		Mh =- (H1 + H2)	x0.12x[W2 + W3	8 - (B+1)/2]x{W/2-[W2	2+W3-(B+1)/2]/2}	-13.54	kft/ft	
		M _{D-4} = - P _{D-4} x (V	V/2 - W1-1ft - 2)			-4.38	kft/ft	
	Eccentricity	e _w = M / (Pd+Pc	I-4)			0.46	ft	
		W / 6 =				1.58	ft	
	Therefor	e _W < W / 6						
		Footing Contact	Pressure					
				W				
		Resultant Q	•					
		qmax						
				e _w				

Page 76 of 234

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=10') By Date David An Feb-05 Q = Pd + Pd-413.61 kips $1 + (6 e_w / W) =$ 1.29 ft $1 - (6 e_w / W) =$ 0.71 ft qmax = Q [1 + (6ew / W)] / W 1.84 ksf qmin = Q [1 - (6ew / W)] / W 1.02 ksf assumed allowable soil brearing pressure controlling 2.00 ksf qa = D/C = qmax/qa =0.92 <1, OK 6. Footing Shear and Moment Check (@ face of wall) @ Front wall face W1 Toe soil cover Resultant @ front wall face Qf qmax qf Wf qf = (W2+W3) / W x (qmax - qmin) + qmin1.54 ksf $Qf = (qf+qmax)/2 \times W1$ 5.93 k/ft Arm to face of wall 1.80 ft Wf = W1 (2qmax+qf) / [3 (qmax+qf)] $Mu = Hf\{1.7 [Qf x Wf - (W1x F x 0.15 x W1/2 - W1 x h2 x 0.12 x W1/2)]\}$ 18.12 kft/ft Mu = Hf[1.7(D+L)]Hf = Hydraulic factor 1.30 EM-1110-2-2104---P3-2, Equation3.3 $Vu = Hf\{1.7[Qf - (W1 x F x 0.15 - W1 x 1ft x 0.12)]\}$ 9.96 k/ft Required bar area for flexure Mu ≤ ΦMn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d 2.25 in where d = 15 in $As = Mu / [\Phi fy(d-a/2)]$ 0.29 in² Φ= 0.9 60 ksi fy =Use #5@12", As = 0.31 in² 0.31 in² As = Check a = Asfy / (0.85f'c*b)0.5 in Φ Mn = Φ Asfy(d - a/2) 20.61 kft/ft $D/C = Mu/\Phi Mn$ 0.88 **OK** Shear Check Shear capacity $\Phi Vn = \Phi 2 \sqrt{f'c x F}$ 23.22 k/ft where Φ= 0.85 $D/C = Vu/\Phi Vn$ 0.43 **OK**

		Project	Napa River	Flood Contro	ol Project
1G	Engineering, Inc.	Subject	Upper Wall	Design (H=	10')
		Ву	David An	Date	Feb-05
Mu = Hf x 1	.7 x M			3	5.5 kft/ft
Where	M = max(case1, case2, case Mu = Hf[1.7(D+L)]	e3, case4)			
	Hf = Hydraulic fa	actor		1	.30
	EM-1110-2-2104P3-2, Eq				
Vu = Hf x 1.		ax(case1, case2, ca	se3, case4)		8.3 k/ft
Required ba	ar area for flexure				
	Mu ≤ ΦMn				
	$\Phi Mn = \Phi As x fy (d - a/2)$				
	Assume a = 0.15d			2	37 in
	where	d =		-	5.8 in
	As = Mu / [Φfy(d-a/2)]			C	.54 in ²
		$\Phi =$			0.9
		fy =			60 ksi
		f'c =			000 psi
	Use #6@9", As = 0.44 in ² x	12/9	As =	C	.59 in ²
Check					
	a =Asfy / (0.85f'c*b)				0.9 in
	Φ Mn = Φ Asfy(d - a/2)			40	.57 kft/ft
	$D/C = Mu/\Phi Mn$			C	.87 OK
Shear Chec	k				
	Shear capacity				
	ΦVn = Φ2√f'c x B			24	.26 k/ft
	where	$\Phi =$		C	.85
	$D/C = Vu/\Phi Vn$			C	.34 OK

	Project	Napa River Fl	ood Co	ntrol Project
	Subject	Upper Wall D	esign (I	H=12')
LINGINEERING, INC.	Ву	David An	Date	Feb-05
	Upper Wall D	esian		
	Design Height H=	_		
Backfill Properties				
		Backfill Thickness	=	12.00 ft
		Backfill Unit Weight	=	125 pcf
		Φ :	=	37 degree
		C :	=	0 pcf
	SM	$=$ Tan(Φ_d) / Tan Φ = 2/3 =	=	0.67
		Φ_d :		27 degree
		Ka = Tan ² (45° - Φ/2) :		0.25
		$Ko = Tan^2 (45^\circ - \Phi_d/2) =$		0.38
		$Kp = Tan^2 (45^\circ + \Phi/2)$	=	4.02
Water Property				
		Water Unit Weight :	=	62.5 pcf
Wall and Footing Data				
Design Hei				12
Toe Cover				1.5
Top Wall T				1.0
100 Year F	lood Level to Top c	f Wall (ft)		2.00

			Project	Napa River Flo	ood Control Project
1GE	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=12')
			Ву	David An	Date Feb-05
Load case bas		Walls and Chanr	-	H=12.00 ft) Load Conditions & I (Unusal Condition)	-
		Wall D ₽. 2' V _D	Design Height, H= 1		uction Equipment = 2.5 kips/
	Lower Promenad	da 1 ft Ř	Upper Pror Bckfill qem1 1.1 qem2 1.5	5 ft	F.G.
Soil Pressure	at Wall (Soil press	ure =γ Ki hi) Thickness(ft)	Pressure(ksf)	Note:	Passive soil resistance we
qem1	Backfill	12.00	0.571	qem - Moist soil p	pressure at rest wall
qem2	Backfill	1.50	0.642		
D-4 Load	For bottom of w	/all	h = a = 2' / 12.0' =		
		$\Delta P_{D-4} = (V_{D-4})$	V _{D-4} = ₄ /h) [(0.203b)/(0.16	2.5	– 6.4 kips/ft)-2-2502 Page 3-49)
	b		₄ /h) [(0.203b)/(0.16	2.5 +b^2)^2] (EM 1110	kips/ft
	b 0.0	Z = bh	₄ /h) [(0.203b)/(0.16 ΔP _{D-4 wal}	2.5 +b^2)^2] (EM 1110 Moment	kips/ft
	b 0.0 0.1		₄ /h) [(0.203b)/(0.16	2.5 +b^2)^2] (EM 1110	kips/ft
	0.0	Z = bh 0.00	₄ /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000	2.5 +b^2)^2] (EM 1110 Moment 0.000	kips/ft
	0.0 0.1	Z = bh 0.00 1.20	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176	2.5 +b^2)^2] (EM 1110 Moment 0.000 1.897	kips/ft
	0.0 0.1 0.2	Z = bh 0.00 1.20 2.40	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254	2.5 +b^2)^2] (EM 1110 Moment 0.000 1.897 2.436	kips/ft
	0.0 0.1 0.2 0.3	Z = bh 0.00 1.20 2.40 3.60	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244	2.5 +b^2)^2] (EM 1110 Moment 0.000 1.897 2.436 2.046	kips/ft
	0.0 0.1 0.2 0.3 0.4	Z = bh 0.00 1.20 2.40 3.60 4.80	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427	kips/ft
	0.0 0.1 0.2 0.3 0.4 0.5	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303	kips/ft
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113	2.5 +b^2)^2] (EM 1110 Moment 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152	kips/ft
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80	A /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058	kips/ft
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000	kips/ft
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80	A /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058	kips/ft
	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000	kips/ft)-2-2502 Page 3-49)
	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 nary for Bottom	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.013 0.084 0.063 0.049 0.038 1.369 of Wall	2.5 +b^2)^2] (EM 1110 Moment 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000 9.766	kips/ft)-2-2502 Page 3-49)
	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$ Resultant Summ	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000	kips/ft)-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Summerican Summeri	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 mary for Bottom Force (kips)	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000 9.766	kips/ft)-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Summe Pem1	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 mary for Bottom Force (kips) 3.4	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000 9.766 Moments(k-ft) 13.7 9.8	kips/ft)-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Summe Pem1	Z = bh 0.00 1.20 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 mary for Bottom Force (kips) 3.4	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	2.5 +b^2)^2] (EM 1110 0.000 1.897 2.436 2.046 1.427 0.906 0.541 0.303 0.152 0.058 0.000 9.766 Moments(k-ft) 13.7	kips/ft

|--|

Project Napa River Flood Control Project Subject Upper Wall Design (H=12') By Date David An Feb-05

D-4 Load----For bottom of footing

h = 13.50 ft a = 2' / 13.5' = 0.15 ≤ 0.4 $V_{D-4} =$

2.5 kips/ft

 $\Delta P_{D\text{-}4} = (V_{D\text{-}4} \,/\, h) \; [(0.203b)/(0.16 + b^2)^2] \quad (\text{EM 1110-}2\text{-}2502 \; \text{Page 3-}49)$

b	Z = bh	$\Delta P_{D-4 \text{ wal}}$	Moment
0.0	0.00	0.000	0.000
0.1	1.35	0.176	2.134
0.2	2.70	0.254	2.741
0.3	4.05	0.244	2.302
0.4	5.40	0.198	1.606
0.5	6.75	0.151	1.019
0.6	8.10	0.113	0.608
0.7	9.45	0.084	0.341
0.8	10.80	0.063	0.171
0.9	12.15	0.049	0.066
1.0	13.50	0.038	0.000
Σ		1.369	10.986

Resultant Summary for Bottom of Footing

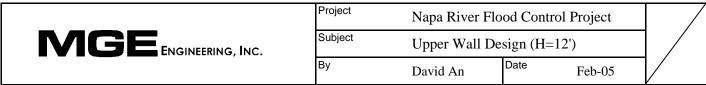
Recallent Call	nary for Bottom	loritooting		
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	4.3	4.50	19.5	
Pd-4 ftg	1.4		11.0	$P_{d-4 ftg}$
At bot of ftg	5.7		30.5	P'em2
	ΣV		ΣΜ	

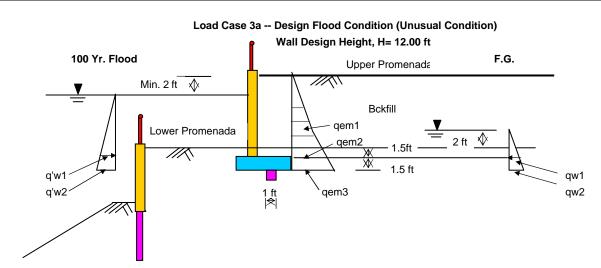
Demand at Bottom of Footing: Vd = 5.7 kips Md = 30.5 k-ft

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=12') By Date David An Feb-05 Load Case 2 -- Normal Condition W/Maintenance Vehicle (Usual Condition) Wall Design Height, H= 12.00 ft H-15 truck load USE V= 16 kips VLEFT VRIGHT 6ft F.G. Upper Promenada 7//\` P_{H-15} Bckfill Lower Promenada qem1 1.5 ft 1.5 ft 1 ft |兌| qem2 Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignored. Thickness(ft) Layer Pressure(ksf) Name qem1 Backfill 12.00 0.571 qem - Moist soil pressure at rest wall qem2 Backfill 1.50 0.642 H-15 Load----For bottom of footing 12.00 ft h =a=2'/12.00' = 0.17 ≤ 0.4 For VLEFT a=8'/12.00' = 0.67 > 0.4For V_{RIGHT} $\Delta P_{HZleft} = (0.28V/h^2) [b^2/(0.16+b^2)^3]$ (EM 1110-2-2502 Page 3-48) $\Delta P_{HZright} = (V/h^2) [a^2b^2/(a^2+b^2)^3]$ (EM 1110-2-2502 Page 3-48) b (for V_{LEFT}) Ζ $\Delta P_{PH (LEFT)}$ Moment b (for V_{RIGHT}) Ζ $\Delta P_{PH (RIGHT)}$ Moment 0.1 1.20 0.076 0.821 0.1 1.20 0.001 0.008 0.2 2.40 0.187 1.792 0.2 2.40 0.003 0.025 0.3 3.60 0.215 1.806 0.3 3.60 0.005 0.044 0.4 4.80 0.182 1.313 0.4 4.80 0.008 0.059 6.00 0.5 6.00 0.135 0.813 0.5 0.011 0.065 0.6 7.20 0.096 0.459 0.6 7.20 0.013 0.061 0.240 0.7 8.40 0.067 0.7 8.40 0.014 0.050 0.8 9.60 0.047 0.8 9.60 0.014 0.035 0.112 0.9 10.80 0.033 0.040 0.9 10.80 0.014 0.017 1.0 12.00 0.024 0.000 1.0 12.00 0.014 0.000 Σ 0.097 Σ 1.061 7.394 0.363

Ρ	roject	Napa River Flood Control Project				
S	ubject	Upper Wall Design (H=12')				
B	у	David An	Date	Feb-05		

Resultant Summary for Bottom of Wall


Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem1	3.4	4.00	13.7	
P _{H-15 wall}	1.2			H-15 wal
At bot of wall	4.6		13.7	/ P'em2
	ΣV		ΣΜ	


Demand at Bottom of Wall: Vd = 4.6 kips Md = 13.7 k-ft

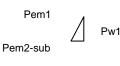
Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	4.3	4.50	19.5	
P _{H-15 ftg}	1.2			H-15-ftg
				",
At bot of ftg	5.5		19.5	P'em2
	ΣV		ΣΜ	

Demand at Bottom of Footing: Vd = 5.5 kips Md = 19.5 k-ft

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	8.50	0.404
qem2	Backfill	3.50	0.570
qem3	Backfill	1.50	0.641
qw1	Backfill	3.50	0.002
qw2	Backfill	1.50	0.003
q'w1	Backfill	10.00	0.007
q'w2	Backfill	1.50	0.008

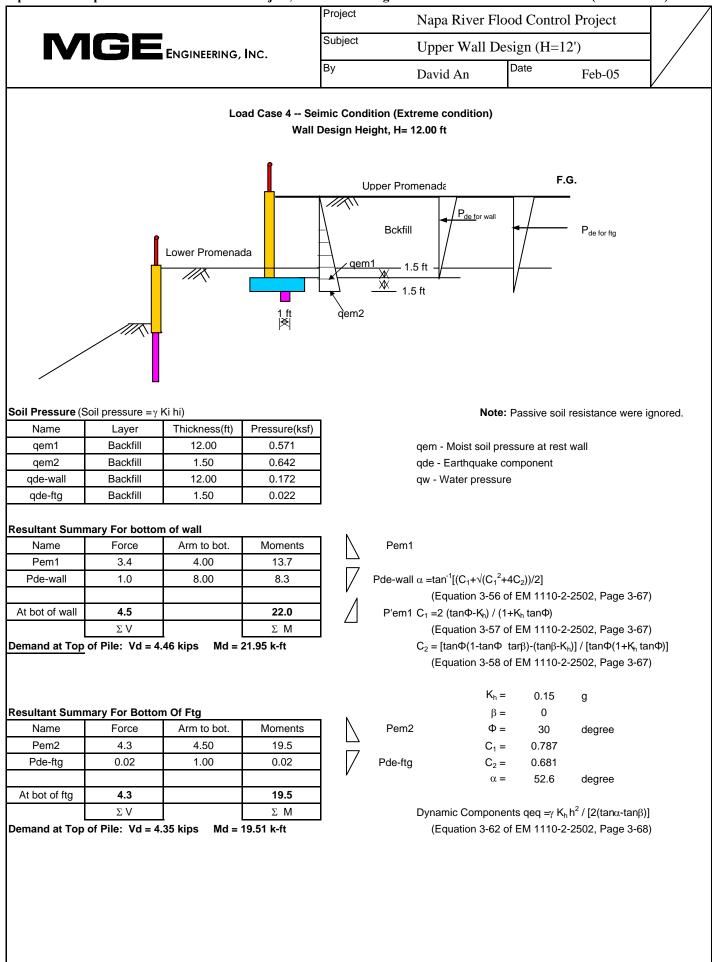

Note: Passive soil resistance were ignored.

qem1 - Moist soil pressure at rest wall

qem2 & qem3 - Submerged soil pressure at rest wall qw - Water pressure

Resultant Summary For Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)				
Pem1	1.7	6.33	10.88				
Pem2	1.7	1.65	2.81				
Pw1	0.004	1.17	0.005				
P'w1	-0.03	0.50	-0.02				
At bot of wall	At bot of wall 3.39		13.7				
	ΣV		ΣΜ				
Demand at Bottom of Wall: Vd = 3.39 kips Md = 13.68 k-ft							



Resultant Summary For Bottom Of Footing

Resultant Outin	mary r or Botton	il of l couling			
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)		
Pem1	1.7	7.83	13.45		
Pem2	1.7	3.15	5.37		
Pem3	0.9	0.74	0.67		Pem3-sub
Pw1	0.00	2.67	0.01		
Pw2	0.0	0.71	0.00		Pw2
P'w1	-0.03	3.33	-0.1		
P'w2	-0.01	0.73	-0.01		P'w2
At bot of ftg	4.30		19.4	· · · ·	
	ΣV		ΣM		
Demand at Bot	tom of Wall· Vd	– 43 kins Mo	l – 19 39 k-ft	-	

Demand at Bottom of Wall: Vd = 4.3 kips Md = 19.39 k-ft

				Project	Napa River Flo	ood Control I	Project	/
	IGE	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=12))	
				Ву	David An	Date	Feb-05	
I. Loads			-	Vall Design (Up Design Height, H= 1	• •			
[1	1		2	3		4	
Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ft
Hori. Force (k)	4.8	5.7	4.6	5.5	3.4	4.3	4.5	4.3
Moments(kft)	23.5	30.5	13.7	19.5	13.7	19.4	22.0	19.5
	H 41 -	• •		D-4	Upper Promenade			
	_	Lower Pro	menade		Upper Promenade			
	– – – –			1/15			4	
	= B	1.70	ft W1	W2 W3	H1 =	- 10.50		
		1.70	ft ft	W2 W3	H1 = H2 =	- 10.50 - 1.50	ft	
	= B	1.70	ft ft	W2 W3	H1 =	: 10.50 : 1.50	ft	

2. Resistances

Location	Dimension		Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)	
Location	Thick/Depth	Width/Height	Weight(K/It)	Ann to toe (it)	ινιοι (κπ/π)	
Toe cover	1.50	4.75	0.890625	2.38	2.12	
Heel Soil	12.00	4.55	6.825	8.73	59.55	
Footing	1.50	11.00	2.475	5.50	13.61	
Concrete Key	1.00	1.00	0.15	8.50	1.28	
Wall Stem	1.70	13.17	3.358	5.60	18.80	
Total			13.70		95.35	

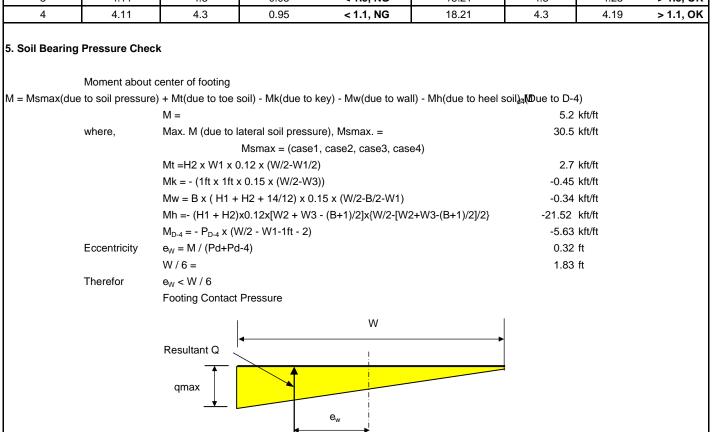
Due to D-4 Vertical weight

Distributed weight, Pd-4 =

Resistance of overturning due to D-4 = distributed weight x (W1 + 1 + 2ft)

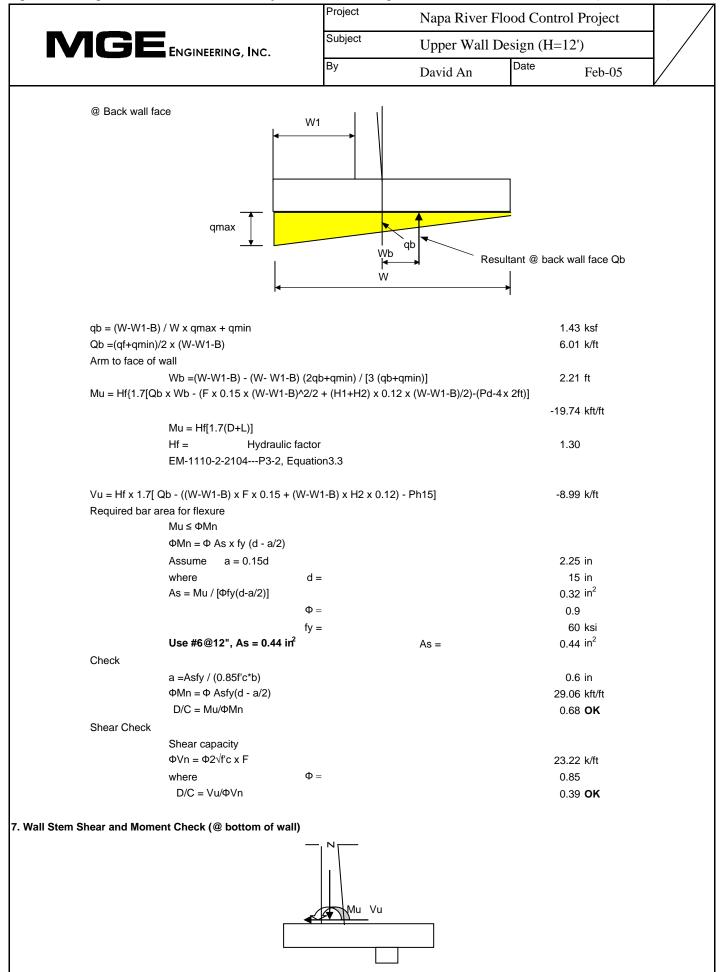
2.50 k/ft 19.38 kft/ft

 Project	Napa River Fl	lood Cont	rol Project	
Subject	Upper Wall D	esign (H=	=12')	7 /
Ву	David An	Date	Feb-05	\mathcal{V}


3. Overturning Check

Load Case	Resistance Moment	Overturning Moment	Safety Factor	
1	114.73	30.5	3.76	Safety Factor > 1.5, OK
2	95.35	19.5	4.89	Safety Factor > 1.5, OK
3	95.35	19.4	4.92	Safety Factor > 1.5, OK
4	95.35	19.5	4.89	Safety Factor > 1.5, OK

4. Sliding Check


	μ =	0.3
	$Ffr = P_d \times \mu$	4.1 kips/ft
	where, P _d weight of concrete & soil	
Resistance Due	to D-4	
	$Fd-4 = Pd_4 \times \mu$	0.750 kips/ft
	Pd.4distributed weight due to D-4	
Resistance Due	to Concrete Key	
	$Fcr = 2\sqrt{f'c \times 1} ft$	18.21 kips/ft
	where, f'c =	4000 psi

Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Safety Factor		Resistance Due to Concrete Key (kips)	Sliding Force (kips)	Safety Factor	
1	4.11	5.7	0.72	< 1.33, NG	18.21	5.7	3.20	> 1.33, OK
2	4.11	5.5	0.75	< 1.5, NG	18.21	5.5	3.32	> 1.5, OK
3	4.11	4.3	0.95	< 1.5, NG	18.21	4.3	4.23	> 1.5, OK
4	4.11	4.3	0.95	< 1.1, NG	18.21	4.3	4.19	> 1.1, OK

Page 88 of 234

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=12') By Date David An Feb-05 Q = Pd + Pd-416.20 kips $1 + (6 e_w / W) =$ 1.18 ft $1 - (6 e_w / W) =$ 0.82 ft qmax = Q [1 + (6ew / W)] / W 1.73 ksf qmin = Q [1 - (6ew / W)] / W 1.21 ksf assumed allowable soil brearing pressure controlling 2.00 ksf qa = D/C = qmax/qa =0.87 <1, OK 6. Footing Shear and Moment Check (@ face of wall) @ Front wall face W1 Toe soil cover Resultant @ front wall face Qf qmax qf Wf qf = (W2+W3) / W x (qmax - qmin) + qmin1.51 ksf $Qf = (qf+qmax)/2 \times W1$ 7.69 k/ft Arm to face of wall 2.43 ft Wf = W1 (2qmax+qf) / [3 (qmax+qf)] $Mu = Hf\{1.7 [Qf x Wf - (W1x F x 0.15 x W1/2 - W1 x h2 x 0.12 x W1/2)]\}$ 31.21 kft/ft Mu = Hf[1.7(D+L)]Hf = Hydraulic factor 1.30 EM-1110-2-2104---P3-2, Equation3.3 $Vu = Hf\{1.7[Qf - (W1 x F x 0.15 - W1 x 1ft x 0.12)]\}$ 12.75 k/ft Required bar area for flexure Mu ≤ ΦMn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d 2.25 in where d = 15 in $As = Mu / [\Phi fy(d-a/2)]$ 0.50 in² Φ= 0.9 60 ksi fy = Use #7@12", As =0.60 in² 0.60 in² As = Check a = Asfy / (0.85f'c*b)0.9 in Φ Mn = Φ Asfy(d - a/2) 39.31 kft/ft $D/C = Mu/\Phi Mn$ 0.79 **OK** Shear Check Shear capacity $\Phi Vn = \Phi 2 \sqrt{f'c x F}$ 23.22 k/ft where Φ= 0.85 $D/C = Vu/\Phi Vn$ 0.55 **OK**

		Project	Napa River	Flood Contro	ol Project
1G E	Engineering, Inc.	Subject	Upper Wall	Design (H=1	12')
		Ву	David An	Date	Feb-05
Mu = Hf x 1	.7 x M			5	1.8 kft/ft
Where	M = max(case1, case2, case	e3, case4)			
	Mu = Hf[1.7(D+L)]				
	Hf = Hydraulic fa	actor		1	.30
	EM-1110-2-2104P3-2, Eq	uation3.3			
Vu = Hf x 1.	7 x Vmax Vmax = ma	ax(case1, case2, ca	ise3, case4)	1	0.6 k/ft
Required ba	ar area for flexure				
	Mu ≤ ΦMn				
	$\Phi Mn = \Phi As x fy (d - a/2)$				
	Assume a = 0.15d			2	.61 in
	where	d =			7.4 in
	$As = Mu / [\Phi fy(d-a/2)]$			0	.72 in ²
		$\Phi =$			0.9
		fy =			60 ksi
		f'c =			000 psi
	Use #7@9", As =0.6 in ² x 12	2/9	As =	0	.80 in ²
Check					
	a =Asfy / (0.85f'c*b)				1.2 in
	$\Phi Mn = \Phi Asfy(d - a/2)$.52 kft/ft
	$D/C = Mu/\Phi Mn$			0	.86 OK
Shear Chec					
	Shear capacity				
	ΦVn = Φ2√f'c x B				.32 k/ft
	where	Φ =		-	.85
	$D/C = Vu/\Phi Vn$			0	.40 OK

	Project Napa River Flo	ood Control Pr	oject
	Subject Upper Wall De	esign (H=14')	
	^{By} David An	Date F	Feb-05
	Upper Wall Design		
	Design Height H= 14.00 ft		
Backfill Properties			
	Backfill Thickness :	= 14.00 ft	
	Backfill Unit Weight :	= 125 p	cf
	Φ =	= 37 d	egree
	C =	= 0 p	cf
	$SMF=Tan(\Phi_d) / Tan\Phi = 2/3 =$		
	Φ_{d} =		egree
	Ka = Tan² (45° - Φ/2) =		
	$Ko = Tan^{2} (45^{\circ} - \Phi_{d}/2) =$		
	$Kp = Tan^2 (45^\circ + \Phi/2) =$	= 4.02	
Water Property	Water Unit Weight -		of
	water Unit weight =	= 62.5 p	
Wall and Footing Data Design Hei	abt (ft)	14	
Toe Cover		1.5	
Top Wall T		1.0	
	lood Level to Top of Wall (ft)	2.00	

			Project	Napa River Flo	ood Control Project
1G E	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=14')
	· ······		Ву	David An	Date Feb-05
Load case ba	ased on DOAFlood	Walls and Chanr	ruction Condition (Load Conditions &	-
	Lower Promenad		Besign Height, H= 1 Upper Pror Bckfill gem1 1.5	D-4 Dozer (Construent nenade <u>PD-4 for wall</u> 5 ft	PD-4 for ftg
Soil Process	e et Well (Seil proce	1 ft ≷	qem2	Noto	
Name	e at Wall (Soil press Layer	Sure = γ Ki ni) Thickness(ft)	Pressure(ksf)	Note	Passive soil resistance wer
qem1	Backfill	14.00	0.666	aem - Moist soil r	pressure at rest wall
qem2	Backfill	1.50	0.737		
D-4 Load	For bottom of w	vall	h = a = 2' / 14.0' = V _{D-4} =	0.14) ft ↓ ≤ 0.4
		$\Delta P_{D-4} = (V_{D-4}) = (V_{$			5 kips/ft)-2-2502 Page 3-49)
	· · · · · · · · · · · · · · · · · · ·		4 /h) [(0.203b)/(0.16	+b^2)^2] (EM 1110	
	b	Z = bh	₄ /h) [(0.203b)/(0.16	+b^2)^2] (EM 1110 Moment	
	0.0	Z = bh 0.00	₄ /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000	+b^2)^2] (EM 1110 Moment 0.000	
		Z = bh	₄ /h) [(0.203b)/(0.16	+b^2)^2] (EM 1110 Moment	
	0.0 0.1	Z = bh 0.00 1.40	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176	+b^2)^2] (EM 1110 Moment 0.000 2.213	
	0.0 0.1 0.2	Z = bh 0.00 1.40 2.80	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842	
	0.0 0.1 0.2 0.3	Z = bh 0.00 1.40 2.80 4.20	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387	
	0.0 0.1 0.2 0.3 0.4	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60	A /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000	
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60	A /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.198 0.151 0.113 0.084 0.063 0.049	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068	
	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000	D-2-2502 Page 3-49)
	$\begin{array}{c} 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60 14.00	ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000	D-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60 14.00	A /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.244 0.198 0.151 0.113 0.013 0.084 0.063 0.049 0.038 1.369 of Wall	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000 11.393	D-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sumr	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60 14.00 mary for Bottom Force (kips)	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000 11.393 Moments(k-ft)	D-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sumr Name Pem1 Pd-4 wall	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60 14.00 14.00 mary for Bottom Force (kips) 4.7 1.4	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000 11.393 Moments(k-ft) 21.7 11.4	D-2-2502 Page 3-49)
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Sumr Name Pem1	Z = bh 0.00 1.40 2.80 4.20 5.60 7.00 8.40 9.80 11.20 12.60 14.00 mary for Bottom Force (kips) 4.7	4 /h) [(0.203b)/(0.16 ΔP _{D-4 wal} 0.000 0.176 0.254 0.254 0.244 0.198 0.151 0.113 0.084 0.063 0.049 0.038 1.369 of Wall Mom Arm(ft)	+b^2)^2] (EM 1110 Moment 0.000 2.213 2.842 2.387 1.665 1.057 0.631 0.353 0.178 0.068 0.000 11.393 Moments(k-ft) 21.7	

Project Napa River Flood Control Project Subject Upper Wall Design (H=14') By David An Date Feb-05

D-4 Load---- For bottom of footing

h = 15.50 fta = 2' / 15.5' = $0.13 \le 0.4$

 $\Delta P_{D-4} = (V_{D-4} / h) [(0.203b)/(0.16+b^2)^2]$ (EM 1110-2-2502 Page 3-49)

b	Z = bh	$\Delta P_{D-4 \text{ wall}}$	Moment
0.0	0.00	0.000	0.000
0.1	1.55	0.176	2.450
0.2	3.10	0.254	3.147
0.3	4.65	0.244	2.643
0.4	6.20	0.198	1.844
0.5	7.75	0.151	1.170
0.6	9.30	0.113	0.698
0.7	10.85	0.084	0.391
0.8	12.40	0.063	0.197
0.9	13.95	0.049	0.075
1.0	15.50	0.038	0.000
Σ		1.369	12.614

Resultant Summary for Bottom of Footing

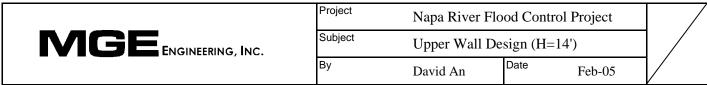
Recallant Call	nary for Bottom	loritooting		
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	5.7	5.17	29.5	
Pd-4 ftg	1.4		12.6	$P_{d-4 ftg}$
At bot of ftg	7.1		42.1	P'em2
	ΣV		ΣΜ	

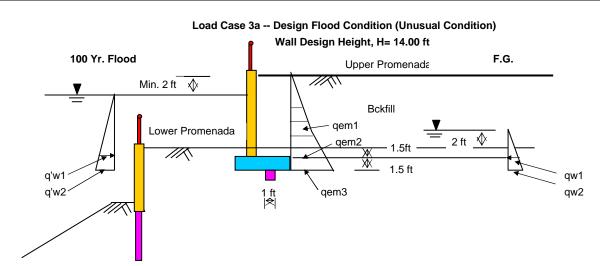
Demand at Bottom of Footing: Vd = 7.1 kips Md = 42.1 k-ft

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=14') By Date David An Feb-05 Load Case 2 -- Normal Condition W/Maintenance Vehicle (Usual Condition) Wall Design Height, H= 14.00 ft H-15 truck load USE V= 16 kips VLEFT VRIGHT 6ft F.G. Upper Promenada 7//\` P_{H-15} Bckfill Lower Promenada qem1 1.5 ft 1.5 ft 1 ft |兌| qem2 Soil Pressure at Wall (Soil pressure = γ Ki hi) Note: Passive soil resistance were ignored. Thickness(ft) Layer Pressure(ksf) Name qem1 Backfill 14.00 0.666 qem - Moist soil pressure at rest wall qem2 Backfill 1.50 0.737 H-15 Load----For bottom of footing 14.00 ft h =a=2'/14.00' = 0.14 ≤ 0.4 For VLEFT a=8'/14.00' = 0.57 > 0.4For V_{RIGHT} $\Delta P_{HZleft} = (0.28V/h^2) [b^2/(0.16+b^2)^3]$ (EM 1110-2-2502 Page 3-48) $\Delta P_{HZright} = (V/h^2) [a^2b^2/(a^2+b^2)^3]$ (EM 1110-2-2502 Page 3-48) b (for V_{LEFT}) Ζ $\Delta P_{PH (LEFT)}$ Moment b (for V_{RIGHT}) Ζ $\Delta P_{PH (RIGHT)}$ Moment 0.1 1.40 0.065 0.821 0.1 1.40 0.001 0.008 0.2 2.80 0.160 1.792 0.2 2.80 0.002 0.025 0.3 4.20 0.184 1.806 0.3 4.20 0.005 0.044 0.007 0.4 5.60 0.156 1.313 0.4 5.60 0.059 7.00 0.5 7.00 0.116 0.813 0.5 0.009 0.065 0.6 8.40 0.082 0.459 0.6 8.40 0.011 0.061 0.240 9.80 0.7 9.80 0.057 0.7 0.012 0.050 0.8 0.040 0.112 0.8 11.20 0.012 0.035 11.20 0.9 12.60 0.028 0.040 0.9 12.60 0.012 0.017 1.0 14.00 0.021 0.000 1.0 14.00 0.012 0.000 Σ 0.083 Σ 0.910 7.394 0.363

P	roject	Napa River Flood Control Project				
S	ubject	Upper Wall Design (H=14')				
B	y	David An	Date	Feb-05		

Resultant Summary for Bottom of Wall


Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem1	4.7	4.67	21.7	
P _{H-15 wall}	1.0			H-15 wal
At bot of wall	5.7		21.7	/ P'em2
	ΣV		ΣΜ	


Demand at Bottom of Wall: Vd = 5.7 kips Md = 21.7 k-ft

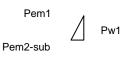
Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)	Pem2
Pem2	5.7	5.17	29.5	
P _{H-15 ftg}	1.0			H-15-ftg
				",
At bot of ftg	6.7		29.5	/ P'em2
	ΣV		ΣΜ	

Demand at Bottom of Footing: Vd = 6.7 kips Md = 29.5 k-ft

Soil Pressure at Wall (Soil pressure $=\gamma$ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	10.50	0.499
qem2	Backfill	3.50	0.665
qem3	Backfill	1.50	0.736
qw1	Backfill	3.50	0.002
qw2	Backfill	1.50	0.003
q'w1	Backfill	12.00	0.008
q'w2	Backfill	1.50	0.009

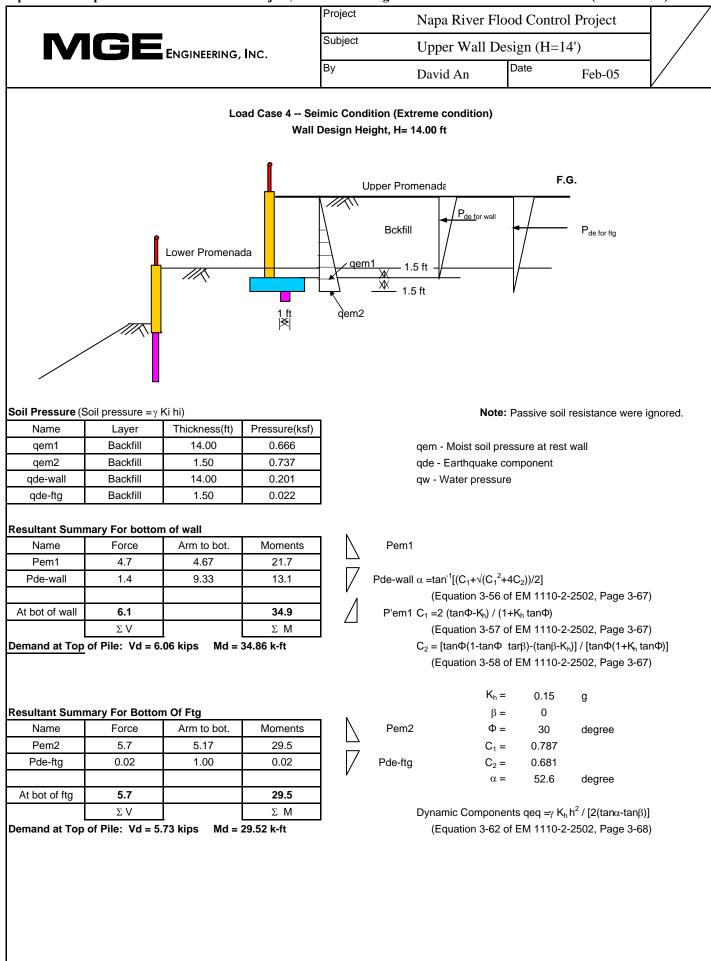

Note: Passive soil resistance were ignored.

qem1 - Moist soil pressure at rest wall

qem2 & qem3 - Submerged soil pressure at rest wall qw - Water pressure

Resultant Summary For Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)		
Pem1	2.6	7.00	18.35		
Pem2	2.0	1.67	3.40		
Pw1	0.004	1.17	0.005		
P'w1	-0.05	0.50	-0.02		
At bot of wall	4.61		21.7		
Σ V Σ Μ					
Demand at Bottom of Wall: Vd = 4.61 kips Md = 21.72 k-ft					



Resultant Summary For Bottom Of Footing

Resultant Oum	mary for botton	il of l ooting		_	
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)		
Pem1	2.6	8.50	22.28		
Pem2	2.0	3.17	6.45		
Pem3	1.1	0.74	0.77		Pem3-sub
Pw1	0.00	2.67	0.01		
Pw2	0.0	0.71	0.00		Pw2
P'w1	-0.05	4.00	-0.2		
P'w2	-0.01	0.74	-0.01		P'w2
At bot of ftg	5.67		29.3]	
	ΣV		ΣΜ		
Domand at Bot	tom of Wall- Vd	-567 kine M	d - 20 32 k-ft	_	

Demand at Bottom of Wall: Vd = 5.67 kips Md = 29.32 k-ft

100% Sub sittal (M h 2005) N

				Project	Napa River Flo	ood Control	Project	/
	IGE	ENGINEERING,	INC.	Subject	Upper Wall De	esign (H=14')	
				Ву	David An	Date	Feb-05	
			-	Wall Design (U) Design Height, H=	• •			
I. Loads								
	1			2	3		4	
Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg
Hori. Force (k)	6.0	7.1	5.7	6.7	4.6	5.7	6.1	5.7
Moments(kft)	33.1	42.1	21.7	29.5	21.7	29.3	34.9	29.5
	г н2 — —	Lower Pro	menade	B				
	B =	1.83		W2 W3 W	H1 =			
	W1 =	5.00			H2 =			
	W2 =	4.50	ft		F =	= 1.5	ft	
							it.	
	W2 = W3 = W =	3.00 12.50	ft					

2. Resistances

Location	Dime	ension	Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)
Location	Thick/Depth	Width/Height	weight(k/it)	Ann to toe (it)	
Toe cover	1.50	5.00	0.9375	2.50	2.34
Heel Soil	14.00	5.67	9.917	9.67	95.86
Footing	1.50	12.50	2.813	6.25	17.58
Concrete Key	1.00	1.00	0.15	9.50	1.43
Wall Stem	1.83	15.17	4.171	5.92	24.68
Total			17.99		141.89

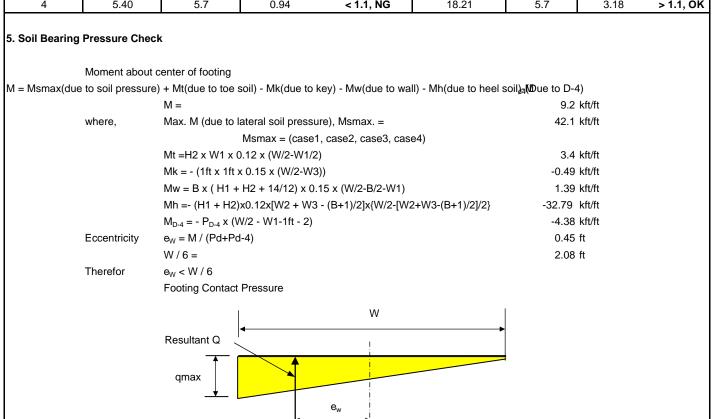
Due to D-4 Vertical weight

Distributed weight, Pd-4 =

Resistance of overturning due to D-4 = distributed weight x (W1 + 1 + 2ft)

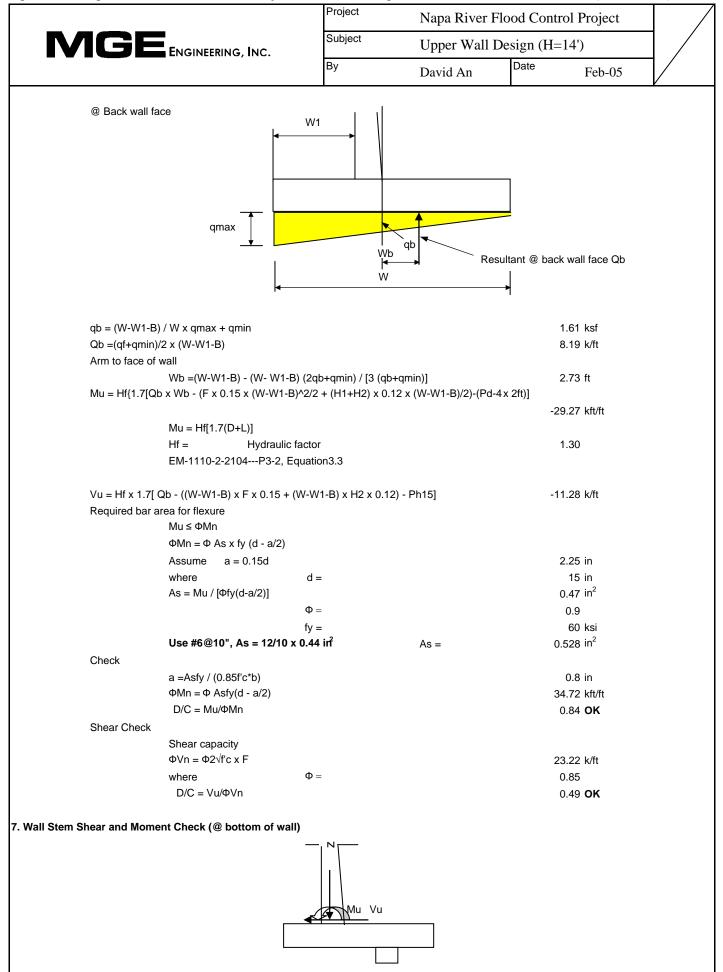
2.50 k/ft 20.00 kft/ft

Project	Napa River Flo	ood Control	Project	/
Subject	Upper Wall De	sign (H=14	! ')	
Ву	David An	Date	Feb-05	\bigvee


3. Overturning Check

Load Case	Resistance Moment	Overturning Moment		Safety Factor
1	161.89	42.1	3.84	Safety Factor > 1.5, OK
2	141.89	29.5	4.81	Safety Factor > 1.5, OK
3	141.89	29.3	4.84	Safety Factor > 1.5, OK
4	141.89	29.5	4.81	Safety Factor > 1.5, OK

4. Sliding Check


	h =	0.3
	$Ffr = P_d \times \mu$	5.4 kips/ft
,	where, P _d weight of concrete & soil	
Resistance Due t	o D-4	
	$Fd-4 = Pd_4 \times \mu$	0.750 kips/ft
	Pd.4distributed weight due to D-4	
Resistance Due t	o Concrete Key	
	Fcr = 2√f'c x 1 ft	18.21 kips/ft
,	where, f'c =	4000 psi

Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Safe	ety Factor	Resistance Due to Concrete Key (kips)	Sliding Force (kips)	Safet	y Factor
1	5.40	7.1	0.76	< 1.33, NG	18.21	7.1	2.57	> 1.33, OK
2	5.40	6.7	0.80	< 1.5, NG	18.21	6.7	2.72	> 1.5, OK
3	5.40	5.7	0.95	< 1.5, NG	18.21	5.7	3.21	> 1.5, OK
4	5.40	5.7	0.94	< 1.1, NG	18.21	5.7	3.18	> 1.1, OK

Page 100 of 234

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Upper Wall Design (H=14') By Date David An Feb-05 Q = Pd + Pd-420.49 kips $1 + (6 e_w / W) =$ 1.22 ft $1 - (6 e_w / W) =$ 0.78 ft qmax = Q [1 + (6ew / W)] / W 1.99 ksf qmin = Q [1 - (6ew / W)] / W 1.28 ksf assumed allowable soil brearing pressure controlling 2.00 ksf qa = D/C = qmax/qa =1.00 <1, OK 6. Footing Shear and Moment Check (@ face of wall) @ Front wall face W1 Toe soil cover Resultant @ front wall face Qf qmax qf Wf qf = (W2+W3) / W x (qmax - qmin) + qmin1.71 ksf $Qf = (qf+qmax)/2 \times W1$ 9.26 k/ft Arm to face of wall 2.56 ft Wf = W1 (2qmax+qf) / [3 (qmax+qf)] $Mu = Hf\{1.7 [Qf x Wf - (W1x F x 0.15 x W1/2 - W1 x h2 x 0.12 x W1/2)]\}$ 41.27 kft/ft Mu = Hf[1.7(D+L)]Hf = Hydraulic factor 1.30 EM-1110-2-2104---P3-2, Equation3.3 $Vu = Hf\{1.7[Qf - (W1 x F x 0.15 - W1 x 1ft x 0.12)]\}$ 15.99 k/ft Required bar area for flexure Mu ≤ ΦMn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d 2.25 in where d = 15 in $As = Mu / [\Phi fy(d-a/2)]$ 0.66 in² Φ= 0.9 60 ksi fy =Use #7@10", As =12/10 x 0.60 inf 0.72 in² As =Check a = Asfy / (0.85f'c*b)1.1 in Φ Mn = Φ Asfy(d - a/2) 46.88 kft/ft $D/C = Mu/\Phi Mn$ 0.88 **OK** Shear Check Shear capacity $\Phi Vn = \Phi 2 \sqrt{f'c x F}$ 23.22 k/ft where Φ= 0.85 $D/C = Vu/\Phi Vn$ 0.69 **OK**

		Project	Napa River	Flood Contro	ol Project
ЛG	ENGINEERING, INC.	Subject	Upper Wall	Design (H=14')	
		Ву	David An	Date	Feb-05
Mu = Hf x 1	.7 x M			7	7.0 kft/ft
Where	M = max(case1, case2, case	e3, case4)			
	Mu = Hf[1.7(D+L)]				
	Hf = Hydraulic fa	actor		1	.30
	EM-1110-2-2104P3-2, Eq	uation3.3			
Vu = Hf x 1.	7 x Vmax Vmax = ma	ax(case1, case2, ca	ase3, case4)	1	3.4 k/ft
Required ba	ar area for flexure				
	Mu ≤ ΦMn				
	Φ Mn = Φ As x fy (d - a/2)				
	Assume a = 0.15d			2	.85 in
	where	d =			9.0 in
	$As = Mu / [\Phi fy(d-a/2)]$			C	.97 in ²
		$\Phi =$			0.9
		fy =			60 ksi
		f'c =			000 psi
	Use #8@9", As =0.79 in ² x	12/9	As =	1	.05 in ²
Check					
	a =Asfy / (0.85f'c*b)				1.5 in
	Φ Mn = Φ Asfy(d - a/2)				.39 kft/ft
	$D/C = Mu/\Phi Mn$			C	.89 OK
Shear Chec					
	Shear capacity				
	ΦVn = Φ2√f'c x B				.38 k/ft
	where	Φ =			.85
	$D/C = Vu/\Phi Vn$			C	.47 OK

Project	Napa River Flo	ood Contro	l Project	
Subject	Ramp Wall De	sign		
Ву	David An	Date	Feb-05	

RAMP WALL DESIGN

Napa River / Napa Creek Flood Protection Project, Structural Design Calculations for 100% Submittal (March 2005) Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Ramp Wall Design (H=3'-6") Bу Date David An Feb-05 Load Case 2 -- Normal Condition W/Pedestrin Load (Usual Condition) No vehecal can access H = 3.5 ft, Desin Height Pedestran F.G. 2.50 Upper Promenada

qem1

qem2

1 ft |文|

Bckfill

h2

1.25 ft

Note: Passive soil resistance were ignored.

0.00

 ∇

Soil	Pressure	at	Wall (Soil	pressure	=γ Ki hi)
				p. 0000.0	1

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	wall	5.50	0.274
qem2	Bot. Footing	1.25	0.336

//Ň

Thickness(ft) = soil height of backwall + equivalent height of surcharge

Resultant Summary for Bottom of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	0.8	1.83	1.4
At bot of wall	0.8		1.4
	ΣV		ΣΜ

Demand at Bottom of Wall: Vd = .8 kips Md = 1.4 k-ft

Resultant Summary for Bottom of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem2	1.1	2.25	2.6
At bot of ftg	1.1		2.6
	ΣV		ΣΜ

Demand at Bottom of Footing: Vd = 1.1 kips Md = 2.6 k-ft

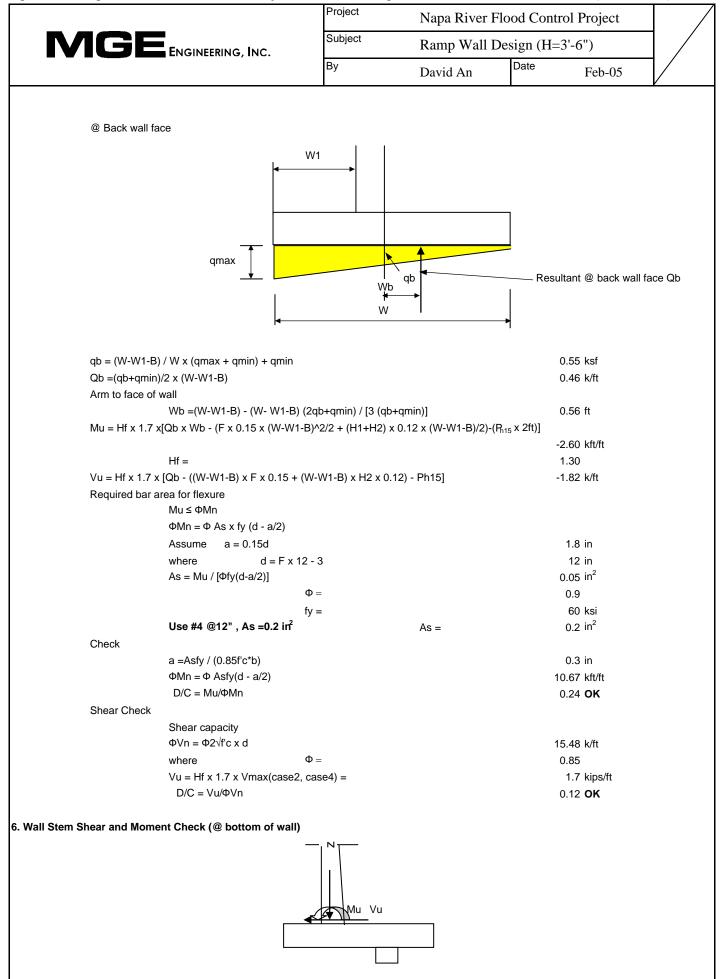
qem - Moist soil pressure at rest wall

Backfill parameter:	
unit weight	125 pcf
friction angle, ϕ	37 deg
sin(φ)	0.602
at rest coeff. Ko	0.398
passive, kp	4.023
Pedestrian load =	250 lbs/sf, UBC
equivalent surcharge, hp =	2 ft

Pem2

 \setminus

 \square


Pem2

		I		Project		Napa River Floo		U	
	IGE	i E ngineering,	INC.	Subject		Ramp Wall Des	-	-6")	
				Ву		David An	Date	Feb-05	
		Lo	ad Case 4 Se	No vehec H = 3.5 ft	al can acc , Desin He Jpper Pron Bckfill	ight nenadz	F.G. El	ev 2.50 - P _{de for ftg} ev 0.00	<u> </u>
oil/Water Pror	portion		1 ft	dem2		h2=1.0'	ssure at rest	resistance were wall	ignored.
Soil/Water Prop Layer	Soil Type	Thickness(ft)	Unit Wt. (pcf)		Þ	Ka	Ko	Кр	C (psf)
Layer 1	back fill	4.00	125		₽ 37	0.25	0.40	4.02	0 (psi)
Soil Pressure (S	Soil pressure =γ								
	Layer	Thickness(ft)	Pressure(ksf)			$\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1^2 + 4)})]$	4C ₂))/2]		
Name									
qem1	Wall	5.50	0.171			(Equation 3-56 of	f EM 1110-2	-2502, Page 3-6	7)
qem1 qem2 qde-wall	Bot. Footing Wall	1.25 5.50	0.210	-		$C_1 = 2 (tan\Phi - K_h) / (1 + C_1 = 2 (tan\Phi - K_h) / (1 + C_2 = [tan\Phi (1 - tan\Phi t = 1)]$	⊦K _h tanΦ) f EM 1110-2 :arβ)-(tanβ-K	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t	7) anΦ)]
qem1 qem2 qde-wall qde-ftg	Bot. Footing Wall Bot. Footing	1.25 5.50 7.00	0.210	-		С ₁ =2 (tanФ-Қ _h) / (1+ (Equation 3-57 of	⊦K _h tanΦ) f EM 1110-2 :arβ)-(tanβ-K	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t	7) anΦ)]
qem1 qem2 qde-wall qde-ftg Resultant Sumr	Bot. Footing Wall Bot. Footing mary For botton	1.25 5.50 7.00 n of wall	0.210 0.067 0.085			$C_1 = 2 (tan \Phi - K_h) / (1+$ (Equation 3-57 of $C_2 = [tan \Phi (1-tan \Phi t (Equation 3-58 of$	⊦K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
qem1 qem2 qde-wall qde-ftg Resultant Summ Name	Bot. Footing Wall Bot. Footing mary For botton Force	1.25 5.50 7.00 n of wall Arm to bot.	0.210 0.067 0.085 Moments			$C_1 = 2 (tan \Phi - K_h) / (1+$ (Equation 3-57 of $C_2 = [tan \Phi (1-tan \Phi t (Equation 3-58 of K_h = $	+K _h tanΦ) f EM 1110-2 ærβ)-(tanβ-K f EM 1110-2 0.15	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t	7) anФ)]
qem1 qem2 qde-wall qde-ftg esultant Sumr	Bot. Footing Wall Bot. Footing mary For botton	1.25 5.50 7.00 n of wall	0.210 0.067 0.085			$C_{1} = 2 (tan\Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [tan\Phi(1-tan\Phi t (Equation 3-58 of K_{h} = \beta = \beta = \phi = \phi = 0$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
qem1 qem2 qde-wall qde-ftg esultant Sum Name Pem1 Pde-wall	Bot. Footing Wall Bot. Footing mary For botton Force 0.5 0.2	1.25 5.50 7.00 n of wall Arm to bot. 1.83	0.210 0.067 0.085 Moments 0.9 0.7		Pem1	$C_{1} = 2 (tan\Phi - K_{h}) / (1+$ (Equation 3-57 of $C_{2} = [tan\Phi(1-tan\Phi t t (Equation 3-58 of$ $K_{h} = \beta = \beta = \Phi = C_{1} = C_{1} = 0$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085	-2502, Page 3-6 h)] / [tanΦ(1+K _h t -2502, Page 3-6 g	7) anΦ)]
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1	Bot. Footing Wall Bot. Footing mary For botton Force 0.5 0.2 0.7	1.25 5.50 7.00 n of wall Arm to bot. 1.83	0.210 0.067 0.085 Moments 0.9 0.7 1.5		Pem1	$C_{1} = 2 (tan\Phi - K_{h}) / (1+$ (Equation 3-57 of $C_{2} = [tan\Phi(1-tan\Phi t t (Equation 3-58 of$ $K_{h} = $ $\beta = $ $\Phi = $ $C_{1} = $ $C_{2} = $	+K _h tanΦ) f EM 1110-2 carβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720	-2502, Page 3-6 h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree	7) anΦ)]
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Bot. Footing Wall Bot. Footing mary For botton Force 0.5 0.2	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M		Pem1	$C_{1} = 2 (tan\Phi - K_{h}) / (1+$ (Equation 3-57 of $C_{2} = [tan\Phi(1-tan\Phi t t (Equation 3-58 of$ $K_{h} = \beta = \beta = \Phi = C_{1} = C_{1} = 0$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085	-2502, Page 3-6 h)] / [tanΦ(1+K _h t -2502, Page 3-6 g	7) anΦ)]
qem1 qem2 qde-wall qde-ftg esultant Sumr Name Pem1 Pde-wall At bot of wall	Bot. Footing Wall Bot. Footing mary For botton Force 0.5 0.2 0.7 ∑ V of Pile: Vd = .6	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M		Pem1 Pde-wall	$C_{1} = 2 (tan\Phi - K_{h}) / (1+$ (Equation 3-57 of $C_{2} = [tan\Phi(1-tan\Phi t t (Equation 3-58 of$ $K_{h} = $ $\beta = $ $\Phi = $ $C_{1} = $ $C_{2} = $	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Bot. Footing Wall Bot. Footing mary For bottom Force 0.5 0.2 0.7 ∑ V	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ Μ .53 k-ft		Pem1 Pde-wall	$C_{1} = 2 (\tan \Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [\tan \Phi (1 - \tan \Phi t (Equation 3-58 of K_{h} = \beta = 0 + \beta$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Bot. Footing Wall Bot. Footing mary For botton Force 0.5 0.2 0.7 ∑ V of Pile: Vd = .6	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M		Pem1 Pde-wall	$C_{1} = 2 (\tan \Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [\tan \Phi (1 - \tan \Phi t (Equation 3-58 of K_{h} = \beta = 0 + \beta$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top Resultant Sumr Name Pem2	Bot. Footing Wall Bot. Footing mary For bottom Force 0.5 0.2 0.7 ΣV of Pile: Vd = .6 mary For Bottom Force 0.7	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67 5 kips Md = 1 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M 53 k-ft Moments 1.6		Pem1 Pde-wall Pem2	$C_{1} = 2 (\tan \Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [\tan \Phi (1 - \tan \Phi t (Equation 3-58 of K_{h} = \beta = 0 + \beta$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Bot. Footing Wall Bot. Footing mary For bottom Force 0.5 0.2 0.7 ∑ V of Pile: Vd = .6 mary For Bottom Force	1.25 5.50 7.00 of wall Arm to bot. 1.83 3.67 5 kips Md = 1 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M 53 k-ft Moments		Pem1 Pde-wall	$C_{1} = 2 (\tan \Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [\tan \Phi (1 - \tan \Phi t (Equation 3-58 of K_{h} = \beta = 0 + \beta$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
qem1 qem2 qde-wall qde-ftg esultant Sum Name Pem1 Pde-wall At bot of wall emand at Top	Bot. Footing Wall Bot. Footing mary For bottom Force 0.5 0.2 0.7 ΣV of Pile: Vd = .6 mary For Bottom Force 0.7	1.25 5.50 7.00 n of wall Arm to bot. 1.83 3.67 5 kips Md = 1 5 kips Md = 1	0.210 0.067 0.085 Moments 0.9 0.7 1.5 Σ M 53 k-ft Moments 1.6		Pem1 Pde-wall Pem2	$C_{1} = 2 (\tan \Phi - K_{h}) / (1 + (Equation 3-57 of C_{2} = [\tan \Phi (1 - \tan \Phi t (Equation 3-58 of K_{h} = \beta = 0 + \beta$	+K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _h	-2502, Page 3-6 ,)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)

			Project	Napa River Flo	od Control	Project
MGE		INC.	Subject	Ramp Wall De	sign (H=3'-6	5")
			Ву	David An	Date	Feb-05
		R	amp Wall (RW)		
ads		H = 3	3'-6" , Design I	Height		
aus						
e to Soil Pressure	[2	4		1
	Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	
	Hori. Force (k)	0.8	1.1	0.7	1.0	_
	Moments(kft)	1.4	2.6	1.5	3.0	1
H - H - H - - - - - - - - - - - - - - -	Lower Pro	Toe W1	W2 W3 W]		
B = W1 = W2 = W3 =	1.50 1.50 1.00	ft ft ft	·	H1 = H2 = F = Conc. Unit Wt =	1.00 1.25 150) ft 5 ft) pcf
W = esistance Due to Weight o Due to concrete Location	f Concrete, Soil	nsion Width/Height	· Weight(k/ft)	Backfill Unit Wt =	Mot (kft/ft)	5 pcf
Toe cover	1.00	1.50	0.1875	0.75	0.14	1
Heel Soil	3.50	1.50	0.656	3.25	2.13	1
Footing	1.25	4.00	0.750	2.00	1.50	-
Concrete Key	1.23	1.00	0.15	3.00	0.45	-
	1					-
Wall Stem	1.00	4.67	0.700	2.00	1.40	-
Total	ain Surcharge		2.44		5.62	J
Surcharge = (pe	edestrain load)				250.00	lbs/sf, UBC
	edestrain load) due to the surcha	rge = (W-W1-B) >	x Surcharge =			lbs/sf, UBC kips/ft

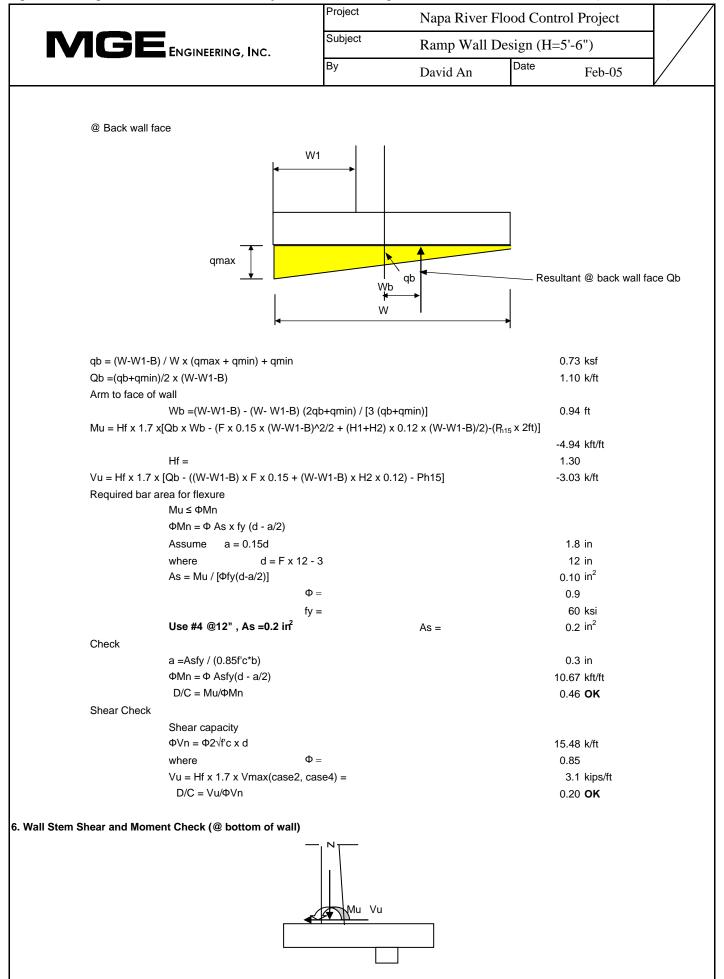
eck Load Case 2 4 esistance Due esistance Due	μ = Ffr = P _d x μ where, P _d weig	Overturning Moment 2.6 3.0	Subject By 2.68 2.30 soil soil ety Factor < 1.5, NG < 1.1, NG	Ramp Wall De David An Safety Factor Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21 18.21	Date pr > 1.5, OK pr > 1.5, OK 0.3 0.7 0.113 18.21 4000	Feb-05 kips/ft	Factor > 1.5, OF
eck Load Case 2 4 esistance Due esistance Due esistance Due to Soil (kips) 0.85 0.85	Resistance Moment 6.84 6.84 to Soil Friction μ = Ffr = P _d x μ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Overturning Moment 2.6 3.0 wht of concrete & Safe 0.75	2.68 2.30 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	or > 1.5, OK or > 1.5, OK or > 1.5, OK 0.3 0.7 0.113 18.21 4000 0 Sliding Force (kips)	kips/ft kips/ft kips/ft psi, assumed Safety	
Load Case 2 4 esistance Due esistance Due esistance Due to Soil (kips) 0.85 0.85	Moment 6.84 6.84 to Soil Friction μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Moment 2.6 3.0 Iht of concrete & Safe 0.75	2.30 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	vr > 1.5, OK 0.3 0.7 0.113 18.21 4000 ⁰ Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
2 4 esistance Due esistance Due esistance Due to Soil (kips) 0.85 0.85	Moment 6.84 6.84 to Soil Friction μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Moment 2.6 3.0 Iht of concrete & Safe 0.75	2.30 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	vr > 1.5, OK 0.3 0.7 0.113 18.21 4000 ⁰ Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
2 4 esistance Due esistance Due esistance Due to Soil (kips) 0.85 0.85	Moment 6.84 6.84 to Soil Friction μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Moment 2.6 3.0 Iht of concrete & Safe 0.75	2.30 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	vr > 1.5, OK 0.3 0.7 0.113 18.21 4000 ⁰ Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
4 esistance Due t esistance Due t esistance Due to Soil (kips) 0.85 0.85	6.84 to Soil Friction μ = Ffr = P _d x μ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	3.0 ht of concrete & Safe 0.75	2.30 soil ety Factor < 1.5, NG	Resistance Due to Concrete Key (kips) 18.21	vr > 1.5, OK 0.3 0.7 0.113 18.21 4000 ⁰ Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due f esistance Due f esistance Due f to Soil (kips) 0.85 0.85	to Soil Friction μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	ht of concrete & Safe	ety Factor < 1.5, NG	Resistance Due to Concrete Key (kips) 18.21	0.3 0.7 0.113 18.21 4000 Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due esistance Due to Soil (kips) 0.85 0.85	μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	ety Factor < 1.5, NG	Concrete Key (kips) 18.21	0.7 0.113 18.21 4000 Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due esistance Due to Soil (kips) 0.85 0.85	μ = Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	ety Factor < 1.5, NG	Concrete Key (kips) 18.21	0.7 0.113 18.21 4000 Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due t esistance Due t to Soil (kips) 0.85 0.85	Ffr = P _d x µ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	ety Factor < 1.5, NG	Concrete Key (kips) 18.21	0.7 0.113 18.21 4000 Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due t esistance Due t to Soil (kips) 0.85 0.85	where, P_d weig to Pedestrain to Concrete Key Fcr = 2 $\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	ety Factor < 1.5, NG	Concrete Key (kips) 18.21	0.113 18.21 4000 ⁰ Sliding Force (kips)	kips/ft kips/ft psi, assumed Safety	
esistance Due t esistance Due t to Soil (kips) 0.85 0.85	to Pedestrain to Concrete Key Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	ety Factor < 1.5, NG	Concrete Key (kips) 18.21	18.21 4000 Sliding Force (kips)	kips/ft psi, assumed Safety	
esistance Due to Soil (kips) 0.85 0.85	to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	< 1.5, NG	Concrete Key (kips) 18.21	18.21 4000 Sliding Force (kips)	kips/ft psi, assumed Safety	
esistance Due to Soil (kips) 0.85 0.85	Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips)	psi, assumed Safety	
esistance Due to Soil (kips) 0.85 0.85	Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.1	Safe 0.75	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips)	psi, assumed Safety	
esistance Due to Soil (kips) 0.85 0.85	Sliding Force (kips) 1.1	0.75	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips)	psi, assumed Safety	
to Soil (kips) 0.85 0.85	(kips) 1.1	0.75	< 1.5, NG	Concrete Key (kips) 18.21	Sliding Force (kips)		
to Soil (kips) 0.85 0.85	(kips) 1.1	0.75	< 1.5, NG	Concrete Key (kips) 18.21	Sliding Force (kips)		
0.85				18.21	1.1	16.06	15.0
1	1.0	0.84	< 1.1, NG	18 21			> 1.5, Or
essure Check				10:21	1.0	18.13	> 1.1, Oł
nere, ccentricity nerefore	to soil pressure) M = Max. M (due to la Mt =H2 x 0.125 Mk = - (1ft x 1ft x Mw = B x (H1 + Mh = (H1 + H2)x M _{sur} ={(W-W1-B) $e_W = M / (Pd+Ph$ W / 6 = $e_W < W / 6$	ateral soil press x (W/2-W1/2) < 0.15 x (W/2-W3 H2 + 14/12) x 0 <0.125x(W2 + W x qsur x [W/2-(V	ure), Msmax. = 3)) .15 x (W/2-B/2-W1 '3 - B)(W/2-(W2+W		1.69 3.0 0.2 -0.2 0.0 -0.8 -0.5	kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft ft	
	Resultant Q		W e _w		qmin		
	centricity erefore	$Mk = - (1ft x 1ft x)$ $Mw = B x (H1 + H2)x$ $M_{sur} = {(W-W1-B)}$ centricity $e_{W} = M / (Pd+Ph)x / 6 =$ erefore $e_{W} < W / 6$ Footing Contact $Resultant Q$	$Mk = - (1ft \times 1ft \times 0.15 \times (W/2-W))$ $Mw = B \times (H1 + H2 + 14/12) \times 0$ $Mh = (H1 + H2) \times 0.125 \times (W2 + W)$ $M_{su} = {(W-W1-B) \times qsur \times [W/2-(V)]}$ centricity $e_{W} = M / (Pd+Ph15)$ $W / 6 =$ erefore $e_{W} < W / 6$ Footing Contact Pressure $Resultant Q$	$Mk = - (1ft x 1ft x 0.15 x (W/2-W3))$ $Mw = B x (H1 + H2 + 14/12) x 0.15 x (W/2-B/2-W1)$ $Mh = (H1 + H2)x0.125x(W2 + W3 - B)(W/2-(W2+W))$ $M_{sur} = \{(W-W1-B) x qsur x [W/2-(W-W1-B)/2]\}$ centricity $e_{W} = M / (Pd+Ph15)$ $W / 6 =$ erefore $e_{W} < W / 6$ Footing Contact Pressure W Resultant Q W	$Mk = - (1ft x 1ft x 0.15 x (W/2-W3))$ $Mw = B x (H1 + H2 + 14/12) x 0.15 x (W/2-B/2-W1)$ $Mh = (H1 + H2)x0.125x(W2 + W3 - B)(W/2-(W2+W3-B)/2)$ $M_{sur} = \{(W-W1-B) x qsur x [W/2-(W-W1-B)/2]\}$ centricity $e_{W} = M / (Pd+Ph15)$ $W / 6 =$ erefore $e_{W} < W / 6$ Footing Contact Pressure W Resultant Q W	$Mk = - (1ft x 1ft x 0.15 x (W/2-W3)) -0.2$ $Mw = B x (H1 + H2 + 14/12) x 0.15 x (W/2-B/2-W1) 0.0$ $Mh = (H1 + H2)x0.125x(W2 + W3 - B)(W/2-(W2+W3-B)/2) -0.8$ $M_{su} = \{(W-W1-B) x qsur x [W/2-(W-W1-B)/2]\} -0.5$ centricity $e_W = M / (Pd+Ph15) 0.60$ $W / 6 = 0.67$ erefore $e_W < W / 6$ Footing Contact Pressure W Resultant Q qmax qmin	$Mk = - (1ft x 1ft x 0.15 x (W/2-W3)) -0.2 kft/ft Mw = B x (H1 + H2 + 14/12) x 0.15 x (W/2-B/2-W1) 0.0 kft/ft Mh = (H1 + H2)x0.125x(W2 + W3 - B)(W/2-(W2+W3-B)/2) -0.8 kft/ft M_{sur}={(W-W1-B) x qsur x [W/2-(W-W1-B)/2]} -0.5 kft/ft 0.60 ft W / 6 = 0.67 ft erefore e_W < W / 6 Footing Contact PressureW = \frac{W}{Pesultant Q} = \frac{W}{qmax} = \frac{W}{qma$

		Project	Napa River	Flood Cont	rol Project	
MGE	Engineering, Inc.	Subject	Ramp Wall	Design (H=	3'-6")	\neg /
	ENGINEERING, INC.	Ву	David An	Date	Feb-05	\neg
		•		•		
	Q = Pd + Ph15				2.82 kips	
	$1 + (6 e_w / W) =$				1.90 ft	
	1 - (6 e _w / W) =				0.10 ft	
	qmax = Q [1 + (6ew / W)] / W				1.34 ksf	
	qmin = Q [1 - (6ew / W)] / W				0.07 ksf	
assumed allov	wable soil brearing pressure					
	qa =				2 ksf	
	D/C = qmax/qa =		0	.67 <1	, OK	
			-		,	
Footing Shear and Momen	t Check (@ face of wall)					
@ Front wall f	face W1	ı				
	4					
	Toe soil o	covei				
Resultant @ fro	ont wall face Qf					
	gmax 👖 🔪					
			> of			
		Wf	∕ qf			
	•	Wf	≻ qf			
	4	Wf	∼ qf			
	ے۔) / W x (qmax - qmin) + qmin	Wf	∼ qf		0.86 ksf	
qf = (W2+W3) Qf =(qf+qmax		Wf	∼ qf		0.86 ksf 1.65 k/ft	
)/2 x W1	Wf	∼ qf			
Qf =(qf+qmax)/2 x W1	▶	∼ qf			
Qf =(qf+qmax Arm to face of	//2 x W1 f wall	→ +qf)]			1.65 k/ft	
Qf =(qf+qmax Arm to face of)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+	→ +qf)]			1.65 k/ft 0.80 ft	
Qf =(qf+qmax Arm to face of	//2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 -	→ +qf)]			1.65 k/ft 0.80 ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf =	—— → +qf)] •W1 x h2 x 0.12			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	<pre>//2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0)</pre>	—— → +qf)] •W1 x h2 x 0.12			1.65 k/ft 0.80 ft 2.17 kft/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure	—— → +qf)] •W1 x h2 x 0.12			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	$J/2 \times W1$ f wall Wf = W1 (2qmax+qf) / [3 (qmax+x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.AHf =x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexureMu ≤ ΦMn	—— → +qf)] •W1 x h2 x 0.12			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	$f(x) = \Psi 1 (2qmax+qf) / [3 (qmax+qf) / [3 (qmax+q$	—— → +qf)] •W1 x h2 x 0.12			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	f(x) = W1 (2qmax+qf) / [3 (qmax+qf) / [3 (qmax+qf	+qf)] -W1 x h2 x 0.12 0.12)]			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d =	+qf)] -W1 x h2 x 0.12 0.12)]			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	$J/2 \times W1$ f wall Wf = W1 (2qmax+qf) / [3 (qmax+x)] [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.AHf =x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexureMu ≤ ΦMnΦMn = Φ As x fy (d - a/2)Assume a = 0.15dwhere d =As = Mu / [Φfy(d-a/2)]	+qf)] ₩1 x h2 x 0.12 0.12)]			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ²	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ =	+qf)] •W1 x h2 x 0.12 0.12)] = =			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy =	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]		1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9 60 ksi	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ =	+qf)] •W1 x h2 x 0.12 0.12)] = =			1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]		1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.9 60 ksi 0.2 in ²	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 inf a =Asfy / (0.85f'c*b)	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]		1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.9 60 ksi 0.2 in ² 0.3 in	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9 60 ksi 0.2 in ² 0.3 in 0.67 kft/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 inf a =Asfy / (0.85f'c*b)	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.9 60 ksi 0.2 in ² 0.3 in	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2)	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9 60 ksi 0.2 in ² 0.3 in 0.67 kft/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2)	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9 60 ksi 0.2 in ² 0.3 in 0.67 kft/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 inf a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	+qf)] •W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.04 in ² 0.9 60 ksi 0.2 in ² 0.3 in 0.67 kft/ft	
Qf =(qf+qmax Arm to face of Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	b)/2 x W1 f wall Wf = W1 (2qmax+qf) / [3 (qmax+ x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 inf a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn Shear capacity	→+qf)] +W1 x h2 x 0.12 0.12)] = =	x W1/2)]	1	1.65 k/ft 0.80 ft 2.17 kft/ft 1.30 2.63 k/ft 1.8 in 12 in 0.9 60 ksi 0.2 in ² 0.3 in 0.67 kft/ft 0.20 OK	

		Project	Napa River Fl	lood Co	ntrol Project
1GE	ENGINEERING,	Subject	Ramp Wall D	esign (H	H=3'-6")
		Ву	David An	Date	Feb-05
Flexure reinfo	orcement requiremen	t (bending about horizontal	axis at bottom of wall)		
Mu ≤ ΦMn					
Mu = Hf x 1.7	7 x Mmax(case2 , cas	se 4)			3.4 k-ft/ft
	Hf =	Hydraulic factor			1.30
	EM-1110-2-2104	P3-2, Equation3.3			
	Mmax (case2, ca	se4) =			1.5 k-ft/ft
			Φ	=	0.90
			d = F x 12 - 3	=	12.5 in
			b	=	12 in
			f'c	=	3 ksi
			fy	=	60 ksi
	ent Requirement				
As = Mu / [Φf	fy(d-a/2)], where a =	Asfy / (0.85f'c*b)			
ΦMn = Φ As	x fy (d - a/2)				
	a = 0.15d				1.9 in
Required rei	inforcement				
As = Mu / [Φf	fy(d-a/2)]				0.07 in ²
Try #4@12",	As = 0.2 in ²				0.20 in ²
a =Asfy / (0.8					0.39 in
ΦMn = Φ Asf	w(d - 2/2)				11.1 kft/ft
Ψ WIT = Ψ ASI	y(u - d/2)		D/C = Mu/ΦM	In	0.31 OK
Check Shea	r				0.01 O R
Shoen oned		max(case2, case4) =			1.7 kips/ft
	$\Phi Vn = \Phi(Vc+Vs)$	max(00002, 0000+) -			24.6 kips
	where				24.0 Mp3
	Vc = 2 x √f'c x b x	٢d			16.4 kips
	Vs = As fy d / s	-			12.5 kips
	-	shear reinforcement @ bott	om of wall stem		12.0 100
	Where $\Phi =$				0.85
			D/C = Vu / ΦV		0.07 OK

Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Ramp Wall Design (H=5'-6") By Date David An Feb-05 Load Case 2 -- Normal Condition W/Pedestrin Load (Usual Condition) No vehecal can access H = 5.5 ft, Desin Height Pedestran F.G. 4.50 Upper Promenada Bckfill 0.00 qem1 h2 //X 1.25 ft 1 ft |兌| qem2 Note: Passive soil resistance were ignored. qem - Moist soil pressure at rest wall **Soil Pressure at Wall** (Soil pressure $=\gamma$ Ki hi) Backfill parameter: Thickness(ft) Pressure(ksf) Name Layer unit weight 125 pcf qem1 wall 7.50 0.373 friction angle, ϕ 37 deg 1.25 qem2 0.436 Bot. Footing sin(ø) 0.602 0.398 at rest coeff. Ko 4.023 passive, kp 250 lbs/sf, UBC Pedestrian load = equivalent surcharge, hp = 2 ft Thickness(ft) = soil height of backwall + equivalent height of surcharge **Resultant Summary for Bottom of Wall** Name Force (kips) Mom Arm(ft) Moments(k-ft) Pem2 Pem1 2.50 1.4 3.5 At bot of wall 1.4 3.5 ΣV ΣΜ Demand at Bottom of Wall: Vd = 1.4 kips Md = 3.5 k-ft **Resultant Summary for Bottom of Footing** Name Force (kips) Mom Arm(ft) Moments(k-ft) Pem2 |Pem2 1.9 2.92 5.6 At bot of ftg 1.9 5.6 ΣV ΣΜ Demand at Bottom of Footing: Vd = 1.9 kips Md = 5.6 k-ft

Napa River / Napa Creek Flood Protection Project, Structural Design Calculations for 100% Submittal (March 2005)


Page 112 of 234

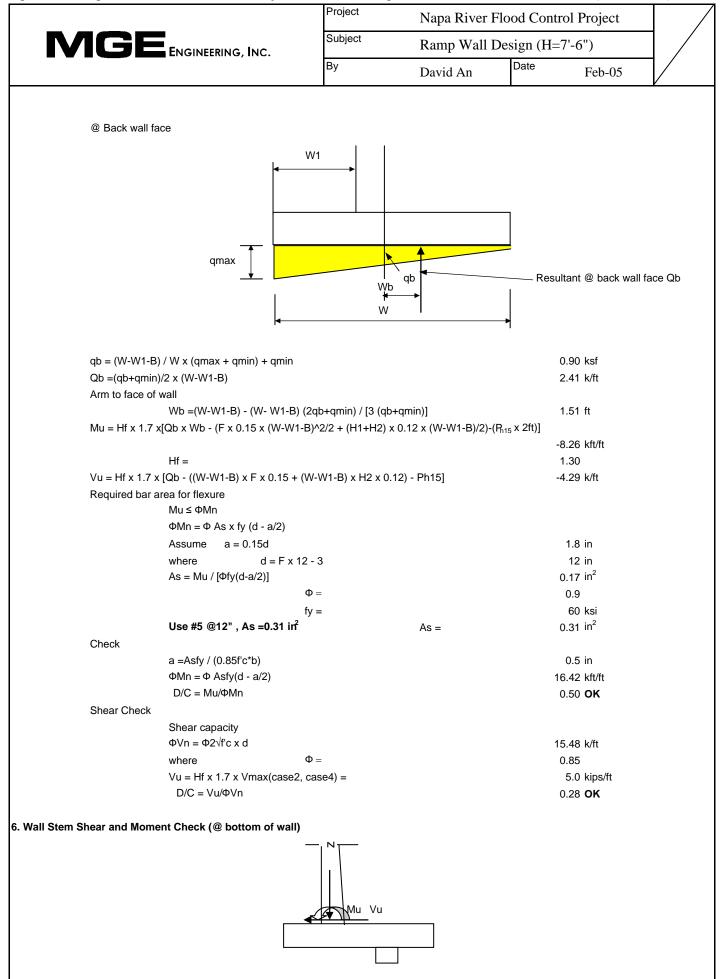
				Project		Napa River Floo		0	- /
	IGE	ENGINEERING,	INC.	Subject		Ramp Wall Des	0	'-6")	
				Ву		David An	Date	Feb-05	\bigvee
			ad Case 4 Sei	mic Cond	dition (Ext	come condition)			
		LU	au Case 4 Sei		cal can acc				
				H = 5.5 ft	t, Desin He	ight			
			í				F.(G. 4.50	
					Jpper Pron		1 /	-	
						P _{de f} or wall		_	
				_	Bckfill		7	P _{de for ftg}	
				∠ ger	n1 ьз	/	/	0.00	
	-				<u> </u>	/			
				~	<u></u> 1.0	ft	Y		
			1 ft ≷	qem2		h2=1.0'			
						Note:	Passive soil	resistance were	ianored.
								Seletanoo woro	.g
						qem - Moist soil pre	ssure at rest	wall	
						qde - Earthquake co	omponent		
Soil/Water Prop Layer	Soil Type	Thickness(ft)	Unit Wt. (pcf)		Φ	Ka	Ko	Кр	C (psf
1	back fill	6.00	125		¥ 37	0.25	0.40	4.02	0 (psi
	Ducit in	0.00				0.20	0.10		Ŭ
	Soil pressure =γ					1			
Name	Layer	Thickness(ft)	Pressure(ksf)			$\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1^2 + 4)})]$			
Name qem1	Layer Wall	Thickness(ft) 7.50	0.233			$\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1^2 + 4)^2})]$ (Equation 3-56 o		2-2502, Page 3-6	7)
Name	Layer	Thickness(ft)				(Equation 3-56 o	f EM 1110-2	2-2502, Page 3-6	7)
Name qem1	Layer Wall	Thickness(ft) 7.50	0.233			(Equation 3-56 o $C_1 = 2 (tan \Phi - K_h) / (1 - K_h)$	f EM 1110-2 +K _h tanФ)	-	
Name qem1 qem2	Layer Wall Bot. Footing	Thickness(ft) 7.50 1.25	0.233			(Equation 3-56 o C ₁ =2 (tanΦ-K _h) / (1- (Equation 3-57 o	f EM 1110-2 +K _h tanФ) f EM 1110-2	-2502, Page 3-6	7)
Name qem1 qem2 qde-wall	Layer Wall Bot. Footing Wall	Thickness(ft) 7.50 1.25 7.50	0.233 0.272 0.091			(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o)) C_2 = [tan\Phi(1 - tan\Phi)) tables (Equation 3 - 57 o)) C_2 = [tan\Phi(1 - tan\Phi)) tables (Equation 3 - 57 o)) (Equatio$	f EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K	-2502, Page 3-6 ζ _h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg	Layer Wall Bot. Footing Wall Bot. Footing	Thickness(ft) 7.50 1.25 7.50 9.00	0.233			(Equation 3-56 o C ₁ =2 (tanΦ-K _h) / (1- (Equation 3-57 o	f EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K	-2502, Page 3-6 ζ _h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg	Layer Wall Bot. Footing Wall	Thickness(ft) 7.50 1.25 7.50 9.00	0.233 0.272 0.091			(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o)) C_2 = [tan\Phi(1 - tan\Phi)) tables (Equation 3 - 57 o)) C_2 = [tan\Phi(1 - tan\Phi)) tables (Equation 3 - 57 o)) (Equatio$	f EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr	Layer Wall Bot. Footing Wall Bot. Footing mary For botton	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall	0.233 0.272 0.091 0.109			(Equation 3-56 o) $C_1 = 2 (tan \Phi - K_h) / (1-(Equation 3-57 o))$ $C_2 = [tan \Phi (1-tan \Phi) t]$ (Equation 3-58 o)	f EM 1110-2 +K _h tanΦ) f EM 1110-2 arβ)-(tanβ-K f EM 1110-2	-2502, Page 3-6 ζ _h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force	Thickness(ft) 7.50 1.25 7.50 9.00 of wall Arm to bot.	0.233 0.272 0.091 0.109 Moments			(Equation 3-56 o) $C_1 = 2 (tan \Phi - K_h) / (1-(Equation 3-57 o))$ $C_2 = [tan \Phi (1-tan \Phi + t) (Equation 3-58 o))$ $K_h = 0$	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50	0.233 0.272 0.091 0.109 Moments 2.2		Pem1	(Equation 3-56 o C ₁ =2 (tanΦ-K _h) / (1- (Equation 3-57 o C ₂ = [tanΦ(1-tanΦ t (Equation 3-58 o K _h = β =	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50	0.233 0.272 0.091 0.109 Moments 2.2		Pem1	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi + tan - t$	 F EM 1110-2 +K_h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 0.9 0.3	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50	0.233 0.272 0.091 0.109 Moments 2.2 1.7		Pem1	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) (Equat$	 F EM 1110-2 +K_h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9 0.3 1.2	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (\tan \Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [\tan \Phi (1 - \tan \Phi + t) (Equation 3-58 o) C_2 = [\tan \Phi (1 - \tan \Phi + t) (Equation 3-58 o) C_2 = \beta = 0 = 0 = 0$ $K_h = \beta = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$	F EM 1110-2 FK _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2	2-2502, Page 3-6 h)] / [tanΦ(1+K _h t 2-2502, Page 3-6 g degree degree	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9 0.3 0.3 1.2 Σ V	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9 0.3 0.3 1.2 Σ V	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (\tan \Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [\tan \Phi (1 - \tan \Phi + t) (Equation 3-58 o) C_2 = [\tan \Phi (1 - \tan \Phi + t) (Equation 3-58 o) C_2 = \beta = 0 = 0 = 0$ $K_h = \beta = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 0.9 0.3 1.2 $\Sigma \vee$ of Pile: Vd = 1.	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md =	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 0.9 0.3 1.2 ΣV of Pile: Vd = 1. mary For Bottor	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md =	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ M 3.89 k-ft		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 0.9 0.3 1.2 ΣV of Pile: Vd = 1. mary For Botton Force	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md =	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ M 3.89 k-ft Moments		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top Resultant Sumr Name Pem2	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9 0.3 1.2 ΣV of Pile: Vd = 1. mary For Bottom Force 1.2	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md = 1 n Of Ftg Arm to bot. 2.92	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ M 3.89 k-ft Moments 3.5		Pem1 Pde-wall Pem2	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 0.9 0.3 1.2 ΣV of Pile: Vd = 1. mary For Botton Force	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md =	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ M 3.89 k-ft Moments		Pem1 Pde-wall	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top Resultant Sumr Name Pem2	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 0.9 0.3 1.2 ΣV of Pile: Vd = 1. mary For Bottom Force 1.2	Thickness(ft) 7.50 1.25 7.50 9.00 n of wall Arm to bot. 2.50 5.00 21 kips Md = 1 n Of Ftg Arm to bot. 2.92	0.233 0.272 0.091 0.109 Moments 2.2 1.7 3.9 Σ M 3.89 k-ft Moments 3.5		Pem1 Pde-wall Pem2	(Equation 3-56 o $C_1 = 2 (tan\Phi - K_h) / (1 - (Equation 3-57 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = [tan\Phi(1 - tan\Phi t) (Equation 3-58 o) C_2 = \beta = 0 C_1 = C_2 = \alpha = 0$ Dynamic Component	F EM 1110-2 +K _h tanΦ) f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _f	-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)

				Project	Napa River Flo	ood Control	Project
N	IGE	i Engineering,	INC.	Subject	Ramp Wall De	sign (H=5'-6	5")
				Ву	David An	Date	Feb-05
Loads Due to Soil F	Processo			amp Wall (RW 5'-6" , Design I			
Due to Soli r	lessure			2	4		1
		Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	1
		Hori. Force (k)	1.4	1.9	1.2	1.7	1
		Moments(kft)	3.5	5.6	3.9	6.4	1
	- - - -	Lower Pro	Toe W1	W2 W3 W]		
	B =	1.00	ft		H1 =	4.50	ft
	W1 =				H2 =	: 1.00) ft
	W2 =				F =		
	W3 = W =				Conc. Unit Wt = Backfill Unit Wt =) pcf 5 pcf
Resistance I		f Concrete, Soil and soil	ension			125	, poi
	Location	Thick/Depth	Width/Height	Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)	
	Toe cover	1.00	2.25	0.28125	1.13	0.32	1
	Heel Soil	5.50	2.25	1.547	4.38	6.77	
	Tieer 30li		5.50	1.031	2.75	2.84	1
	Footing	1.25		0.45	4.50	0.68	1
	Footing Concrete Key	1.25 1.00	1.00	0.15	4.50	0.00	_
	Footing		1.00 6.67	1.000	2.75	2.75	
	Footing Concrete Key	1.00				-	
-	Footing Concrete Key Wall Stem Total Due to Pedestra	1.00 1.00 ain Surcharge		1.000		2.75 13.34	
-	Footing Concrete Key Wall Stem Total Due to Pedestra Surcharge = (pe	1.00 1.00 ain Surcharge	6.67	1.000 4.01		2.75 13.34 250.00	lbs/sf, UB0 kips/ft

k ad Case 2 4 stance Due	(kips) 1.9 1.7	Overturning Moment 5.6 6.4 ht of concrete &	Subject By 2.84 2.47 soil ety Factor < 1.5, NG < 1.1, NG	Ramp Wall De David An Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21 18.21	Date r > 1.5, OK r > 1.5, OK 0.3 1.2 0.169 18.21 4000	Feb-05 kips/ft kips/ft kips/ft psi, assumed	Factor > 1.5, OF > 1.1, OF
k Pad Case 2 4 stance Due stance Due stance Due stance Due Soil (kips) 1.37 1.37	Resistance Moment15.8115.8115.81to Soil Friction $\mu =$ Ffr = P _d x μ where, P _d weig to Pedestrainto Concrete Key Fcr = 2 $\sqrt{f'c x 1 ft}$ where, f'c =Sliding Force (kips)1.91.7	Overturning Moment 5.6 6.4 ht of concrete & Safe 0.72	2.84 2.47 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	r > 1.5, OK r > 1.5, OK 0.3 1.2 0.169 18.21 4000 2 Sliding Force (kips) 1.9	kips/ft kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, Ol
ad Case 2 4 stance Due stance Due stance Due stance Due stance Due 1.37 1.37	Moment15.8115.8115.81to Soil Friction $\mu =$ Ffr = P _d x μ where, P _d weigto Pedestrainto Pedestrainto Concrete KeyFcr = 2 $\sqrt{f'c x 1 ft}$ where, f'c =Sliding Force(kips)1.91.7	Moment 5.6 6.4 ht of concrete & Safe	2.47 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	r > 1.5, OK 0.3 1.2 0.169 18.21 4000 2 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, OI
2 4 stance Due stance Due stance Due Soil (kips) 1.37 1.37	Moment15.8115.8115.81to Soil Friction $\mu =$ Ffr = P _d x μ where, P _d weigto Pedestrainto Pedestrainto Concrete KeyFcr = 2 $\sqrt{f'c x 1 ft}$ where, f'c =Sliding Force(kips)1.91.7	Moment 5.6 6.4 ht of concrete & Safe	2.47 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	r > 1.5, OK 0.3 1.2 0.169 18.21 4000 2 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, OI
2 4 stance Due stance Due stance Due Soil (kips) 1.37 1.37	Moment15.8115.8115.81to Soil Friction $\mu =$ Ffr = P _d x μ where, P _d weigto Pedestrainto Pedestrainto Concrete KeyFcr = 2 $\sqrt{f'c x 1 ft}$ where, f'c =Sliding Force(kips)1.91.7	Moment 5.6 6.4 ht of concrete & Safe	2.47 soil ety Factor < 1.5, NG	Safety Factor Safety Factor Safety Factor Resistance Due to Concrete Key (kips) 18.21	r > 1.5, OK 0.3 1.2 0.169 18.21 4000 2 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, OI
4 stance Due stance Due stance Due stance Due Soil (kips) <u>1.37</u> 1.37	15.81 to Soil Friction μ = Ffr = P _d x μ where, P _d weig to Pedestrain to Concrete Key Fcr = 2√f'c x 1 ft where, f'c = Sliding Force (kips) 1.9 1.7	6.4 ht of concrete & Safe 0.72	2.47 soil ety Factor < 1.5, NG	Safety Factor Resistance Due to Concrete Key (kips) 18.21	r > 1.5, OK 0.3 1.2 0.169 18.21 4000 2 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, Ol
stance Due stance Due stance Due stance Due Soil (kips) <u>1.37</u> 1.37	to Soil Friction $\mu = Ffr = P_d \times \mu$ where, P_d weig to Pedestrain to Concrete Key Fcr = 2 $\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	ht of concrete & Safe	ety Factor	Resistance Due to Concrete Key (kips) 18.21	0.3 1.2 0.169 18.21 4000 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, Ol
stance Due stance Due stance Due Soil (kips) <u>1.37</u> 1.37	$\mu = Ffr = P_d \times \mu$ where, P_d weig to Pedestrain to Concrete Key Fcr = $2\sqrt{fc} \times 1$ ft where, f'c = Sliding Force (kips) 1.9 1.7	Safe 0.72	ety Factor < 1 .5, NG	Concrete Key (kips) 18.21	1.2 0.169 18.21 4000 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, Ol
stance Due stance Due stance Due Soil (kips) <u>1.37</u> 1.37	$\mu = Ffr = P_d \times \mu$ where, P_d weig to Pedestrain to Concrete Key Fcr = $2\sqrt{fc} \times 1$ ft where, f'c = Sliding Force (kips) 1.9 1.7	Safe 0.72	ety Factor < 1 .5, NG	Concrete Key (kips) 18.21	1.2 0.169 18.21 4000 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, OI
stance Due stance Due Soil (kips) <u>1.37</u> 1.37	Ffr = $P_d \times \mu$ where, P_d weig to Pedestrain to Concrete Key Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	Safe 0.72	ety Factor < 1 .5, NG	Concrete Key (kips) 18.21	1.2 0.169 18.21 4000 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, Ol
stance Due stance Due Soil (kips) <u>1.37</u> 1.37	where, P_d weig to Pedestrain to Concrete Key Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	Safe 0.72	ety Factor < 1 .5, NG	Concrete Key (kips) 18.21	0.169 18.21 4000 Sliding Force (kips) 1.9	kips/ft kips/ft psi, assumed Safety 9.56	> 1.5, 0
stance Due stance Due Soil (kips) <u>1.37</u> 1.37	to Pedestrain to Concrete Key Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	Safe 0.72	ety Factor < 1 .5, NG	Concrete Key (kips) 18.21	18.21 4000 Sliding Force (kips) 1.9	kips/ft psi, assumed Safety 9.56	> 1.5, 0
stance Due stance Due Soil (kips) <u>1.37</u> 1.37	to Concrete Key Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	18.21 4000 Sliding Force (kips) 1.9	kips/ft psi, assumed Safety 9.56	> 1.5, Ol
stance Due Soil (kips) <u>1.37</u> 1.37	Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips) 1.9	psi, assumed Safety 9.56	> 1.5, Ol
stance Due Soil (kips) <u>1.37</u> 1.37	Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c = Sliding Force (kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips) 1.9	psi, assumed Safety 9.56	> 1.5, OI
Soil (kips) 1.37 1.37	where, f'c = Sliding Force (kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	4000 Sliding Force (kips) 1.9	psi, assumed Safety 9.56	> 1.5, OI
Soil (kips) 1.37 1.37	Sliding Force (kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	D Sliding Force (kips) 1.9	Safety 9.56	> 1.5, OI
Soil (kips) 1.37 1.37	(kips) 1.9 1.7	0.72	< 1.5, NG	Concrete Key (kips) 18.21	(kips)	9.56	> 1.5, Ol
1.37	1.7			18.21	-		
1.37	1.7				-		
sure Check	k						
Msmax(due e, ntricity	$M = Max. M (due to la Mt = H2 x 0.125)$ $Mk = - (1ft x 1ft x Mw = B x (H1 + Mh = (H1 + H2)x)$ $M_{su} = {(W-W1-B)}$ $e_{W} = M / (Pd+Ph W / 6 = M)$	ateral soil press x (W/2-W1/2) c 0.15 x (W/2-W3 H2 + 14/12) x 0 0.125x(W2 + W x qsur x [W/2-(V	ure), Msmax. = 3)) .15 x (W/2-B/2-W1 3 - B)(W/2-(W2+W		2.92 6.4 -0.3 0.0 -2.5 -0.9 0.64	kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft ft	
efore	$e_W < W / 6$						
	Footing Contact	Pressure					
	Resultant Q		W e _w	,	qmin		
	-	W / 6 = ore $e_W < W / 6$ Footing Contact Resultant Q	W/6 = e _W < $W/6$ Footing Contact Pressure Resultant Q	$W/6 = e_W < W/6$ Footing Contact Pressure Resultant Q qmax	$W/6 = e_W < W/6$ Footing Contact Pressure Resultant Q qmax	$W/6 = 0.92$ $e_W < W/6$ Footing Contact Pressure W Resultant Q qmax qmin	W/6 = 0.92 ft ore $e_W < W/6$ Footing Contact Pressure Resultant Q qmax $qmin$

		Project	Napa River I	Flood Contro	l Project	
MGE	Engineering, Inc.	Subject	Ramp Wall I	Design (H=5	'-6")	\neg
	LINGINEERING, INC.	Ву	David An	Date	Feb-05	
		•				<u> </u>
	Q = Pd + Ph15			4.	57 kips	
	$1 + (6 e_w / W) =$			1.	70 ft	
	1 - (6 e _w / W) =			0.	30 ft	
	qmax = Q [1 + (6ew / W)] / W			1.	41 ksf	
	qmin = Q [1 - (6ew / W)] / W			0.	25 ksf	
assumed allow	vable soil brearing pressure					
	qa =				2 ksf	
	D/C = qmax/qa =		0	.71 <1, (
			-			
. Footing Shear and Moment	t Check (@ face of wall)					
@ Front wall fa	ace W1	ı				
	<					
	Toe soil o	covei				
Resultant @ fro	ont wall face Qf					
	qmax 🛛 📉					
		Wf	≻ qf			
		VVT				
af = (W2+W3)	/W x (qmax - qmin) + qmin			0.	94 ksf	
$q_i = (q_1 + q_1)$ $Q_i = (q_1 + q_1)$					64 k/ft	
				۷.		
Arm to face of	wall					
Arm to face of		- cf)]		4	20.4	
	Wf = W1 (2qmax+qf) / [3 (qmax-				20 ft	
	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 -		x W1/2)]		20 ft 29 kft/ft	
	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A		x W1/2)]	5.	29 kft/ft	
Mu = Hf x 1.7 :	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf =	W1 x h2 x 0.12	x W1/2)]	5. 1.	29 kft/ft 30	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0	W1 x h2 x 0.12	x W1/2)]	5. 1.	29 kft/ft	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure	W1 x h2 x 0.12	x W1/2)]	5. 1.	29 kft/ft 30	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu ≤ Φ Mn	W1 x h2 x 0.12	x W1/2)]	5. 1.	29 kft/ft 30	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure	W1 x h2 x 0.12	x W1/2)]	5. 1. 4.	29 kft/ft 30 31 k/ft	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu ≤ Φ Mn	W1 x h2 x 0.12	x W1/2)]	5. 1. 4.	29 kft/ft 30	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	$\begin{split} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax}-x)] \\ & \text{x} [\text{Qf} x \text{Wf} - (\text{W1x} \text{F} x 0.15 \text{ x} \text{W1/2} - \text{from BDS} \text{Table } 3.22.1.\text{A} \\ & \text{Hf} = \\ & \text{x} [\text{Qf} - (\text{W1} \text{ x} \text{F} \text{ x} 0.15 - \text{W1} \text{ x} 1\text{ft} \text{ x} 0.15 + \text{W1} \text{ x} 1\text{ft} \text{ x} 0.15 \\ & \text{area for flexure} \\ & \text{Mu} \leq \Phi\text{Mn} \\ & \Phi\text{Mn} = \Phi \text{ As x fy} (\text{d} - \text{a}/2) \end{split}$	-W1 x h2 x 0.12 0.12)]	x W1/2)]	5. 1. 4.	29 kft/ft 30 31 k/ft	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure Mu ≤ Φ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d	-W1 x h2 x 0.12 0.12)]	x W1/2)]	5. 1. 4.	29 kft/ft 30 31 k/ft I.8 in	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x f area for flexure Mu ≤ Φ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d =	-W1 x h2 x 0.12 0.12)] =	x W1/2)]	5. 1. 4. 0.	29 kft/ft 30 31 k/ft 1.8 in 12 in	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	$\begin{split} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax}-\text{x} [\text{Qf x Wf} - (\text{W1x F x 0.15 x W1/2} + \text{from BDS Table 3.22.1.A}] \\ & \text{Hf} = \\ & \text{x} [\text{Qf} - (\text{W1 x F x 0.15} - \text{W1 x 1ft x 0}) \\ & \text{area for flexure} \\ & \text{Mu} \leq \Phi \text{Mn} \\ & \Phi \text{Mn} = \Phi \text{ As x fy (d - a/2)} \\ & \text{Assume} a = 0.15d \\ & \text{where} \qquad d = \\ & \text{As} = \text{Mu} / [\Phi \text{fy}(\text{d-a}/2)] \end{split}$	-W1 x h2 x 0.12 0.12)] = =	x W1/2)]	5. 1. 4. 0.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	$\begin{split} & Wf = W1 \left(2qmax{+}qf \right) / \left[3 \left(qmax{+} x \right) \right] \\ & x \left[Qf \times Wf - \left(W1x F \times 0.15 \times W1/2 + from BDS Table 3.22.1.A \right] \\ & Hf = x \left[Qf - \left(W1 \times F \times 0.15 - W1 \times 1ft \times G \right) \right] \\ & area for flexure \\ & Mu \leq \Phi Mn \\ & \Phi Mn = \Phi As \times fy (d - a/2) \\ & Assume a = 0.15d \\ & where \qquad d = As = Mu / \left[\Phi fy(d{-}a/2) \right] \\ & \Phi = \Phi Mn = Max fy d d d d d d d d$	-W1 x h2 x 0.12 0.12)] = =	x W1/2)] As =	5. 1. 4. 0. (29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ² 0.9	
Mu = Hf x 1.7 : Vu = Hf x 1.7 >	$\begin{split} & Wf = W1 \left(2qmax{+}qf \right) / \left[3 \left(qmax{+} x \right) \right] \\ & from BDS Table 3.22.1.A \\ & Hf = \\ & x \left[Qf \cdot (W1 \times F \times 0.15 - W1 \times 1ft \times G \right] \\ & area for flexure \\ & Mu \leq \Phi Mn \\ & \Phi Mn = \Phi As \times fy \left(d - a/2 \right) \\ & Assume a = 0.15d \\ & where \qquad d = \\ & As = Mu / \left[\Phi fy(d{-}a/2) \right] \\ & \Phi = \\ & fy = \\ \end{split}$	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²).9 60 ksi	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar a	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu ≤ Φ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²).9 60 ksi	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar a	$\begin{split} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax}-x [\text{Qf x Wf} - (\text{W1x F x 0.15 x W1/2} + from BDS Table 3.22.1.A} \\ & \text{Hf} = \\ & \text{x} [\text{Qf} - (\text{W1 x F x 0.15} - \text{W1 x 1ft x 0} + from BDS + f$	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. ((29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ² 0.9 60 ksi 0.2 in ² 0.3 in	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar a	$\begin{split} & \text{Wf} = \text{W1} \left(2\text{qmax+qf} \right) / \left[3 \left(\text{qmax-x} \right) \right] \\ & \text{x} \left[\text{Qf x Wf} - \left(\text{W1x F x 0.15 x W1/2} + \text{from BDS Table 3.22.1.A} \right] \\ & \text{Hf} = \\ & \text{x} \left[\text{Qf} - \left(\text{W1 x F x 0.15 - W1 x 1ft x 0} + \text{area for flexure} \right) \\ & \text{Mu} \leq \Phi \text{Mn} \\ & \Phi \text{Mn} = \Phi \text{ As x fy (d - a/2)} \\ & \text{Assume} a = 0.15d \\ & \text{where} \qquad d = 0.15$	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (((10.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²).9 60 ksi).2 in ²).3 in 67 kft/ft	
Mu = Hf x 1.7 x Vu = Hf x 1.7 x Required bar a Check	$\begin{split} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax}-x [\text{Qf x Wf} - (\text{W1x F x 0.15 x W1/2} + from BDS Table 3.22.1.A} \\ & \text{Hf} = \\ & \text{x} [\text{Qf} - (\text{W1 x F x 0.15} - \text{W1 x 1ft x 0} + from BDS + f$	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (((10.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ² 0.9 60 ksi 0.2 in ² 0.3 in	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar a	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x f area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (((10.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²).9 60 ksi).2 in ²).3 in 67 kft/ft	
Mu = Hf x 1.7 x Vu = Hf x 1.7 x Required bar a Check	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn Shear capacity	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. (((10. 0.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ² 0.9 60 ksi 0.2 in ² 0.3 in 67 kft/ft 50 OK	
Mu = Hf x 1.7 x Vu = Hf x 1.7 x Required bar a Check	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 0 area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 irf ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn Shear capacity Φ Vn = Φ 2 \sqrt{f} c x F	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. ((10. 0.) 19.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ²).9 60 ksi).2 in ² 0.3 in 67 kft/ft 50 OK	
Mu = Hf x 1.7 x Vu = Hf x 1.7 x Required bar a Check	Wf = W1 (2qmax+qf) / [3 (qmax- x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x (area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #4 @12", As =0.2 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn Shear capacity	-W1 x h2 x 0.12 0.12)] = =		5. 1. 4. 0. ((10. 0. 19. 0.	29 kft/ft 30 31 k/ft 1.8 in 12 in 11 in ² 0.9 60 ksi 0.2 in ² 0.3 in 67 kft/ft 50 OK	

			Project	Napa River F	lood Co	ntrol Project
1 G E	ENGINEERING	. INC.	Subject	Ramp Wall D	esign (I	H=5'-6")
			Ву	David An	Date	Feb-05
Flexure rein	nforcement requirem	ent (bending a	bout horizontal axi	s at bottom of wall)		
Mu ≤ ΦMn						
Mu = Hf x 1	.7 x Mmax(case2 ,	case 4)				8.6 k-ft/ft
	Hf =	Hydraulic fa	ctor			1.30
	EM-1110-2-21	04P3-2, Equ	ation3.3			
	Mmax (case2,	case4) =				3.9 k-ft/ft
				Φ	=	0.90
				d = F x 12 - 3	=	12.5 in
				b	=	12 in
				f'c	=	3 ksi
				fy	=	60 ksi
	nent Requirement					
As = Mu / [4	Þfy(d-a/2)], where a	= Asfy / (0.85	f'c*b)			
$\Phi Mn = \Phi As$	s x fy (d - a/2)					
	a = 0.15d					1.9 in
Required re	einforcement					
As = Mu / [4	Þfy(d-a/2)]					0.17 in ²
Trv #5@12	", As = 0.31 in ² x 12	2" / 12"				0.31 in ²
a =Asfy / (0						0.61 in
$\Phi Mn = \Phi As$	sfy(d - a/2)				_	17.0 kft/ft
Check She	ar			D/C = Mu/ΦN	In	0.50 OK
SHOOK ONE	د Vu = Hf x 1.7	Vmax(case?	case4) =			3.1 kips/ft
	$\Phi Vn = \Phi(Vc+V)$					24.6 kips
	where	,				
	$Vc = 2 \times \sqrt{f'c \times t}$	b x d				16.4 kips
	Vs = As fy d / s					12.5 kips
	-		rcement @ bottom	of wall stem		
	Where $\Phi =$					0.85
				D/C = Vu / Φ\	1.	0.13 OK


Project Napa River Flood Control Project MGE ENGINEERING, INC. Subject Ramp Wall Design (H=7'-6") By Date David An Feb-05 Load Case 2 -- Normal Condition W/Pedestrin Load (Usual Condition) No vehecal can access H = 7.5 ft, Desin Height Pedestran F.G. 6.50 Upper Promenada Bckfill 0.00 qem1 h2 //X 1.25 ft 1 ft |兌| qem2 Note: Passive soil resistance were ignored. qem - Moist soil pressure at rest wall **Soil Pressure at Wall** (Soil pressure $=\gamma$ Ki hi) Backfill parameter: Thickness(ft) Pressure(ksf) Name Layer unit weight 125 pcf qem1 wall 9.50 0.473 friction angle, ϕ 37 deg 1.25 qem2 0.535 Bot. Footing sin(ø) 0.602 0.398 at rest coeff. Ko 4.023 passive, kp Pedestrian load = 250 lbs/sf, UBC equivalent surcharge, hp = 2 ft Thickness(ft) = soil height of backwall + equivalent height of surcharge **Resultant Summary for Bottom of Wall** Name Force (kips) Mom Arm(ft) Moments(k-ft) Pem2 Pem1 2.2 3.17 7.1 At bot of wall 2.2 7.1 ΣV ΣΜ Demand at Bottom of Wall: Vd = 2.2 kips Md = 7.1 k-ft **Resultant Summary for Bottom of Footing** Name Force (kips) Mom Arm(ft) Moments(k-ft) Pem2 |Pem2 2.9 3.58 10.3 At bot of ftg 2.9 10.3 ΣV ΣΜ Demand at Bottom of Footing: Vd = 2.9 kips Md = 10.3 k-ft

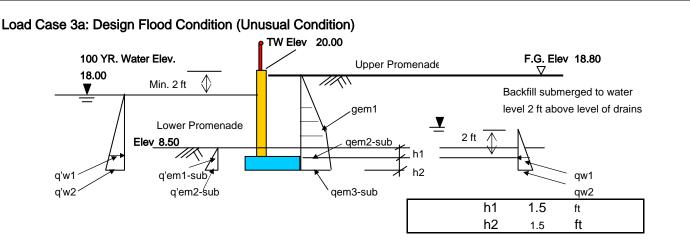
		l		Project		Napa River Flo		0	- /
	IGE	ENGINEERING,	INC.	Subject		Ramp Wall Des	<u> </u>	'-6")	
				Ву		David An	Date	Feb-05	
			ad Case 4 Sei	imic Cond	lition (Ext	eme condition)			
		LU	au Case 4 Sei		al can acc				
				H = 7.5 ft	, Desin He	ight			
			ĺ	ι	Jpper Pron	nenada	F.C	G. 6.50	
						P		-	
				A	Bckfill	P _{de f} or wall	- /	P _{de for ftg}	
				H		/			
	-			den	<u>1 </u>	_ /	- /	0.00	
					<u> </u>	ft	V		
			■ 1 ft 爻	qem2	-	h2=1.0'			
			M			Note:	Passive soil	resistance were	ignored.
									0
						qem - Moist soil pre qde - Earthquake co		wall	
oil/Water Prop	perties	1	1			1			
Layer	Soil Type	Thickness(ft)	Unit Wt. (pcf)		Þ	Ka	Ko	Кр	C (psf)
1	back fill	8.00	125	3	37	0.25	0.40	4.02	0
									_
	Soil pressure	Ki hi)						-	
	Soil pressure =γ I		Pressure(ksf)	1		α −tan ⁻¹ [(C,+√(C,²+	4C _a))/2]		1
Name	Layer	Thickness(ft)	Pressure(ksf)]		$\alpha = \tan^{-1}[(C_1 + (C_1^2 +$		-2502 Page 3-6	7)
Name qem1	Layer Wall	Thickness(ft) 9.50	0.295]		α =tan ⁻¹ [(C₁+√(C₁²+ (Equation 3-56 c		-2502, Page 3-6	7)
Name	Layer	Thickness(ft)				(Equation 3-56 c	of EM 1110-2	2-2502, Page 3-6	7)
Name qem1	Layer Wall	Thickness(ft) 9.50	0.295			(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1$	of EM 1110-2 +K _h tanФ)	-	
Name qem1 qem2	Layer Wall	Thickness(ft) 9.50 1.25	0.295			(Equation 3-56 c C ₁ =2 (tanΦ-K _h) / (1 (Equation 3-57 c	of EM 1110-2 +K _h tanΦ) of EM 1110-2	-2502, Page 3-6	7)
Name qem1	Layer Wall Bot. Footing	Thickness(ft) 9.50	0.295			(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K	-2502, Page 3-6 [_h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg	Layer Wall Bot. Footing Wall	Thickness(ft) 9.50 1.25 9.50 11.00	0.295 0.334 0.115			(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K	-2502, Page 3-6 [_h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg	Layer Wall Bot. Footing Wall Bot. Footing	Thickness(ft) 9.50 1.25 9.50 11.00	0.295 0.334 0.115			(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2	-2502, Page 3-6 [_h)] / [tanΦ(1+K _h t	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg esultant Sumr	Layer Wall Bot. Footing Wall Bot. Footing mary For botton	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall	0.295 0.334 0.115 0.133			(Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c) $C_2 = [tan \Phi (1-tan \Phi)]$ (Equation 3-58 c)	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Summ Name	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot.	0.295 0.334 0.115 0.133 Moments			(Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c) $C_2 = [tan \Phi (1-tan \Phi)]$ (Equation 3-58 c) $K_h = 0$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0	-2502, Page 3-6 _h)] / [tanΦ(1+K _h t -2502, Page 3-6	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg esultant Sumr Name Pem1 Pde-wall	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 1.4 0.5	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17	0.295 0.334 0.115 0.133 Moments 4.4 3.5		Pem1	(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$ (Equation 3-58 c $K_h = \beta = \beta = \beta = 0$ $\Phi = C_1 = 0$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17	0.295 0.334 0.115 0.133 Moments 4.4		Pem1	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi)]$ (Equation 3-58 c $K_h = \beta = \beta = \Phi = \Phi$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 Σ V	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ Μ		Pem1	(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$ (Equation 3-58 c $K_h = \beta = \beta = \beta = 0$ $\Phi = C_1 = 0$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720	e-2502, Page 3-6 ,,)] / [tanΦ(1+K _h t e-2502, Page 3-6 g	7) anΦ)]
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9		Pem1 Pde-wall	(Equation 3-56 c $C_{1} = 2 (tan\Phi-K_{h}) / (1)$ (Equation 3-57 c $C_{2} = [tan\Phi(1-tan\Phi)$ (Equation 3-58 c $K_{h} = \beta$ $\beta = \Phi = C_{1} = C_{2} = \alpha$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2	2-2502, Page 3-6 h)] / [tanΦ(1+K _h t 2-2502, Page 3-6 g degree degree	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 Σ V	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1 - tan\Phi)$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = C_1 = C_2 = C_2 = C_2$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2	2-2502, Page 3-6 h)] / [tanΦ(1+K _h t 2-2502, Page 3-6 g degree degree	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 Σ V	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 c $C_{1} = 2 (tan\Phi-K_{h}) / (1)$ (Equation 3-57 c $C_{2} = [tan\Phi(1-tan\Phi)$ (Equation 3-58 c $K_{h} = \beta$ $\beta = \Phi = C_{1} = C_{2} = \alpha$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 $\Sigma \vee$ of Pile: Vd = 1.	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ Μ		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 ΣV of Pile: Vd = 1. mary For Bottom	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md = 1	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ Μ 7.90 k-ft		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Oemand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 1.4 0.5 1.9 ΣV of Pile: Vd = 1. mary For Botton Force	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ M 7.90 k-ft		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top Resultant Sumr Name Pem2	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 ΣV of Pile: Vd = 1. mary For Bottom Force 1.8	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md = 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ M 7.90 k-ft Moments 6.4		Pem1 Pde-wall Pem2	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg tesultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top	Layer Wall Bot. Footing Wall Bot. Footing mary For botton Force 1.4 0.5 1.9 ΣV of Pile: Vd = 1. mary For Botton Force	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ M 7.90 k-ft		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Oemand at Top Resultant Sumr Name Pem2 Pde-ftg	Layer Wall Bot. Footing Mary For bottom Force 1.4 0.5 1.9 $\Sigma \vee$ of Pile: Vd = 1. mary For Bottom Force 1.8 0.7	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md = 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ M 7.90 k-ft Moments 6.4 5.4		Pem1 Pde-wall Pem2	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)
Name qem1 qem2 qde-wall qde-ftg Resultant Sumr Name Pem1 Pde-wall At bot of wall Demand at Top Resultant Sumr Name Pem2	Layer Wall Bot. Footing Wall Bot. Footing mary For bottom Force 1.4 0.5 1.9 ΣV of Pile: Vd = 1. mary For Bottom Force 1.8	Thickness(ft) 9.50 1.25 9.50 11.00 n of wall Arm to bot. 3.17 6.33 95 kips Md = 95 kips Md =	0.295 0.334 0.115 0.133 Moments 4.4 3.5 7.9 Σ M 7.90 k-ft Moments 6.4		Pem1 Pde-wall Pem2	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi + G + G + G + G + G + G + G + G + G +$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-K of EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	e-2502, Page 3-6 f _h)] / [tanΦ(1+K _h t -2502, Page 3-6 g degree degree h ² / [2(tanα-tanβ	7) anΦ)] 7)

SubjectRamp Wall Design (H=7'-6")ByDavid AnDateFeb-05Ramp Wall (RW) H = 7'-6", Design HeightLoadsDue to Soil Pressure				Project	Napa River Flo	od Control	Project
$\begin{array}{c cccc} \hline By & David An & Date & Feb-05 \\ \hline \\ Ramp Wall (RW) \\ H = 77-6", Design Height \\ \hline \\ Loads \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ \hline \\ \hline \\ \hline \\ Due to Soil Pressure \\ \hline \\ $	MGE	Engineering.	INC.	Subject	Ramp Wall De	sign (H=7'-6	5")
Laads Due to Soil Pressure $ \frac{1}{1001} \frac$				Ву	David An	Date	Feb-05
Load Case24Hori. Force (k)2.22.91.92.5Moments(ktt)7.110.37.911.8ToeImage: constraint of the state of the sta							
Bot. Of Wall Bot. Of Fig Bot. Of Wall Bot. Of Fig Hori. Force (k) 2.2 2.9 1.9 2.5 Moments(kft) 7.1 10.3 7.9 11.8 $\begin{array}{c} \hline \\ \hline $	ſ	Lood Cooo		2	4		1
Moments(kft)7.110.37.911.8TotalTotalTotalUpper PromenadeTotalTotalTotalTotalW1W2W3TotalW1W2W3W1W2W3W1W2W3W1W2W3W1W2W3W1S25 ftH2H21.00 ftW2S25 ftF=1.25 ftS25 ftW31.00 ftConc. Unit WtW31.00 ft		Load Case	Bot. Of Wall	Bot. Of Ftg	Bot. Of Wall	Bot. Of Ftg	
$ \begin{array}{c} $		Hori. Force (k)	2.2	2.9	1.9	2.5	
E = 1.00 ft $W1 = 3.25 ft$ $W2 = 3.25 ft$ $W3 = 1.00 ft$ $W1 = 1.00 ft$ $W2 = 3.25 ft$ $W3 = 1.00 ft$ $W1 = 1.00 ft$ $W2 = 1.00 ft$ $W2 = 1.00 ft$ $W3 = 1.00 ft$ $W1 = 1.00 ft$ $W2 = 1.00 ft$ $W3 = 1.00 ft$ $W1 = 1.00 ft$	l	Moments(kft)	7.1	10.3	7.9	11.8	
	B = W1 = W2 = W3 =	1.00 3.25 3.25 1.00	Toe W1	W2 W3	H2 = F = Conc. Unit Wt =	: 1.00 : 1.25 150) ft 5 ft) pcf
	Location -	Thick/Depth	Width/Height	Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)	4
Thick/Depth Width/Height	Toe cover	1.00	3.25	0.40625	1.63	0.66	4
Thick/Depth Width/Height Toe cover 1.00 3.25 0.40625 1.63 0.66	Heel Soil	7.50	3.25	3.047	5.88	17.90	4
Thick/Depth Width/Height Toe cover 1.00 3.25 0.40625 1.63 0.66 Heel Soil 7.50 3.25 3.047 5.88 17.90	Footing	1.25	7.50	1.406	3.75	5.27	-
Thick/Depth Width/Height Midth/Height Midth/Height Toe cover 1.00 3.25 0.40625 1.63 0.66 Heel Soil 7.50 3.25 3.047 5.88 17.90 Footing 1.25 7.50 1.406 3.75 5.27	Concrete Key	1.00	1.00	0.15	6.50	0.98	
Thick/Depth Width/Height Contract	Wall Stem	1.00	8.67	1.300	3.75	4.88	4
Thick/Depth Width/Height Midth/Height Midth/Height Toe cover 1.00 3.25 0.40625 1.63 0.66 Heel Soil 7.50 3.25 3.047 5.88 17.90 Footing 1.25 7.50 1.406 3.75 5.27 Concrete Key 1.00 1.00 0.15 6.50 0.98	Total			6.31		29.68	
Thick/DepthWidth/HeightMidth/HeightToe cover1.003.250.406251.630.66Heel Soil7.503.253.0475.8817.90Footing1.257.501.4063.755.27Concrete Key1.001.000.156.500.98Wall Stem1.008.671.3003.754.88							

				Project	Napa River F	Flood Control I	Project	/
N	IGE	ENGINEERING,	INC.	Subject	Ramp Wall I	Design (H=7'-6	j")	
				Ву	David An	Date	Feb-05	
. Overturning	Check							
				1			1	
	Load Case	Resistance Moment	Overturning Moment		Safety Factor			
	2	34.46	10.3	3.34	-	tor > 1.5, OK		
	4	34.46	11.8	2.92	Safety Fac	tor > 1.5, OK		
. Sliding Che	ck							
	Resistance Due	to Soil Friction						
		μ =				0.3		
		Ffr = $P_d \times \mu$ where, P_d weig	ht of concrete 8	soil		1.9	kips/ft	
	Resistance Due							
						0.244	kips/ft	
	Resistance Due	to Concrete Key						
		Fcr = $2\sqrt{f'c \times 1}$ ft where, f'c =					kips/ft psi, assumed	
						4000		
Load Case	Resistance Due to Soil (kips)	e Sliding Force (kips)	Safe	ety Factor	Resistance Due Concrete Key (kips)		Safety	Factor
2	2.14	2.9	0.74	< 1.5, NG	18.21	2.9	6.33	> 1.5, OI
4	2.14	2.5	0.85	< 1.1, NG	18.21	2.5	7.21	> 1.1, Oł
	Moment about of M = Msmax(due where, Eccentricity	e to soil pressure) M = Max. M (due to la Mt =H2 x 0.125 Mk = - (1ft x 1ft x Mw = B x (H1 + Mh = (H1 + H2)x M_{sur} ={(W-W1-B) $e_W = M / (Pd+Ph$	ateral soil press x (W/2-W1/2) 0.15 x (W/2-W H2 + 14/12) x 0 0.125x(W2 + W x qsur x [W/2-(V	ure), Msmax. = 3)) 1.15 x (W/2-B/2-W /3 - B)(W/2-(W2+)		3.46 11.8 0.3 -0.4 0.0 -6.5 -1.7 0.49	kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft kft/ft ft	
	Therefore	W / 6 = e _W < W / 6				1.25	ft	
	Therefore	Footing Contact	Pressure					
		Resultant Q	•	W				

		Project	Napa River I	Flood Contro	l Project	
MGE	Engineering, Inc.	Subject	Ramp Wall I	Design (H=7'	-6")	\neg
	ENGINEERING, INC.	Ву	David An	Date	Feb-05	
	Q = Pd + Ph15			7.	12 kips	
	$1 + (6 e_w / W) =$			1.:	39 ft	
	$1 - (6 e_w / W) =$			0.0	61 ft	
	qmax = Q [1 + (6ew / W)] / W			1.:	32 ksf	
	qmin = Q [1 - (6ew / W)] / W			0.5	58 ksf	
assumed allo	wable soil brearing pressure					
	qa =				2 ksf	
	D / C = qmax / qa =		0	.66 <1, C	ĸ	
5. Footing Shear and Momer	nt Check (@ face of wall)					
@ Front wall	face	, I				
	W′	1				
	Toe soil	cover				
				_		
Resultant @ fr	ront wall face Qf					
	qmax 🛛 📉					
	<u>+</u>	Wf	≻ qf			
	 ◄_	•••				
) / W x (qmax - qmin) + qmin				00 ksf	
Qf =(qf+qmax				3.	77 k/ft	
	st woll					
Arm to face o						
	Wf = W1 (2qmax+qf) / [3 (qmax-				70 ft	
	Wf = W1 (2qmax+qf) / [3 (qmax- ' x [Qf x Wf - (W1x F x 0.15 x W1/2 -		x W1/2)]		70 ft 55 kft/ft	
	Wf = W1 (2qmax+qf) / [3 (qmax-		x W1/2)]			
Mu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- ' x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf =	-W1 x h2 x 0.12	x W1/2)]	10. 1.:	55 kft/ft 30	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x	-W1 x h2 x 0.12	x W1/2)]	10. 1.:	55 kft/ft	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- ' x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf =	-W1 x h2 x 0.12	x W1/2)]	10. 1.:	55 kft/ft 30	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x	-W1 x h2 x 0.12	x W1/2)]	10. 1.:	55 kft/ft 30	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- 'x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure	-W1 x h2 x 0.12	x W1/2)]	10. 1.:	55 kft/ft 30	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x area for flexure Mu ≤ Φ Mn	-W1 x h2 x 0.12	x W1/2)]	10.4 1.4 6.	55 kft/ft 30	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax)] $Y \times [Qf x Wf - (W1x F x 0.15 x W1/2 + from BDS Table 3.22.1.A]$ Hf = x x [Qf - (W1 x F x 0.15 - W1 x 1ft x + from flexure] $Mu \le \Phi Mn$ $\Phi Mn = \Phi As x fy (d - a/2)$	-W1 x h2 x 0.12 0.12)]	x W1/2)]	10.4 1.3 6. 1	55 kft/ft 30 11 k/ft	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d	-W1 x h2 x 0.12 0.12)]	x W1/2)]	10. 1. 6. 1	55 kft/ft 30 11 k/ft .8 in	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax+qf)	-W1 x h2 x 0.12 0.12)] =	x W1/2)]	10.3 1.5 6.1 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ²	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax+qf)	-W1 x h2 x 0.12 0.12)] =	x W1/2)]	10.4 1.5 6.7 1	55 kft/ft 30 11 k/ft 12 in 21 in ² .9	
Mu = Hf x 1.7 Vu = Hf x 1.7	$\begin{aligned} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax}+\text{qf}) + [3 (\text{qmax}+\text{qmax}+\text{qf}) + [3 (\text{qmax}+\text{qmax}+\text{qmax}+\text{qmax}+\text{qmax}+$	-W1 x h2 x 0.12 0.12)] =		10.4 1.5 6. 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	Wf = W1 (2qmax+qf) / [3 (qmax+qf)	-W1 x h2 x 0.12 0.12)] =	x W1/2)] As =	10.4 1.5 6. 1	55 kft/ft 30 11 k/ft 12 in 21 in ² .9	
Mu = Hf x 1.7 Vu = Hf x 1.7	Wf = W1 (2qmax+qf) / [3 (qmax- 'x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 irf	-W1 x h2 x 0.12 0.12)] =		10.3 1.5 6.7 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ²	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	Wf = W1 (2qmax+qf) / [3 (qmax- Y × [Qf x Wf - (W1x F x 0.15 x W1/2 + from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu ≤ Φ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 in ² a =Asfy / (0.85f'c*b)	-W1 x h2 x 0.12 0.12)] =		10.3 1.5 6.7 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	$\begin{aligned} & \text{Wf} = \text{W1} (2\text{qmax}+\text{qf}) / [3 (\text{qmax})^2 \times [\text{Qf} \times \text{Wf} - (\text{W1x} \text{ F} \times 0.15 \times \text{W1/2} + \text{from BDS Table 3.22.1.A} + \text{Hf} = \\ & \text{x} [\text{Qf} - (\text{W1} \times \text{F} \times 0.15 - \text{W1} \times 1\text{ft} \times $	-W1 x h2 x 0.12 0.12)] =		10.4 1.5 6.7 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in 42 kft/ft	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	Wf = W1 (2qmax+qf) / [3 (qmax- 'x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	-W1 x h2 x 0.12 0.12)] =		10.4 1.5 6.7 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	-W1 x h2 x 0.12 0.12)] =		10.4 1.5 6.7 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in 42 kft/ft	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	-W1 x h2 x 0.12 0.12)] =		10.3 1.5 6.7 1 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in 42 kft/ft 54 OK	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x 1 area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 irf ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn Shear capacity Φ Vn = Φ 2 \sqrt{f} c x F	-W1 x h2 x 0.12 0.12)] = = =		10.4 1.5 6.7 1 0.3 0 0 0 0 0 16.7 0,0 19.3	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in 42 kft/ft 54 OK	
Mu = Hf x 1.7 Vu = Hf x 1.7 Required bar Check	Wf = W1 (2qmax+qf) / [3 (qmax- Y x [Qf x Wf - (W1x F x 0.15 x W1/2 - from BDS Table 3.22.1.A Hf = x [Qf - (W1 x F x 0.15 - W1 x 1ft x + area for flexure Mu $\leq \Phi$ Mn Φ Mn = Φ As x fy (d - a/2) Assume a = 0.15d where d = As = Mu / [Φ fy(d-a/2)] Φ = fy = Use #5 @12", As =0.31 in ² a =Asfy / (0.85f'c*b) Φ Mn = Φ Asfy(d - a/2) D/C = Mu/ Φ Mn	-W1 x h2 x 0.12 0.12)] = = =		10.4 1.5 6. 1 1	55 kft/ft 30 11 k/ft .8 in 12 in 21 in ² .9 50 ksi 31 in ² .5 in 42 kft/ft 54 OK	

		Project	Napa River Fl	ood Co	ntrol Project
IGE	Engineering, Inc.	Subject	Ramp Wall D	esign (H	I=7'-6")
		Ву	David An	Date	Feb-05
Flexure reinforc Mu ≤ ΦMn	ement requirement (bending	about horizontal axi	s at bottom of wall)		
	Mmax(case2 , case 4)				17.5 k-ft/ft
	Hf = Hydraulic fa	actor			1.30
	EM-1110-2-2104P3-2, Eq				
	Mmax (case2, case4) =				7.9 k-ft/ft
			Φ	=	0.90
			d = F x 12 - 3	=	12.5 in
			b	=	12 in
			f'c	=	3 ksi
			fy	=	60 ksi
Reinforcement As = Mu / [Φfy(c	t Requirement d-a/2)], where a = Asfy / (0.85	ōf'c*b)			
ΦMn = Φ As x f	y (d - a/2)				
	a = 0.15d				1.9 in
Required reinf					. 2
As = Mu / [Φfy(α	d-a/2)]				0.34 in ²
Try #7@12", A	s = 0.6 in ²				0.60 in ²
a =Asfy / (0.85f	'c*b)				1.18 in
ΦMn = Φ Asfy(c	1 - a/2)				32.2 kft/ft
Charle Chara			D/C = Mu/ΦM	n	0.54 OK
Check Shear	Vu = Hf x 1.7 x Vmax(case2	, case4) =			5.0 kips/ft
	$\Phi Vn = \Phi(Vc+Vs)$				24.6 kips
	where				
	$Vc = 2 x \sqrt{f'c x b x d}$				16.4 kips
	Vs = As fy d / s		A		12.5 kips
	use #4 @12" as shear reinfo	prcement @ bottom	ot wall stem		0.05
	Where $\Phi =$				0.85
			D/C = Vu / ΦV	n	0.20 OK


Project	Napa River Flo	ood Control	Project	
Subject	Veterans Park	Walls Desig	<u>y</u> n	
Ву	Guoping Xu	Date	Feb-05	

VETERANS PARK WALLS DESIGN

			Project	Napa River	Flood Ccontr	ol Project
IGE	ENGINEERING	INC.	Subject	Veterans Par	∙k Walls	
			Ву	G.Xu	Date	Jan 2005
Load cases a Diagrams" w Instead, use	are based on ith the excep surcharge lo Surcharge =	n Condition (l "Flood Walls tion that D-4 r ad for drivewa	Ins Park (VP) V Jnusual Condit and Channel F not applicable i ays as public ad 250 nade for design	ion) Retaining Walls n this location ccess, see UB O psf	due to the wi	idth of acces -A
	Lower prome			0 Finish Grade	e approxim	ate
			Upper Pro	omenade	18.80 ▽	_
Elev_	er Promenade 8.50 q'em1		Bckfi		due to surch ko(0.250)	harge
	q'em2		qem2		h1 1.5 h2 1.5	ft ft
Soil Pressure at Name	Layer	sure =γ Ki hi) Thickness(ft)	Pressure(ksf) 0.587	7	Backfill pa unit weig	ght 12
qem1 qem2 q'em1	Backfill Backfill Backfill	11.80 1.50 1.50	0.662 0.754		friction angle sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force	Backfill Backfill Backfill at Bottom of Wa	1.50 1.50 1.50	0.662 0.754 1.509		sin(ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name	Backfill Backfill Backfill at Bottom of Wa Force (kips)	1.50 1.50 1.50	0.662 0.754 1.509 Moments(k-ft)		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force	Backfill Backfill Backfill at Bottom of Wa	1.50 1.50 1.50	0.662 0.754 1.509		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1	Backfill Backfill Backfill at Bottom of Wa Force (kips) 3.5	1.50 1.50 1.50	0.662 0.754 1.509 Moments(k-ft) 13.6		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge	Backfill Backfill Backfill at Bottom of Wa Force (kips) 3.5 1.2	1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1	Backfill Backfill Backfill at Bottom of Wa Force (kips) 3.5 1.2 -0.57 4.1	1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force	Backfill Backfill Backfill Backfill Backfill Backfill Backfill Force (kips) 3.5 1.2 -0.57 4.1 Σ H of Wall: Hd = 4. at Bottom of Foo	1.50 1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90 0.50 1 kips Md = 20 pting, per foot of v	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3 Σ M 0.3 k-ft		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name	Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 3.5 1.2 -0.57 4.1 Σ H of Wall: Hd = 4. at Bottom of Foo Force (kips)	1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90 0.50 1 kips Md = 20 pting, per foot of v Mom Arm(ft)	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3 Σ M 0.3 k-ft Moments(k-ft)		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2	BackfillBackfillBackfillBackfillat Bottom of WaForce (kips) 3.5 1.2 -0.57 4.1 Σ Hof Wall: Hd = 4.at Bottom of Force (kips) 4.4	1.50 1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90 0.50 1 kips Md = 20 ting, per foot of v Mom Arm(ft) 4.43	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3 Σ M 0.3 k-ft Moments(k-ft) 19.5		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name	Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 3.5 1.2 -0.57 4.1 Σ H of Wall: Hd = 4. at Bottom of Foo Force (kips)	1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90 0.50 1 kips Md = 20 pting, per foot of v Mom Arm(ft)	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3 Σ M 0.3 k-ft Moments(k-ft)		sin(at rest coeff.	ф) 0.60 Ко 0.39
qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2 Surcharge	BackfillBackfillBackfillBackfillat Bottom of WaForce (kips) 3.5 1.2 -0.57 4.1 Σ Hof Wall: Hd = 4.at Bottom of Force (kips) 4.4 1.3	1.50 1.50 1.50 1.50 II, per foot of wall Mom Arm(ft) 3.93 5.90 0.50 1 kips Md = 20 ting, per foot of v Mom Arm(ft) 4.43 6.65	0.662 0.754 1.509 Moments(k-ft) 13.6 6.9 -0.28 20.3 Σ M 0.3 k-ft Moments(k-ft) 19.5 8.8		sin(at rest coeff.	ф) 0.60 Ко 0.39

				Project		Napa River Flo	od Ccontro	l Project	2
	GE	ENGINEERING,	INC.	Subject		Veterans Park	Walls		
				Ву		G.Xu	Date	Jan 2005	
.oad Case 2:	Normal Con	dition with Ma		uck load V _{RIGI}		ndition) USE V=	16	i kips	
	Elev_	Lower Promena 8.50 q'em1	de	6ft	Uppe Bckfill		F.G. Elev	18.80 (without PED) P _{H-15}	
		q'em2		qem2	T	h1	1.5	ft	
Soil Pressure at \	Vall (Soil press	sure =γ Ki hi)				h2	1.5	ft	
Name	Layer	Thickness(ft)	Pressure(ksf)	1		Backfill parame	eter:		
qem1	Backfill	11.80	0.587]		unit weight		pcf	
qem2	Backfill	1.50	0.662			friction angle, ϕ		′ deg	
q'em1	Backfill	1.50	0.754			sin(φ)			
q'em2	Backfill	1.50	1.509			at rest coeff. Ko			
		H-15 Load h = a=2'/13.30' =	For bottom of fo 13.30 0.15	-		passive, kp For V _{LEFT}	9 4.023		
		h = a=2'/13.30' = a=8'/13.30' = ΔP _{HZleft} =	13.30 0.15 0.60	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48)			
b (for V,)	_	h = a=2'/13.30' = a=8'/13.30' = $\Delta P_{HZleft} =$ $\Delta P_{HZright} = (V/h^2)$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (d) [a ² b ² / (a ² +b ²) ³]	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48))	1	Moment
b (for V _{LEFT})	Z	h = a=2'/13.30' = a=8'/13.30' = $\Delta P_{HZright} = (V/h^2)$ $\Delta P_{PH (LEFT)}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (0) [a ² b ² / (a ² +b ²) ³] Moment	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT})) Z		Moment
0.1	Z 1.33	$\begin{array}{l} h = \\ a = 2'/13.30' = \\ a = 8'/13.30' = \\ \Delta P_{HZright} = \\ \Delta P_{HZright} = (V/h^2 + \Delta P_{HZright}) \\ \hline \Delta P_{PH (LEFT)} \\ 0.069 \end{array}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] <u>Moment</u> 0.821	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT} 0-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1	Z 1.33	ΔΡ _{PH (RIGHT)} 0.001	0.008
	Z	h = a=2'/13.30' = a=8'/13.30' = $\Delta P_{HZright} = (V/h^2)$ $\Delta P_{PH (LEFT)}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (0) [a ² b ² / (a ² +b ²) ³] Moment	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT})) Z		
0.1 0.2	Z 1.33 2.66	$\label{eq:2} \begin{split} h &= \\ a &= 2'/13.30' = \\ a &= 8'/13.30' = \\ \Delta P_{HZleft} = \\ \Delta P_{HZright} = (V/h^2 \\ \hline \Delta P_{PH \ (LEFT)} \\ 0.069 \\ \hline 0.168 \end{split}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] <u>Moment 0.821</u> 1.792	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2	Z 1.33 2.66	ΔΡ _{ΡΗ (RIGHT)} 0.001 0.002	0.008 0.025
0.1 0.2 0.3	Z 1.33 2.66 3.99	$\begin{array}{l} h = \\ a = 2'/13.30' = \\ a = 8'/13.30' = \\ \Delta P_{HZleft} = \\ \Delta P_{HZright} = (V/h^2) \\ \hline \Delta P_{PH \ (LEFT)} \\ 0.069 \\ 0.168 \\ 0.194 \end{array}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (d) [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT} 0-2-2502 Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3	Z 1.33 2.66 3.99	ΔΡ _{ΡΗ (RIGHT)} 0.001 0.002 0.005	0.008 0.025 0.044
0.1 0.2 0.3 0.4	Z 1.33 2.66 3.99 5.32	$h = \\ a=2'/13.30' = \\ a=8'/13.30' = \\ \Delta P_{HZieft} = \\ \Delta P_{HZright} = (V/h^2) \\ \Delta P_{PH (LEFT)} \\ 0.069 \\ 0.168 \\ 0.194 \\ 0.164 \\ 0.164 \\ 0.164 \\ 0.164 \\ 0.000 \\ 0$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (0) [a ² b ² / (a ² +b ²) ³] <u>Moment</u> 0.821 1.792 1.806 1.313	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	Z 1.33 2.66 3.99 5.32	ΔΡ _{PH (RIGHT)} 0.001 0.002 0.005 0.007	0.008 0.025 0.044 0.059
0.1 0.2 0.3 0.4 0.5	Z 1.33 2.66 3.99 5.32 6.65	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5	Z 1.33 2.66 3.99 5.32 6.65	ΔΡ _{ΡΗ (RIGHT)} 0.001 0.002 0.005 0.007 0.010	0.008 0.025 0.044 0.059 0.065
0.1 0.2 0.3 0.4 0.5 0.6	Z 1.33 2.66 3.99 5.32 6.65 7.98	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.459	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Dage 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6	Z 1.33 2.66 3.99 5.32 6.65 7.98	ΔΡ _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011	0.008 0.025 0.044 0.059 0.065 0.061
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.813 0.459 0.240 0.112 0.040	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97	ΔΡ _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.022 \\0.022 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.813 0.459 0.240 0.112 0.040 0.000	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.813 0.459 0.240 0.112 0.040	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97	ΔΡ _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017
$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZIeff} = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.042 \\0.030 \\0.022 \\0.958 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.813 0.459 0.240 0.112 0.040 0.000	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013 0.012 0.087	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000
$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ \Sigma \end{array}$	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZIeff} = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.042 \\0.030 \\0.022 \\0.958 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.813 0.459 0.240 0.112 0.040 0.000	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT} D-2-2502 Page 3-48) Dage 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013 0.012 0.087	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force a	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 at Bottom of Wal	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.022 \\0.958 \\ $	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.459 0.240 0.112 0.040 0.000 7.394	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force at	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 Bottom of Foot	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.012 0.087 ing	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000 0.363
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force a Name	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 at Bottom of Wal Force (kips)	$h = \\a = 2'/13.30' = \\a = 8'/13.30' = \\\Delta P_{HZieft} = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.022 \\0.030 \\0.022 \\0.958 \\\end{bmatrix}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] <u>Moment</u> 0.821 1.792 1.806 1.313 0.813 0.459 0.240 0.112 0.040 0.0112 0.040 0.000 7.394	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT} -2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force at Name	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 Bottom of Foot	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013 0.012 0.087	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000 0.363 Moments(ft)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ tesultant Force a Name Pem1	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 at Bottom of Wal Force (kips) 3.5	$h = \\a = 2'/13.30' = \\a = 8'/13.30' = \\\Delta P_{HZieft} = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.022 \\0.030 \\0.022 \\0.958 \\\end{bmatrix}$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.459 0.240 0.112 0.040 0.012 0.040 0.000 7.394 Moments(k-ft) 13.6	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT} D-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force at Name Pem2	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 Bottom of Foot Force (kips) 4.4	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013 0.012 0.087	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000 0.363 Moments(ft) 19.5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ tesultant Force a Name Pem1 P _{H-15 wall}	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 at Bottom of Wal Force (kips) 3.5 1.0	$h = \\a=2'/13.30' = \\a=8'/13.30' = \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{HZright} = (V/h^2) \\\Delta P_{PH (LEFT)} \\0.069 \\0.168 \\0.194 \\0.164 \\0.122 \\0.086 \\0.060 \\0.042 \\0.030 \\0.022 \\0.958 \\\\\\ Mom Arm(ft) \\3.93 \\$	13.30 0.15 0.60 (0.28V/h ²) [b ² / (() [a ² b ² / (a ² +b ²) ³] Moment 0.821 1.792 1.806 1.313 0.813 0.459 0.240 0.112 0.040 0.000 7.394 Moments(k-ft) 13.6 6.2	ft ≤ 0.4 > 0.4 $(0.16+b^2)^3$ ((EM 1110 -2-2502 F	For V _{LEFT} For V _{RIGHT})-2-2502 Page 3-48) Page 3-48) b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Σ Resultant Force at Name Pem2 P _{H-15 ftg}	Z 1.33 2.66 3.99 5.32 6.65 7.98 9.31 10.64 11.97 13.30 Bottom of Foot Force (kips) 4.4 1.0	ΔP _{PH (RIGHT)} 0.001 0.002 0.005 0.007 0.010 0.011 0.013 0.013 0.013 0.013 0.012 0.087 ing Mom Arm(ft) 4.43	0.008 0.025 0.044 0.059 0.065 0.061 0.050 0.035 0.017 0.000 0.363 Moments(ft) 19.5 7.8

Project	Napa River Flo	ood Ccontro	l Project	3
Subject	Veterans Park	Walls		
Ву	G.Xu	Date	Jan 2005	

Backfill parameter:

125 pcf

0.602

0.398 4.023

62.5 pcf

62.5 pcf

37 Deg

unit weight

sin()

friction angle, ϕ

at rest coeff. Ko

Water

passive, kp <u>Submerged</u> unit weight

unit weight

Dry

Soil Pressure at Wall (Soil pressure = γ Ki hi)

÷			
Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	8.30	0.413
qem2-sub	Backfill	3.50	0.500
qem3-sub	Backfill	1.50	0.538
qw1	Backfill	3.50	0.219
qw2	Backfill	1.50	0.313
q'em1-sub	Backfill	1.50	0.377
q'em2-sub	Backfill	1.50	0.754
q'w1	Backfill	11.00	0.688
q'w2	Backfill	1.50	0.781

Resultant Force at Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	1.7	6.27	10.74
Pem2-sub	1.6	1.69	2.71
Pw1	0.4	1.17	0.45
P'em1-sub	-0.28	0.50	-0.14
P'w1	-3.78	0.50	-1.9
At bot of wall	-0.37		11.9
	ΣV		ΣΜ

Force at Bottom of Wall: Vd = -.37 kips Md = 11.87 k-ft

Resultant Force at Bottom Of Footing

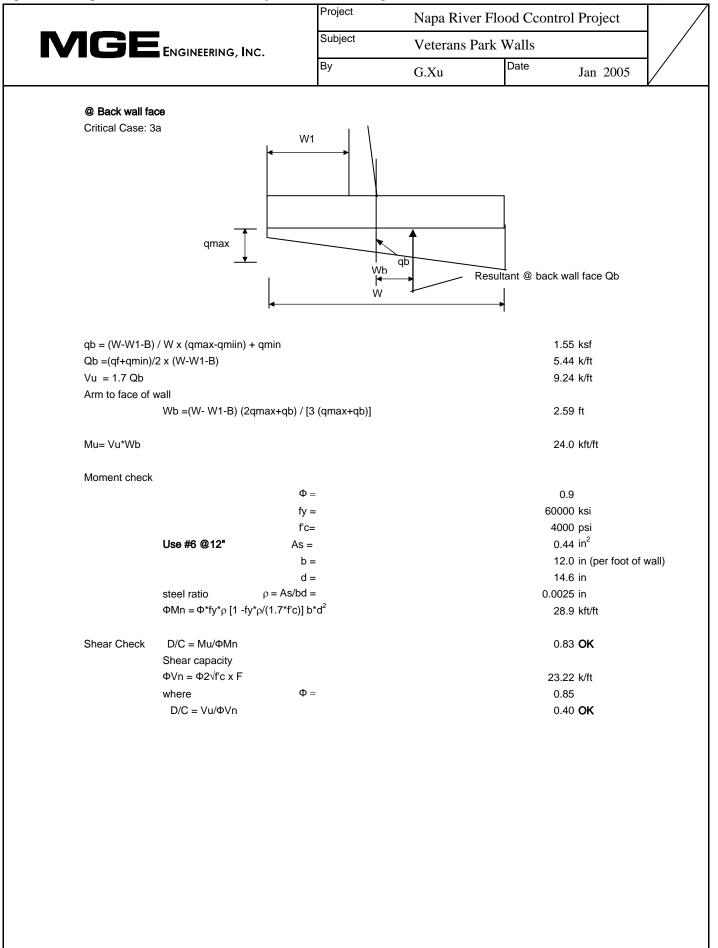
Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	1.7	7.77	13.32
Pem2-sub	1.6	3.19	5.11
Pem3-sub	0.8	0.74	0.58
Pw1	0.38	2.67	1.02
Pw2	0.4	0.71	0.28
P'em1-sub	-0.28	2.00	-0.57
P'em2-sub	-0.8	0.67	-0.57
P'w1	-3.78	3.67	-13.9
P'w2	-1.10	0.73	-0.8
At bot of ftg	-1.14		4.5
	ΣV		ΣΜ
-orce at Bottom	of Wall: Vd = -1.	.14 kips Md = 4	1.5 k-ft

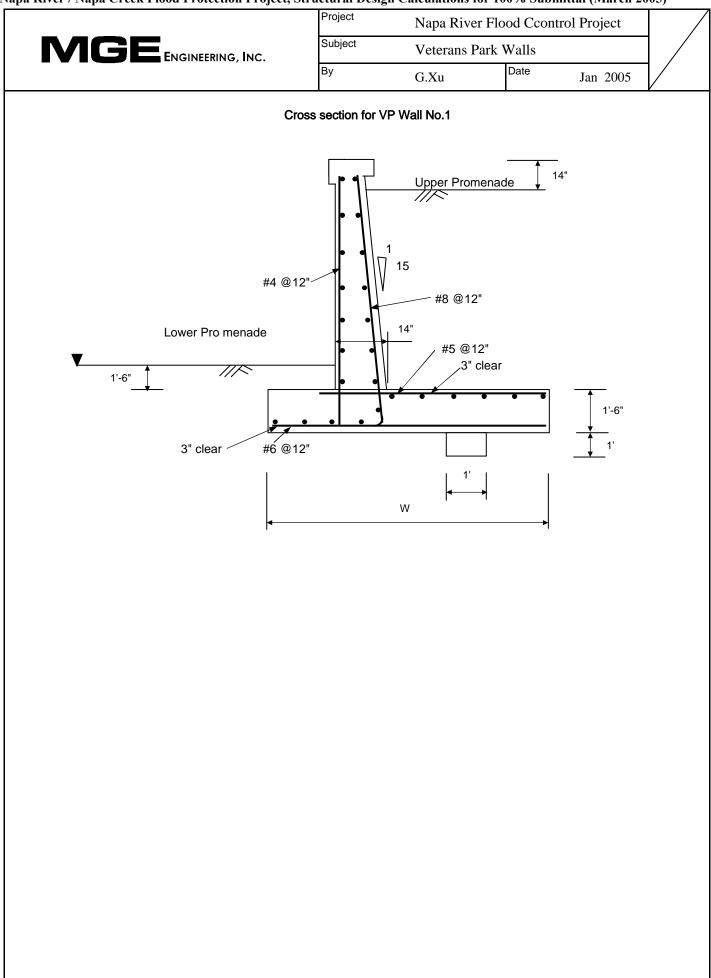
				Project		Napa River Flo	od Cconti	rol Project
	GE	ENGINEERING,	INC.	Subject		Veterans Park	Walls	
				Ву		G.Xu	Date	Jan 2005
_oad Case 4: Sei	ismic Condition	(Extreme Condition	on)					
			ſ					
			<mark>_</mark>	·	pper Prom	ienade	F.G. El	ev 18.80 —
						P _{de for wall}		
		Lower Promena	ide	Ð	Bckfill		₹/	P _{de for ftg}
	Flev	/ 8.50			1	/	/	
	2101				h1 h2			
		q'em1		L	h2		Y	
		q'em2 [/]		qem2		h1	1.5	ft
					L	h2	1.5	ft
Soil/Water Prope	rties							
Layer	Soil Type	Thickness(ft)	Unit Wt. (pcf)	4		Ka	Ko	Кр
1	back fill	11.80	125	3	7	0.25	0.40	4.02
Mater			00.5					
Water								
			62.5					
	oil pressure = γ	Ki hi)	62.5					
Soil Pressure (Soil Name	oil pressure =γ Layer	Ki hi) Thickness(ft)	62.5 Pressure(ksf)	1	I	α =tan ⁻¹ [(C₁+√(C₁²+	-4C ₂))/2]	I
Soil Pressure (S]				2-2502, Page 3-67
Soil Pressure (So Name	Layer Backfill Backfill	Thickness(ft)	Pressure(ksf) 0.367 0.413			(Equation 3-56 d	of EM 1110-2	2-2502, Page 3-67
Soil Pressure (S Name qem1 qem2 q'em1	Layer Backfill Backfill Backfill	Thickness(ft) 11.80 1.50 1.50	Pressure(ksf) 0.367 0.413 0.754			(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1$	of EM 1110-2 +K _h tanФ)	-
Soil Pressure (S Name qem1 qem2 q'em1 q'em2	Layer Backfill Backfill Backfill Backfill	Thickness(ft) 11.80 1.50 1.50 1.50	Pressure(ksf) 0.367 0.413 0.754 1.509			(Equation 3-56 c C ₁ =2 (tanΦ-K _h) / (1 (Equation 3-57 c	of EM 1110-2 +K _h tanΦ) of EM 1110-2	2-2502, Page 3-67
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 q'em2 qde-wall	Layer Backfill Backfill Backfill Backfill Backfill	Thickness(ft) 11.80 1.50 1.50 1.50 1.80	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143			(Equation 3-56 c $C_1 = 2 (tan\Phi-K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg	Layer Backfill Backfill Backfill Backfill Backfill Backfill	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.30 1.30	Pressure(ksf) 0.367 0.413 0.754 1.509			(Equation 3-56 c $C_1 = 2 (tan\Phi-K_h) / (1)$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k	2-2502, Page 3-67
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa	Layer Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.30 13.30 fwall	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161			(Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c) $C_2 = [tan \Phi (1-tan \Phi)]$ (Equation 3-58 c)	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2	2-2502, Page 3-67 Ϛ _h)] / [tanΦ(1+Κ _h ta 2-2502, Page 3-67
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Force	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.50 1.30 f wall Arm to bot.	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments			(Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c) $C_2 = [tan \Phi (1 - tan \Phi)]$ (Equation 3-58 c) $K_h = 0$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1	Layer Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.30 13.30 fwall Arm to bot. 3.93	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5		Pem1	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi)$ (Equation 3-58 c $K_h = \beta = \beta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Force	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.50 1.30 f wall Arm to bot.	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments			(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = \Phi$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37	2-2502, Page 3-67 Ϛ _h)] / [tanΦ(1+Κ _h ta 2-2502, Page 3-67
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall	Layer Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.30 fwall Arm to bot. 3.93 7.87	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi)$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = C_1 = C_1$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1	Layer Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.30 fwall Arm to bot. 3.93 7.87	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28		Pem1	(Equation 3-56 c $C_1 = 2 (tan\Phi - K_h) / (1$ (Equation 3-57 c $C_2 = [tan\Phi(1-tan\Phi)]$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = \Phi$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall	Layer Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.80 13.30 fwall Arm to bot. 3.93 7.87 0.50	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M		Pem1 Pde-wall	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi)$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = C_1 = C_2 = C_2 = C_2$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall Pde-wall P'em1 At bot of wall Force at bottom of	Layer Backfill CO Backfill CO Backfill CO Backfill CO Backfill CO Backfill CO Backfill CO Backfill CO CO CO CO CO CO CO CO CO CO CO CO CO	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 13.30 fwall Arm to bot. 3.93 7.87 0.50 44 kips Md = 14	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M		Pem1 Pde-wall P'em1	(Equation 3-56 c $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi)$ (Equation 3-58 c $K_h = \beta$ $\beta = \Phi = C_1 = C_2 = C_2 = C_2$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of of which earth E =	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2. nquake cont 0.8	Thickness(ft) 11.80 1.50 44 kips Md = 14 ribution (E) kips	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M 4.86 k-ft 6.6	k-ft	Pem1 Pde-wall P'em1	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of of which earth E = ie. D+L =	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2. nquake cont 0.8 1.6	Thickness(ft) 11.80 1.50 44 kips Md = 14 ribution (E) kips kips kips	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ Μ 4.86 k-ft	k-ft k-ft	Pem1 Pde-wall P'em1	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Pem1 Pde-wall P'em1 At bot of wall P'em1 At bot of wall Force at bottom of of which earth E = ie. D+L = Resultant Summa	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2.4 nquake cont 0.8 1.6 ary at Bottom C	Thickness(ft) 11.80 1.50 1.787 0.50 1.44 kips Md = 14 ribution (E) kips kips kips Md = 14	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M 4.86 k-ft 6.6 8.2		Pem1 Pde-wall P'em1	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall P'em1 At bot of wall Force at bottom of of which earth E = ie. D+L = Resultant Summa Name	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2 nquake cont 0.8 1.6 ary at Bottom C Force	Thickness(ft) 11.80 1.50 44 kips Md = 14 ribution (E) kips kips Arm to bot.	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M 4.86 k-ft 6.6 8.2 Moments		Pem1 Pde-wall P'em1	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)
Soil Pressure (Sin Name) qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall P'em1 At bot of wall Force at bottom of the earth E = ie. D+L = Resultant Summa Name Pem2	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2. nquake cont 0.8 1.6 ary at Bottom C Force 2.7	Thickness(ft) 11.80 1.50 1.787 0.50 1.44 kips Md = 14 ribution (E) kips kips Arm to bot. 4.43	$\begin{tabular}{ c c c c c } \hline Pressure(ksf) \\ \hline 0.367 \\ \hline 0.413 \\ \hline 0.754 \\ \hline 1.509 \\ \hline 0.143 \\ \hline 0.161 \\ \hline \hline 0.161$		Pem1 Pde-wall P'em1 Pem2	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Pem1 Pde-wall P'em1 At bot of wall P'em1 At bot of wall Force at bottom of of which earth E = ie. D+L = Resultant Summa Name Pem2 Pde-ftg	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2.0 nquake cont 0.8 1.6 ary at Bottom C Force 2.7 1.1	Thickness(ft) 11.80 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 Arm to bot. 44 kips Md = 14 ribution (E) kips kips Arm to bot. 4.43 8.87	Pressure(ksf) 0.367 0.413 0.754 1.509 0.143 0.161 Moments 8.5 6.6 -0.28 14.9 Σ M 4.86 k-ft 6.6 8.2 Moments 12.2 9.5		Pem1 Pde-wall P'em1	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)
Soil Pressure (S Name qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of of which earth E = ie. D+L = Resultant Summa Name Pem2	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill ary at bottom of Force 2.2 0.8 -0.57 2.4 Σ V of wall: Vd = 2. nquake cont 0.8 1.6 ary at Bottom C Force 2.7	Thickness(ft) 11.80 1.50 1.787 0.50 1.44 kips Md = 14 ribution (E) kips kips Arm to bot. 4.43	$\begin{tabular}{ c c c c } \hline Pressure(ksf) \\ \hline 0.367 \\ \hline 0.413 \\ \hline 0.754 \\ \hline 1.509 \\ \hline 0.143 \\ \hline 0.161 \\ \hline \hline$		Pem1 Pde-wall P'em1 Pem2	(Equation 3-56 c (Equation 3-56 c) $C_1 = 2 (tan \Phi - K_h) / (1)$ (Equation 3-57 c $C_2 = [tan \Phi (1 - tan \Phi (1 - ta$	of EM 1110-2 +K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 0.15 0 37 1.085 0.720 57.2 ents qeq =γ K	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h h ² / [2(tanα-tanβ)

				Project	Napa River Flo	ood Ccontrol	Project	/
M	GE	Engineering, I	NC	Subject	Veterans Park	Walls		1 /
				Ву	G.Xu	Date	Jan 2005	
1. Loads			Vet	terans Park (VF Wall No. 1	?)			
. Due to Lateral	Pressure				-			
Load Case	1			2	3	-	4	
	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg
Hori Force(k)	4.1	3.5	3.9	3.2	-0.4	-1.1	2.4	1.6
Moment(kft)	20.3	26.1	19.5	25.0	11.9	4.5	14.9	19.4
	_ ⊢	Lower Pror	menade	W2	fy = f'c =			
	B =	1.50 f	t	I	H1 =	10.30	ft	
	W1 =	4.00 f	t		H2 =			
					F =	1.50	ft	
	W2 =	6.50 f	t		Conc. Unit Wt =	150	pcf	
	W =	10.50 f	t		Backfill Unit Wt =	125	pcf	
	ainst overturning Due to concrete a	due to weight of	concrete & soil					
]		Dimer	sion	1			1	
	Location			Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)		

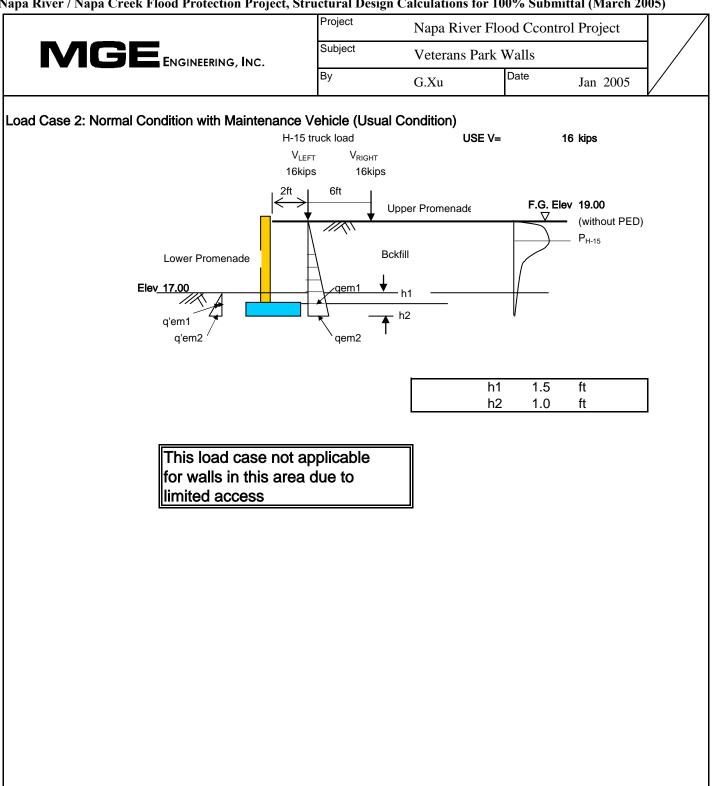
Location	Dime	ension	Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)
Location	Thick/Depth	Width/Height	weight(k/it)	Ann to toe (it)	
Toe cover	1.50	4.00	0.75	2.00	1.50
Heel Soil	11.80	5.00	7.375	8.00	59.00
Footing	1.50	10.50	2.363	5.25	12.40
Concrete Key	0.00	0.00	0	0.00	0.00
Wall Stem	1.50	12.97	2.918	4.75	13.86
Total			13.41		86.76

Note: Live load is not included in the resistance to be conservative

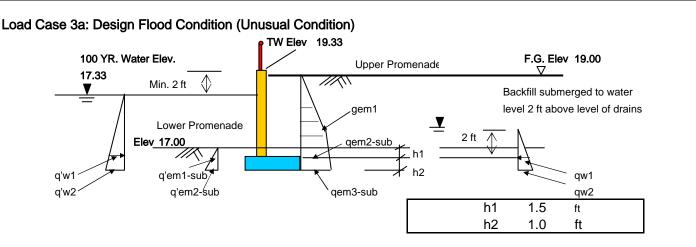

2. Overturning Check


Load Case	Resistance Moment	Overturning Moment		Safety Factor
1	86.76	26.1	3.33	Safety Factor > 1.5, OK
2	86.76	25.0	3.47	Safety Factor > 1.5, OK
3a*	86.76	4.5	19.30	Safety Factor > 1.5, OK
4	86.76	19.4	4.47	Safety Factor > 1.5, OK

				Project	Napa River	Flood Ccontro	ol Project		/
	1GE	i Engineering,	INC.	Subject	Veterans Pa	rk Walls			
				Ву	G.Xu	Date	Jan 2005		
3. Sliding Chec	ж							v	
	Resistance Due	to Soil Friction							
		μ =	use tan (2¢/3)	0.4	16				
		$Ffr = P_d \times \mu$		6.1	6 kips/ft				
		where, P _d weig	ht of concrete &	soil					
	Resistance due	to passive pressu	ure in front of wa	II is ignored.					
Load Case	Resistance Due	U	Safe	ety Factor	7				
1	to Soil (kips) 6.16	(kips) 3.5	1.78	> 1 22 OK	_				
2	6.16	3.5	1.78	> 1.33, OK > 1.5, OK	-1				
2 3a*	6.16	-1.1	5.39	> 1.5, OK > 1.5, OK	-1				
3a 4	6.16	-1.1	3.96						
		_		> 1.1, OK submerged wt, ho					
Load Case 1	Pressure Check		,	ing pressure used:		,			
		Moment due to		M due to Hori	Net Moment	N/(W*1)	M/(1*W ² /6)	Net F	ress
	Vert (k/ft)	M (to Toe)	M (to Ctr)	M o.t.		Press due	Press due	q1	
Soil & Conc	13.41	-86.76	-16.39			to vert load	to Moment		1.8
						(ksf)	(ksf)	q2	
Sum	13.41		-16.39	26.1	9.7	1.28	0.53		0.7
Notes	S:					Percentage i	n compression	100%	6
Load Case 2	1 Postive moment	t : Anti-clockwise				Require perc	entage	75%	OK
		Moment due to	vertical load	M due to Horiz	Net Moment	N/(W*1)	M/(1*W ² /6)	Net F	Press
	Vert (k/ft)	M (to Toe)	M (to Ctr)	M o.t.		Press due	Press due	q1	
Soil & Conc	13.41	-86.76	-16.39			to vert load	to Moment	4.	1.6
H-15	0.51	-5.08	-2.42			(ksf)	(ksf)	q2	
Sum	13.91	0.00	-18.80	25.0	6.2	1.33	0.34	ч-	0.9
Notes: 1		t : Anti-clockwise	10.00	20.0	0.2		n compression	100%	
	2 Resistance due		to zero			Required per	•	100%	
	3 Wt of H15 truck		10 2010				loentage	1007	0
		stribution area = 2) v (H1+H2)		-	23.6 ft			
	Distributed weig		(111112)			.51 k/ft			
Load Case 3a	Distributed weig	int, 1 _{h-15} —			0	.51 1011			
		Moment due to	vertical load	M due to Horiz	Net Moment	N/(W*1)	M/(1*W ² /6)	Net F	ress
	Vert (k/ft)	M (W/R Toe)	M (W/R Ctr)	Mot		Press due	Press due	q1	
Soil & Conc	13.41	-86.76	-16.39	mot		to vert load	to Moment	4'	0.6
	10.41	00.70	10.00			(ksf)	(ksf)	q2	0.0
Sum	13.41		-16.39	4.5	-11.9	1.28	-0.65	9 4	1.9
	: Postive moment	· Anti-clockwice	10.35	4.5	-11.3		n compression	100%	
NOLE						i ercentage i	11 COMPLESSION	Ok	U
Load Case 4								Űĸ	
		Moment due to	vertical load	M due to Horiz	Net Moment	N/(W*1)	M/(1*W ² /6)	Net F	Press
	Vert (k/ft)	M (W/R Toe)	M (W/R Ctr)	Mot		Press due	Press due	q1	1000
Soil & Conc	13.41	-86.76	-16.39	IVIOL		to vert load	to Moment	41	1.4
	13.41	-00.70	-10.39			(ksf)	(ksf)	a)	1.4
Sum	12 44		16.20	10.4	20	. ,		q2	4 4
Sum	13.41	Anti ala ala in	-16.39	19.4	3.0	1.28	0.16	4000	1.1
note	s Postive moment					r ercentage i	n compression	100%	U
								Ok	


			Project	Napa River	Flood Ccon	trol Project	
	ИGE	ENGINEERING, INC.	Subject	Veterans Pa	ark Walls		1 /
_			Ву	G.Xu	Date	Jan 2005	
							•
Strength D	esign per EM 1110-:	2-2502, Sect 9-8. Eq.(9-5) and	(9-6)				
	Load Case 1:	,					
	Load Cases 2						
	Load Case 4:	U=0.75*1.9	9 (D+E)				
		w	here : D = Dead load	1			
			L = Live load,	including Surcharge	or H-15		
			E = Earthquak	ke load			
	Moment at Bo	ttom of wall Mu=					
		D+L D+E	U				
	L.C. 1	20.3	38.5	<critical< td=""><td></td><td></td><td></td></critical<>			
	L.C. 2	19.5	27.8				
	L.C. 3	11.9	16.9				
	L.C. 4	14.9	21.2				
	2.0.7	14.9	21.2				
	Shoor of hotto	om of wall Vu=					
	Shear at botto						
		D+L E	U				
	L.C. 1	4.1	7.7	<critical< td=""><td></td><td></td><td></td></critical<>			
	L.C. 2	3.9	5.6				
	L.C. 3	-0.4	-0.5				
	L.C. 4	2.4	3.5				
		Г	Mu				
	Mu = max{loa	d case1, load case2, load case	e 3, load case4}		:	38.5 kft/ft	
	Vu = max{load	d case1, load case2, load case	3, load case4}			7.7 k/ft	
	Check Momer	nt					
			$\Phi =$			0.9	
			fy =		60	000 psi	
			f'c =			000 psi	
		Use #8 @12"	As =			0.79 in ²	
			b =			12.0 in (per foot of	wall)
			d =			14.5 in	Wally
		steel ratio $\rho = As$				14.5 in	
		$\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7*f)]$					
						49.5 kft/ft	
		$D/C = Mu/\Phi Mn$			(0.78 OK	
	o						
	Check Shear						
		Shear capacity					
		ΦVn = Φ2√f'c x B			23	3.22 k/ft	
		wher	e Φ=		(0.85	
		$D/C = Vu/\Phi Vn$			(0.33 OK	
1		Concrete shear strength alc	one is adaquate. no s	shear reinforcement i	is required.		

	Project	Napa River	Flood Ccontrol F	Project
	Subject	Veterans Pa	rk Walls	/
	Ву	G.Xu	Date J	an 2005
Footing Shear and Moment Check (@ face of wall)				
oad Case 1 governs the strength design		Λ		
@ Front wall face (toe side)	₩1	у <u> </u>		
	Toe soil cove			
Resultant @ front wall face Qf		l.		
qmax		qf	qmin	
	Wf			
Critical load case: Case 1 (most sev	Qf	or footing in front of wall)		
qf = (W2) / W x (qmax - qmin) + qmir			1.15 k	sf
Qf =(qf+qmax)/2 x W1			5.91 k	/ft
Vu = 1.9 (D+L) = 1.9 Qf			11.23 k	/ft
Arm to face of wall				
Wf = W1 (2qmax+qf Mu = Vu*Wf) / [3 (qmax+qf)]		2.15 ft 24.1 k	
Moment Check				
	$\Phi =$		0.9	
	fy =		60000 p	si
	fc =		4000 p	
Use #6 @12"	As =		0.44 ir	1 ²
	b =		12.0 ir	n (per foot of wall)
	d =		14.6 ir	۱
steel ratio	$\rho = As/bd =$		0.0025 ir	۱
ΦMn = Φ*fy*ρ [1 -fy*	ρ/(1.7*f'c)] b*d ²		28.3 k	
D/C = Mu/ΦMn			0.85 C	Ж
Shear Check			S	ay ok
Shear capacity				
$\Phi Vn = \Phi 2 \sqrt{f'c x F}$			23.22 k	/ft
where	Φ=		0.85	
$D/C = Vu/\Phi Vn$			0.48 C	NK.



			Project	Napa River	Flood Ccontr	rol Projec	et
GE	ENGINEERING,	huo	Subject	Veterans Pa	rk Walls		
	ENGINEERING,	INC.	Ву	G.Xu	Date	Jan 20	005
Load Case 1	: Construction		Park (VP) Wa Jnusual Condit				
				-		litiana Q	اممط
Diagrams" w	ith the except	tion that D-4 r	and Channel F not applicable i ays as public a	n this location	due to the w	idth of ac	
	Surcharge =			250	psf		
	-	Upper Prome	nade for desig		approxim	ate	
		enade, Finishe TW Elev	ed Grade	8.50	approxim		
			Upper Pr	omenade	19.00		
					V	-	
Low	er Promenade		Bckf			borgo	
Eloy	17.00				due to surcl ko(0.250)	laige	
			r <u>×</u> r				
	q'em1		▼ <u>×</u> r	n2			
	• /						
	q'em2 [/]		\qem2		h1 1.5	ft	
	q'em2 [/]		\qem2		h1 1.5 h2 1.0	ft ft	
			qem2		h2 1.0	ft	
	t Wall (Soil press	1			h2 1.0 Backfill p	ft arameter	
Name	t Wall (Soil press	Thickness(ft)	· Pressure(ksf)	-	h2 1.0 Backfill p unit wei	ft arameter	12
Name qem1	t Wall (Soil press Layer Backfill	Thickness(ft) 3.50	Pressure(ksf)		h2 1.0 Backfill p unit wei friction angle	ft arameter ight e, ø	12 3
Name qem1 qem2	t Wall (Soil press Layer Backfill Backfill	Thickness(ft) 3.50 1.00	Pressure(ksf) 0.174 0.224		h2 1.0 Backfill p unit wei friction angle sint	ft arameter ight e, ϕ (ϕ)	12 3 0.60
Name qem1	t Wall (Soil press Layer Backfill	Thickness(ft) 3.50	Pressure(ksf)		h2 1.0 Backfill p unit wei friction angle	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 qem2 q'em1 q'em2	Wall (Soil press Layer Backfill Backfill Backfill Backfill	Thickness(ft) 3.50 1.00 1.50 1.00	Pressure(ksf) 0.174 0.224 0.754 1.257		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	12 3 0.60 0.39
Name qem1 qem2 q'em1 q'em2	Wall (Soil press Layer Backfill Backfill Backfill	Thickness(ft) 3.50 1.00 1.50 1.00	Pressure(ksf) 0.174 0.224 0.754 1.257		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 q'em2 q'em2 q'em2	Wall (Soil press Layer Backfill Backfill Backfill Backfill	Thickness(ft) 3.50 1.00 1.50 1.00	Pressure(ksf) 0.174 0.224 0.754 1.257		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 q'em2 q'em2 q'em2 Resultant Force Name	Wall (Soil press Layer Backfill Backfill Backfill	Thickness(ft) 3.50 1.00 1.50 1.00 1.90 1.00 Mom Arm(ft)	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft)		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	12 3 0.60 0.39
Name qem1 q'em2 q'em2 q'em2 Resultant Force Name Pem1	Wall (Soil press Layer Backfill Backfill Backfill Backfill Backfill Force (kips) 0.3	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	12 3 0.60 0.39
Name qem1 q'em2 q'em2 d'em2 Resultant Force Name Pem1 Surcharge	Wall (Soil press Layer Backfill Backfill Backfill Backfill Backfill Backfill Force (kips) 0.3 0.3	Thickness(ft) 3.50 1.00 1.50 1.00 1.70 Mom Arm(ft) 1.17 1.75	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall	E Wall (Soil press Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Contemporation Force (kips) 0.3 0.3 -0.57 0.1 Σ H	Thickness(ft) 3.50 1.00 1.50 1.00 II, per foot of wall Mom Arm(ft) 1.17 1.75 0.50	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	12 3 0.60 0.39
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall	Wall (Soil press Layer Backfill Backfill Backfill Backfill<	Thickness(ft) 3.50 1.00 1.50 1.00 II, per foot of wall Mom Arm(ft) 1.17 1.75 0.50	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	12 3 0.60 0.39
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom	Wall (Soil press Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 0.3 0.3 -0.57 0.1 Σ H of Wall: Hd = .1 at Bottom of Foo Foo	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 1.75 0.50 kips Md = .7 k wting, per foot of val	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name	Wall (Soil press Layer Backfill Backfill Backfill O.3 0.3 0.3 0.3 0.1 Σ H Dof Wall: Hd = .1 Battom of Force Force (kips)	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 1.7 1.75 0.50 kips Md = .7 k wting, per foot of v Mom Arm(ft)	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft wall Moments(k-ft)		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.393
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2	Wall (Soil press Layer Backfill Backfill <tr< td=""><td>Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: second seco</td><td>Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft Moments(k-ft) 0.8</td><td></td><td>h2 1.0 Backfill p unit wei friction angle sine at rest coeff.</td><td>ft arameter ight e, φ (φ) Ko</td><td>123 3 0.602 0.398</td></tr<>	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: second seco	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft Moments(k-ft) 0.8		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.398
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2 Surcharge	Wall (Soil press Layer Backfill Backfill <tr< td=""><td>Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: state stat</td><td>Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 ∑ M -ft Moments(k-ft) 0.8 1.0</td><td></td><td>h2 1.0 Backfill p unit wei friction angle sine at rest coeff.</td><td>ft arameter ight e, φ (φ) Ko</td><td>123 3 0.602 0.398</td></tr<>	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: state stat	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 ∑ M -ft Moments(k-ft) 0.8 1.0		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	123 3 0.602 0.398
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2	Wall (Soil press Layer Backfill Backfill <tr< td=""><td>Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: second seco</td><td>Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft Moments(k-ft) 0.8</td><td></td><td>h2 1.0 Backfill p unit wei friction angle sine at rest coeff.</td><td>ft arameter ight e, φ (φ) Ko</td><td>r: 12(37 0.602 0.398 4.023</td></tr<>	Thickness(ft) 3.50 1.00 1.50 1.00 1.50 1.00 Image: second seco	Pressure(ksf) 0.174 0.224 0.754 1.257 Moments(k-ft) 0.4 0.6 -0.28 0.7 Σ M -ft Moments(k-ft) 0.8		h2 1.0 Backfill p unit wei friction angle sine at rest coeff.	ft arameter ight e, φ (φ) Ko	r: 12(37 0.602 0.398 4.023

Project Napa River Flood Ccontrol Project				
Subject	Veterans Park Walls			
Ву	G.Xu	Date	Jan 2005	

Backfill parameter:

125 pcf

0.602

0.398

4.023

62.5 pcf

62.5 pcf

37 Deg

unit weight

sin()

friction angle, ϕ

at rest coeff. Ko

Submerged unit weight

Water

passive, kp

unit weight

Dry

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	0.00	0.000
qem2-sub	Backfill	3.50	0.087
qem3-sub	Backfill	1.50	0.124
qw1	Backfill	3.50	0.219
qw2	Backfill	1.50	0.313
q'em1-sub	Backfill	1.50	0.377
q'em2-sub	Backfill	1.50	0.754
q'w1	Backfill	1.83	0.114
q'w2	Backfill	1.50	0.208

Resultant Force at Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	0.0	3.50	0.00
Pem2-sub	0.2	1.17	0.18
Pw1	0.4	1.17	0.45
P'em1-sub	-0.28	0.50	-0.14
P'w1	-0.10	0.50	-0.1
At bot of wall	0.15		0.4
	ΣV		ΣΜ

Force at Bottom of Wall: Vd = .15 kips Md = .43 k-ft

Resultant Force at Bottom Of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	0.0	5.00	0.00
Pem2-sub	0.2	2.67	0.41
Pem3-sub	0.2	0.71	0.11
Pw1	0.38	2.67	1.02
Pw2	0.4	0.71	0.28
P'em1-sub	-0.28	2.00	-0.57
P'em2-sub	-0.8	0.67	-0.57
P'w1	-0.10	0.61	-0.1
P'w2	-0.24	0.68	-0.2
At bot of ftg	-0.39		0.5
	ΣV		ΣΜ

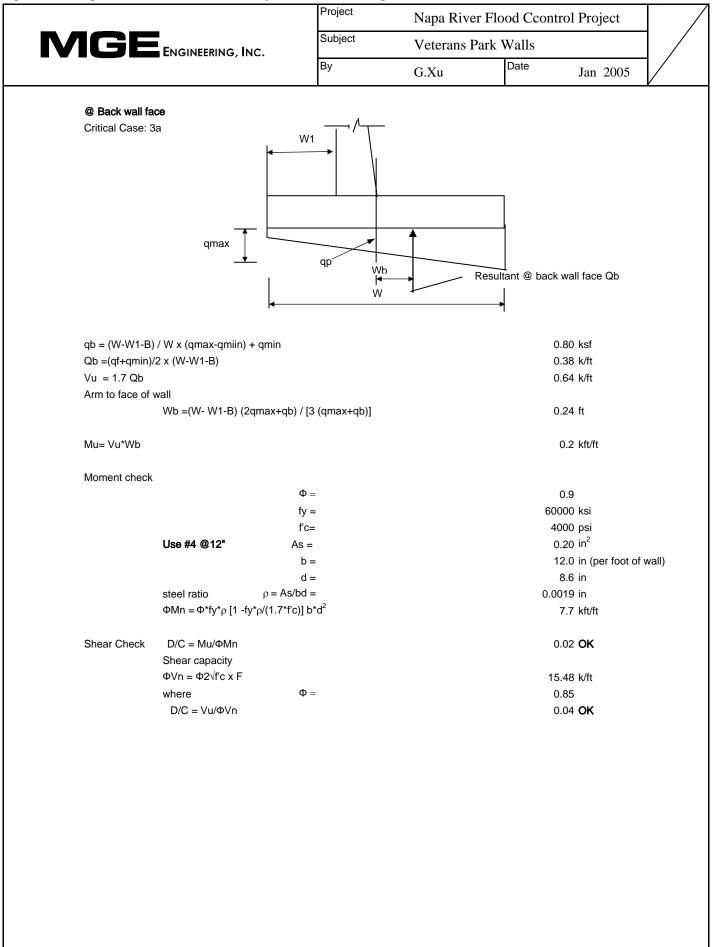
				Project	ľ	Napa River Flo	od Ccontr	ol Project
	IGE	ENGINEERING,	INC.	Subject	V	Veterans Park V	Valls	
				Ву	(G.Xu	Date	Jan 2005
oad Case 4: Se	ismic Condition	(Extreme Condition	on)					
			Î		_		F.G. Ele	əv 19.00
					per Prome			-
				$\left \right\rangle$	Dalafill	→ P _{de f} or wall		
		Lower Promena	de	Д	Bckfill		[/	P _{de for ftg}
	Elev	/ 17.00						
					₩h1 ₩h2	_/	γ	
		q'em1			⊥ nz		1	
		q'em2 [/]		qem2		h1	1.5	ft
					L	h2	1.0	ft
oil/Water Prope	erties							
Layer	Soil Type	Thickness(ft)	Unit Wt. (pcf)	Φ		Ka	Ko	Кр
1	back fill	3.50	125	37		0.25	0.40	4.02
Water			62.5					
oil Pressure (S	Soil pressure = γ	Ki hi)						
Name	Layer	Thickness(ft)	Pressure(ksf)	1	0	$\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1)^2 + 4})]$	4C ₂))/2]	
qem1	Backfill	3.50	0.109		-			-2502, Page 3-67)
qem2	Backfill	1.50	0.155					, 0 ,
	B 1 (11							
q'em1	Backfill	1.50	0.754		C	С ₁ =2 (tanФ-К _h) / (1-	+K _h tanΦ)	
q'em1 q'em2	Backfill	1.50 1.50	0.754 1.509		C			-2502, Page 3-67)
		-					f EM 1110-2	
q'em2	Backfill	1.50	1.509			(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi)]$	f EM 1110-2 tarβ)-(tanβ-K	
q'em2 qde-wall qde-ftg tesultant Summ	Backfill Backfill Backfill ary at bottom of	1.50 3.50 5.00 wall	1.509 0.042 0.061		C	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi)]$ (Equation 3-58 o	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2	_h)] / [tanΦ(1+K _h tar
q'em2 qde-wall qde-ftg Resultant Summ Name	Backfill Backfill Backfill ary at bottom of Force	1.50 3.50 5.00 wall Arm to bot.	1.509 0.042 0.061 Moments			(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tandbig (Equation 3-58 o)]$ $K_h = 0$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15	_h)] / [tanΦ(1+K _h tar
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1	Backfill Backfill Backfill ary at bottom of Force 0.2	1.50 3.50 5.00 wall Arm to bot. 1.17	1.509 0.042 0.061 Moments 0.2		C Pem1	(Equation 3-57 o $D_2 = [tan\Phi(1-tan\Phi) tandet (Equation 3-58 o K_h = \beta = \beta$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g
q'em2 qde-wall qde-ftg tesultant Summ Name Pem1 Pde-wall	Backfill Backfill Backfill Backfill Force 0.2 0.1	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33	1.509 0.042 0.061 Moments 0.2 0.2	 	C	(Equation 3-57 o $D_2 = [tan\Phi(1-tan\Phi) tand{tan} (Equation 3-58 o K_h = \beta = \beta = \Phi = 0$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37	h)] / [tanΦ(1+K _h tar -2502, Page 3-67)
q'em2 qde-wall qde-ftg tesultant Summ Name Pem1 Pde-wall P'em1	Backfill Backfill Backfill Bary at bottom of Force 0.2 0.1 -0.57	1.50 3.50 5.00 wall Arm to bot. 1.17	1.509 0.042 0.061 Moments 0.2 0.2 -0.28		C Pem1 /de-wall	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tan} (Equation 3-58 o K_h = \beta = \beta = \Phi = C_1 = C_1 = 0$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g
q'em2 qde-wall qde-ftg tesultant Summ Name Pem1 Pde-wall	Backfill Backfill Backfill Backfill Backfill Backfill Force 0.2 0.1 -0.57 -0.3	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1		C Pem1	(Equation 3-57 o $D_2 = [tan\Phi(1-tan\Phi)tan\Phi)tan\Phi(1-tan\Phi)tan (Equation 3-58 o K_h = \beta = \beta = \Phi = C_1 = C_2 = C_2 = 0$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall	Backfill Backfill Backfill Backfill Backfill Force 0.2 0.1 -0.57 -0.3 Σ V	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M		C Pem1 Ide-wall P'em1	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tan} (Equation 3-58 o K_h = \beta = \beta = \Phi = C_1 = C_1 = 0$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom	Backfill Backfill Backfill Backfill ary at bottom of Force 0.2 0.1 -0.57 -0.57 -0.3 Σ V of wall: Vd =3	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1 ⁴	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tandrow tandro$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which eart	Backfill Backfill Backfill Backfill ary at bottom of Force 0.2 0.1 -0.57 -0.3 ∑ V of wall: Vd =3 hquake contra	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .17 ribution (E)	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [\tan \Phi(1 - \tan \Phi) + \alpha]$ (Equation 3-58 o $K_h = \beta = \beta = \alpha = C_1 = C_2 = \alpha = \alpha$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree ,h ² / [2(tanα-tanβ)]
q'em2 qde-wall qde-ftg tesultant Summ Name Pem1 Pde-wall P'em1 At bot of wall force at bottom of which earth E =	Backfill Backfill Backfill Backfill ary at bottom of Force 0.2 0.1 -0.57 -0.3 ∑ V of wall: Vd =3 hquake control 0.1	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1 ² ribution (E) kips	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft 0.2	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [\tan \Phi(1 - \tan \Phi) + \alpha]$ (Equation 3-58 o $K_h = \beta = \beta = \alpha = C_1 = C_2 = \alpha = \alpha$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L =	BackfillBackfillBackfillBackfillary at bottom ofForce 0.2 0.1 -0.57-0.3 ΣV of wall: Vd =3hquake contr 0.1 -0.4	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1 ² ribution (E) kips kips	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [tan \Phi(1-tan \Phi) tan (Equation 3-58 o)$ $K_h = \beta = \beta = \Phi = C_1 = C_2 = \alpha = 0$ Dynamic Componer (Equation 3-62 o)	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree ,h ² / [2(tanα-tanβ)]
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L = Resultant Summ	BackfillBackfillBackfillBackfillary at bottom ofForce 0.2 0.1 -0.57-0.3 ΣV of wall: Vd =3hquake contri 0.1 -0.4ary at Bottom O	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1' ribution (E) kips kips f Ftg	$ \begin{array}{r} 1.509\\ 0.042\\ 0.061\\ \hline Moments\\ 0.2\\ 0.2\\ -0.28\\ \hline 0.1\\ \Sigma M\\ \hline k-ft\\ 0.2\\ -0.1\\ \end{array} $	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tand{tand{tand{tand{tand{tand{tand{$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _t f EM 1110-2	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree ,h ² / [2(tanα-tanβ)] -2502, Page 3-68)
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L =	BackfillBackfillBackfillBackfillary at bottom ofForce 0.2 0.1 -0.57-0.3 ΣV of wall: Vd =3hquake contr 0.1 -0.4	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1' ribution (E) kips kips f Ftg Arm to bot.	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft 0.2 -0.1 Moments	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tan} (Equation 3-58 o K_h = \beta = \beta = 0\Phi = C_1 = C_2 = \alpha = 0Oynamic Componer(Equation 3-62 oNote:When the sum$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _t f EM 1110-2 m of force	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree h ² / [2(tanα-tanβ)] -2502, Page 3-68)
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L = Resultant Summ Name Pem2	BackfillBackfillBackfillBackfillary at bottom ofForce 0.2 0.1 -0.57-0.3 ΣV of wall: Vd =3hquake contr 0.1 -0.4ary at Bottom OForce 0.4	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1' ribution (E) kips kips f Ftg	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 ∑ M k-ft 0.2 -0.1 Moments 0.2	(See Note	C Pem1 Ide-wall P'em1 P) E Pem2	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tan} (Equation 3-58 o K_h = \beta = \beta = 0\Phi = C_1 = C_2 = \alpha = 0Dynamic Componer(Equation 3-62 oNote:When the sumindicating pase$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t f EM 1110-2 m of force ssive force	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree h ² / [2(tanα-tanβ)] -2502, Page 3-68) is negative, e greater than
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L = Resultant Summ Name	Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Backfill Composite Composite Backfill Composite Compo	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1 ² ribution (E) kips kips f Ftg Arm to bot. 1.67	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft 0.2 -0.1 Moments	(See Note	C Pem1 de-wall P'em1 Ə)	(Equation 3-57 o $C_2 = [tan\Phi(1-tan\Phi) tand{tand} (Equation 3-58 o K_h = \beta = \beta = \alpha = C_1 = C_2 = \alpha = \alphaDynamic Componer(Equation 3-62 oNote:When the sumindicating paraactive force v$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _t f EM 1110-2 m of force ssive force vhich is no	 h)] / [tanΦ(1+K_h tar -2502, Page 3-67) g degree degree ,h² / [2(tanα-tanβ)] -2502, Page 3-68) is negative, e greater than bt possible, set
q'em2 qde-wall qde-ftg tesultant Summ Name Pem1 Pde-wall P'em1 At bot of wall orcce at bottom of of which earth E = ie. D+L = tesultant Summ Name Pem2 Pde-ftg	BackfillBackfillBackfillBackfillary at bottom ofForce 0.2 0.1 -0.57-0.3 ΣV of wall: Vd =3hquake contro 0.1 -0.4ary at Bottom OForce 0.4 0.2	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1° ribution (E) kips kips f Ftg Arm to bot. 1.67 3.33	1.509 0.042 0.061 Moments 0.2 -0.28 0.1 Σ M k-ft 0.2 -0.1 Moments 0.6 0.5	(See Note	C Pem1 Ide-wall P'em1 P) E Pem2	$\begin{array}{c} (\text{Equation } 3\text{-}57 \text{ o} \\ C_2 = [\tan \Phi(1 + \tan \Phi + 1)] \\ (\text{Equation } 3\text{-}58 \text{ o} \\ K_h = & \beta \\ & \beta \\ & \beta \\ & - \\ & \alpha \\ & - \\ \end{array}$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 nts qeq =γ K _t f EM 1110-2 m of force ssive force vhich is no	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree h ² / [2(tanα-tanβ)] -2502, Page 3-68) is negative, e greater than ot possible, set zero, i.e,
q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Force at bottom of which earth E = ie. D+L = Resultant Summ Name Pem2 Pde-ftg P'em2	Backfill Backfill Backfill Backfill Backfill Force 0.2 0.1 -0.57 -0.3 ΣV of wall: Vd =3 hquake contr 0.1 -0.4 hquake contr 0.1 -0.4 hquake contr 0.1 -0.4 bary at Bottom O Force 0.4 0.2 -2.26	1.50 3.50 5.00 wall Arm to bot. 1.17 2.33 0.50 0 kips Md = .1° ribution (E) kips kips f Ftg Arm to bot. 1.67 3.33	1.509 0.042 0.061 Moments 0.2 0.2 -0.28 0.1 Σ M k-ft 0.2 -0.1 Moments 0.6 0.5 -2.26	(See Note	C Pem1 de-wall P'em1 e) C Pem2 Pde-ftg	$\begin{array}{c} (\text{Equation } 3\text{-}57 \text{ o} \\ C_2 = [\tan \Phi(1 + \tan \Phi + 1)] \\ (\text{Equation } 3\text{-}58 \text{ o} \\ K_h = & \beta \\ & \beta \\ & \beta \\ & - \\ & \alpha \\ & - \\ \end{array}$	f EM 1110-2 tarβ)-(tanβ-K f EM 1110-2 0.15 0 37 1.085 0.720 57.2 hts qeq =γ K _t f EM 1110-2 m of force ssive force vhich is no	h)] / [tanΦ(1+K _h tar -2502, Page 3-67) g degree degree h ² / [2(tanα-tanβ)] -2502, Page 3-68) is negative, e greater than ot possible, set zero, i.e,

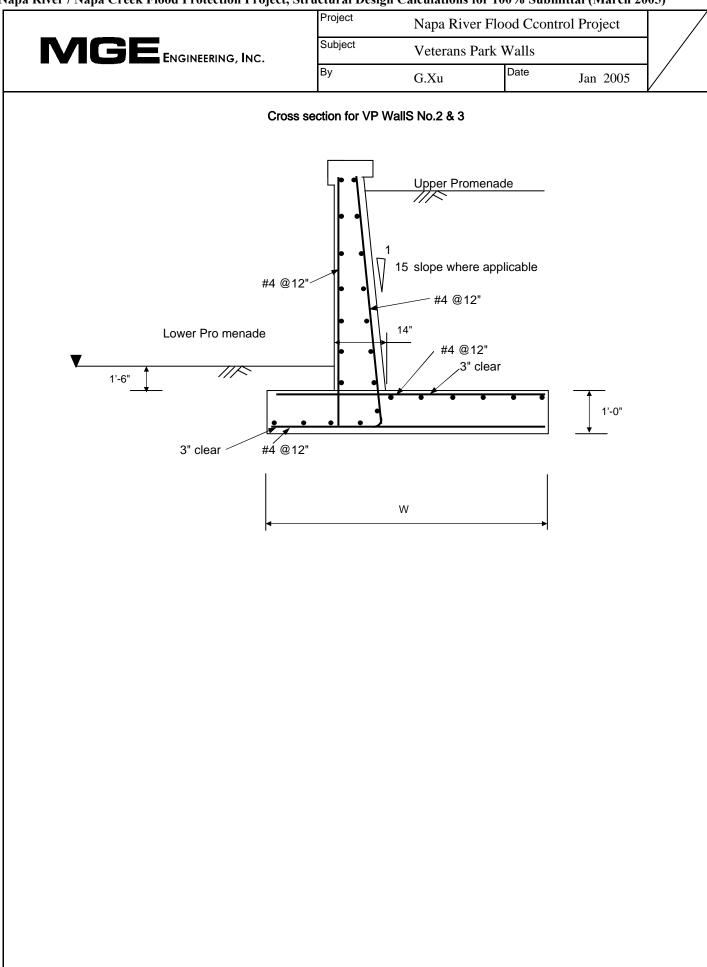
				Project	Napa River Flo	od Ccontrol	Project	
M	GE	ENGINEERING,	INC	Subject	Veterans Park V	Walls		
				Ву	G.Xu	Date	Jan 2005	
			Vet	erans Park (VP)			
Loads				Walls No. 2 & 3	3			
. Due to Lateral	Pressure							
Load Case		1		2	3		4	I
2000 0000	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ft
Hori Force(k)	0.1	-0.6	N/A	N/A	0.1	-0.4	-0.3	0.0
Moment(kft)	0.7	0.5	N/A	N/A	0.4	0.5	0.1	0.0
	- F - H2 -	Lower Pro	menade	<u>₩2</u>	fy = f'c =	60000 4000		
	B = W1 = W2 = W = ainst overturning Due to concrete	1.00 2.00 3.00 g due to weight of	ft ft ft		H1 = H2 = F = Conc. Unit Wt = Backfill Unit Wt =) ft	
Г		Dime	nsion	\\/aiab +///////	Arms to take (ft)	Mat /I-ft/ft		
	Location	Thick/Depth	Width/Height	Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)		
1	Toe cover	1.50	1.00	0.1875	0.50	0.09	1	
	Heel Soil	3.50	0.50	0.219	2.75	0.60	1	

0.219 2.75 0.60 leel Soi 3.50 0.50Footing 1.00 3.00 0.450 1.50 0.68 Concrete Key 0.00 0.00 0 0.00 0.00 Wall Stem 1.50 4.67 1.75 1.050 1.84 1.91 3.21 Total

Note: Live load is not included in the resistance to be conservative

2. Overturning Check

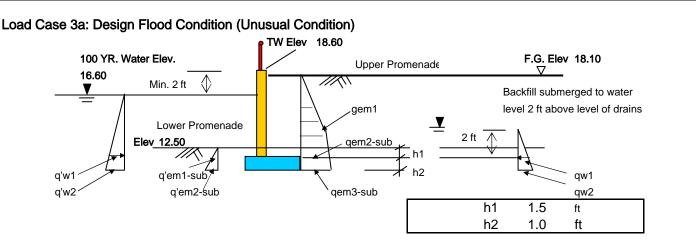

Load Case	Resistance Moment	Overturning Moment		Safety Factor	
1	3.21	0.5	7.06	Safety Factor > 1.5, OK	
2	3.21	N/A	N/A	N/A	
3a*	3.21	0.5	6.95	Safety Factor > 1.5, OK	
4	3.21	0.0	N/A	See note for Loadcase 4	(Previous page)
*Dry soil wt is us	ed here instead	of submerged soi	l wt, not critical eith	ner way, Ok.	


Page 141 of 234

				Project	Napa River I	Flood Ccontro	ol Project		
N/	IGE			Subject	Veterans Par		5	1 /	
		ENGINEERING,	INC.	Ву	G.Xu	Date	Jan 2005	+/	
3. Sliding Chec	k				0.Au		Jan 2005	V	
s. Sliding Check	Resistance Due to	o Soil Friction							
			use tan (2ø/3)	0.4	16				
	•	Ffr = Ρ _d x μ			38 kips/ft				
			t of concrete &	soil					
	Resistance due to	o passive pressu	ure in front of wa	ll is ignored.					
Load Case	Resistance Due to Soil (kips)	Sliding Force (kips)	Safe	ety Factor					
1	0.88	-0.6	1.41	> 1.33, OK					
2	0.88	N/A	N/A	N/A					
3a*	0.88	-0.4	2.27	> 1.5, OK	_				
4	0.88	0.0	N/A	N/A	See note for Loa		(Previous page	ge)	
te I	* Dry weight is use	d here where pa	art of it should be	e submerged wt, ho	owever it's not critic	cal in this case.			
4. Soil Bearing	Pressure Check		(Allowable bear	ing pressure used:	2.0 ksf, see Geote	ech DDR)			
Load Case 1			,						
	,	Moment due to v	vert load	M due to Hori	Net Moment	N/(W*1)	M/(1*W ² /6)	Net Press	
	Vert (k/ft)	M (to Toe)	M (to Ctr)	M o.t.	Not Monicit	Press due	Press due	q1	
Soil & Conc	1.91	-3.21	-0.35			to vert load	to Moment	0.	
	-					(ksf)	(ksf)	q2	
Sum	1.91		-0.35	0.5	0.4	0.64	0.07	0.	
			0.00	0.5	0.1	0.04	0.07	U.	
	: Postive moment :	Anti-clockwise	0.00	0.0	0.1	0.04	0.07	0.	
		Anti-clockwise	0.00	e=M/V =		.06 ft		% in Compr	
		: Anti-clockwise	0.00		0			% in Compr	
Notes		: Anti-clockwise	0.00	e=M/V =	0	.06 ft	1569	% in Compr	
		: Anti-clockwise	0.00	e=M/V =	0	.06 ft	1569	% in Compr	
Notes	Postive moment :			e=M/V = x=1.5 W - e	0	.06 ft	1569	% in Compr	
Notes	Postive moment :	This load c	ase not ap	e=M/V = x=1.5 W - e	0	.06 ft	1569	% in Compr	
Notes	Postive moment :	This load c		e=M/V = x=1.5 W - e	0	.06 ft	1569	% in Compr	
Notes	Postive moment :	This load c	ase not ap	e=M/V = x=1.5 W - e	0	.06 ft	1569	% in Compr	
Notes	Postive moment :	This load c for short w	ase not ap	e=M/V = x=1.5 W - e plicable area.	0 4	.06 ft .67 ft	1564 >75%,C	% in Compr lk	
Notes	Postive moment :	This load of for short w	case not ap alls in this a	e=M/V = x=1.5 W - e plicable area.	0	.06 ft .67 ft N/(W*1)	1564 >75%,C M/(1*W ² /6)	% in Compr k Net Press	
Notes Load Case 2 Load Case 3a	Postive moment :	This load of for short w Moment due to v M (W/R Toe)	vertical load	e=M/V = x=1.5 W - e plicable area.	0 4	.06 ft .67 ft N/(W*1) Press due	1564 >75%,C M/(1*W ² /6) Press due	% in Compr k Net Press q1	
Notes Load Case 2 Load Case 3a	Postive moment :	This load of for short w	case not ap alls in this a	e=M/V = x=1.5 W - e plicable area.	0 4	.06 ft .67 ft N/(W*1) Press due to vert load	1564 >75%,C M/(1*W ² /6) Press due to Moment	% in Compr k Net Press q1 0 .	
Notes Load Case 2 Load Case 3a	Postive moment : Vert (k/ft) 1.91	This load of for short w Moment due to v M (W/R Toe)	case not ap alls in this vertical load M (W/R Ctr) -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot	0 4	.06 ft .67 ft N/(W*1) Press due to vert load (ksf)	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf)	% in Compr lk Net Press q1 0. q2	
Notes Load Case 2 Load Case 3a Soil & Conc	Postive moment : Vert (k/ft) 1.91 1.91	This load of for short w Moment due to w M (W/R Toe) -3.21	vertical load	e=M/V = x=1.5 W - e plicable area.	0 4	.06 ft .67 ft N/(W*1) Press due to vert load	1564 >75%,C M/(1*W ² /6) Press due to Moment	% in Compr k Net Press q1 0 .	
Notes Load Case 2 Load Case 3a Soil & Conc	Postive moment : Vert (k/ft) 1.91	This load of for short w Moment due to w M (W/R Toe) -3.21	case not ap alls in this vertical load M (W/R Ctr) -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5	0 4 Net Moment 0.1	.06 ft .67 ft N/(W*1) Press due to vert load (ksf) 0.64	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08	% in Compr % Net Press q1 0, q2 0,	
Notes Load Case 2 Load Case 3a Soil & Conc Sum	Postive moment : Vert (k/ft) 1.91 1.91	This load of for short w Moment due to w M (W/R Toe) -3.21	case not ap alls in this vertical load M (W/R Ctr) -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V =	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08	% in Compr k Net Press q1 0, q2 0, % in Compr	
Notes Load Case 2 Load Case 3a Soil & Conc	Postive moment : Vert (k/ft) 1.91 1.91	This load of for short w Moment due to w M (W/R Toe) -3.21	case not ap alls in this vertical load M (W/R Ctr) -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5	0 4 	.06 ft .67 ft N/(W*1) Press due to vert load (ksf) 0.64	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08	% in Compr k Net Press q1 0, q2 0, % in Compr	
Notes Load Case 2 Load Case 3a Soil & Conc Sum Note	Postive moment : Vert (k/ft) 1.91 1.91	This load of for short w Moment due to w M (W/R Toe) -3.21	case not ap alls in this vertical load M (W/R Ctr) -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V =	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08	% in Compr k Net Press q1 0, q2 0, % in Compr	
Notes Load Case 2 Load Case 3a Soil & Conc Sum Note	Postive moment : Vert (k/ft) 1.91 1.91 : Postive moment :	This load of for short w Moment due to w M (W/R Toe) -3.21	alls in this a vertical load M (W/R Ctr) -0.35 -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V =	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08	% in Compr k Net Press q1 0, q2 0, % in Compr	
Notes Load Case 2 Load Case 3a Soil & Conc Sum Note	Postive moment : Vert (k/ft) 1.91 1.91 : Postive moment :	This load of for short w Moment due to w M (W/R Toe) -3.21	alls in this a vertical load M (W/R Ctr) -0.35 -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V = x=1.5 W - e	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64 .06 ft .68 ft	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08 1564 >75%,C	% in Compr lk Net Press q1 0. q2 0. % in Compr lk	
Notes Load Case 2 Load Case 3a Soil & Conc Sum	Postive moment : Postive moment : Vert (k/ft) 1.91 1.91 : Postive moment :	This load of for short w Moment due to w M (W/R Toe) -3.21 : Anti-clockwise	vertical load M (W/R Ctr) -0.35 -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V = x=1.5 W - e M due to Horiz	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64 .06 ft .68 ft N/(W*1)	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08 1564 >75%,C	% in Compr % Net Press q1 0, q2 0, % in Compr % Net Press	
Notes Load Case 2 Load Case 3a Soil & Conc Sum Note	Postive moment : Postive moment : Vert (k/ft) 1.91 1.91 : Postive moment : Vert (k/ft)	This load of for short w Moment due to w M (W/R Toe) -3.21 : Anti-clockwise	vertical load M (W/R Ctr) -0.35 -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V = x=1.5 W - e M due to Horiz	0 4 	.06 ft .67 ft Press due to vert load (ksf) 0.64 .06 ft .68 ft N/(W*1) Press due	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08 1564 >75%,C M/(1*W ² /6) Press due	% in Compr k Net Press q1 0. q2 0. % in Compr k Net Press q1	
Notes Load Case 2 Load Case 3a Soil & Conc Sum Note	Postive moment : Postive moment : Vert (k/ft) 1.91 1.91 : Postive moment : Vert (k/ft)	This load of for short w Moment due to w M (W/R Toe) -3.21 : Anti-clockwise	vertical load M (W/R Ctr) -0.35 -0.35	e=M/V = x=1.5 W - e plicable area. M due to Horiz Mot 0.5 e=M/V = x=1.5 W - e M due to Horiz	0 4 	.06 ft .67 ft N/(W*1) Press due to vert load (ksf) 0.64 .06 ft .68 ft N/(W*1) Press due to vert load	1564 >75%,C M/(1*W ² /6) Press due to Moment (ksf) 0.08 1564 >75%,C M/(1*W ² /6) Press due to Moment	% in Compr k Net Press q1 0. q2 0. % in Compr k Net Press q1 0. %	

		Project	Napa River	Flood Ccont	rol Project	
MGE	ENGINEERING, INC.	Subject	Veterans Pa	ark Walls		
		Ву	G.Xu	Date	Jan 2005	
						r
Design per EM 1110	0-2-2502, Sect 9-8. Eq.(9-5) and	1 (9-6)				
Load Case 1						
Load Cases						
Load Case 4	l: U=0.75*1.	9 (D+E)				
	w	here : D = Dead load	b			
		L = Live load,	including Surcharge	or H-15		
		E = Earthqual	ke load			
Moment at E	Bottom of wall Mu=					
	D+L D+E	U				
L.C. 1	0.7	1.3	<critical< td=""><td></td><td></td><td></td></critical<>			
L.C. 2	N/A	N/A				
L.C. 3	0.4	0.6				
L.C. 4	0.1	0.2				
Shear at bot	tom of wall Vu=					
	D+L E	U				
L.C. 1	0.1	0.2	<critical< td=""><td></td><td></td><td></td></critical<>			
L.C. 2	N/A	N/A				
L.C. 3	0.1	0.2				
L.C. 4	-0.3	-0.4				
Stem Shear and Mom	ent Check					
Stem Shear and Mom	ent Check	Mu				
Stem Shear and Mom	ient Check					
		▲ Vu			1 3 kft/ft	
Mu = max{lo	ad case1, load case2, load case	e 3, load case4}			1.3 kft/ft	
Mu = max{lo		e 3, load case4}			1.3 kft/ft 0.2 k/ft	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case	e 3, load case4}				
Mu = max{lo	ad case1, load case2, load case ad case1, load case2, load case	e 3, load case4} e 3, load case4} e 3, load case4}			0.2 k/ft	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case	e 3, load case4} e 3, load case4} e 3, load case4}			0.2 k/ft 0.9	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case	ψ Vu e 3, load case4} e 3, load case4} φ = fy =			0.2 k/ft 0.9 000 psi	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent	e 3, load case4} e 3, load case4} e 3, load case4}		4	0.2 k/ft 0.9 000 psi 000 psi	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case	ψ Vu e 3, load case4} e 3, load case4} φ = fy =		4	0.2 k/ft 0.9 000 psi	
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = f'c = 		4	0.2 k/ft 0.9 000 psi 000 psi	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = f'c = As = 		4	0.2 k/ft 0.9 000 psi 000 psi 0.20 in ²	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12"	 Φ = fy = fc = As = b = 		4	0.2 k/ft 0.9 000 psi 000 psi 0.20 in ² 12.0 in (per foot of v	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12"	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.0	0.2 k/ft 0.9 000 psi 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7^* f)]$	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.2 k/ft 0.9 000 psi 0.00 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.2 k/ft 0.9 000 psi 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in	vall)
Mu = max{lo Vu = max{lo Check Mome	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7*f)]$ D/C = Mu/ ΦMn	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.2 k/ft 0.9 000 psi 0.00 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft	vall)
Mu = max{lo Vu = max{lo	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7*f) D/C = Mu/\Phi Mn$	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.2 k/ft 0.9 000 psi 0.00 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft	vall)
Mu = max{lo Vu = max{lo Check Mome	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = Ac$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7*f) D/C = Mu/\Phi Mn$ r Shear capacity	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 (0.2 k/ft 0.9 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft 0.10 OK	vall)
Mu = max{lo Vu = max{lo Check Mome	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7^* f)]$ $D/C = Mu/\Phi Mn$ r Shear capacity $\Phi Vn = \Phi 2\sqrt{f} c x B$	 ψ Vu e 3, load case4} e 3, load case4} Φ = fy = frc = As = b = d =		4 () 0.0 () 2:	0.2 k/ft 0.9 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft 0.10 OK 3.22 k/ft	vall)
Mu = max{lo Vu = max{lo Check Mome	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = Aa$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7*f)]$ $D/C = Mu/\Phi Mn$ r Shear capacity $\Phi Vn = \Phi 2 \sqrt{fc} x B$ whe	 ψ Vu e 3, load case4} e 3, load case4} φ = fy = fr =		4 () 0.0 () ()	0.2 k/ft 0.9 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft 0.10 OK 3.22 k/ft 0.85	vall)
Mu = max{lo Vu = max{lo Check Mome	ad case1, load case2, load case ad case1, load case2, load case ent Use #4 @12" steel ratio $\rho = As$ $\Phi Mn = \Phi^* fy^* \rho [1 - fy^* \rho/(1.7^* f)]$ $D/C = Mu/\Phi Mn$ r Shear capacity $\Phi Vn = \Phi 2\sqrt{f} c x B$	 ψ Vu e 3, load case4} e 3, load case4} Φ = fy = frc = As = b = d =		4 () 0.0 () ()	0.2 k/ft 0.9 000 psi 0.20 in ² 12.0 in (per foot of v 14.5 in 011 in 12.9 kft/ft 0.10 OK 3.22 k/ft	vall)

		Project	Napa Rive	r Flood Ccontrol Pro	oject
	NGINEERING, INC.	Subject	Veterans P	ark Walls	/
		Ву	G.Xu	Date Jan	1 2005
Footing Shear and Moment Chec	k (@ face of wall)				
Load Case 1 governs the strengt	h design	Ń			
@ Front wall face	(toe side)	W1	T		
	То	e soil cove			
Resultant @ front w	rall face Qf				
	qmax			gmin	
		Wf	qf	quini	
		 ∙−−−→			
Critical load case:	C Case 1 (most severe be	•	ting in front of wall)		
qf = (W2) / W x (qr	nax - qmin) + qmin			0.61 ksf	
Qf = (qf+qmax)/2 x				0.66 k/ft	
Vu = 1.9 (D+L) = 1	.9 Qf			1.25 k/ft	
Arm to face of wall					
W Mu = Vu*Wf	/f = W1 (2qmax+qf) / [3 (qmax+qf)]		0.51 ft 0.6 kft/f	't
				0.0 10	·
Moment Check		Φ=		0.9	
		fy =		60000 psi	
		fc =		4000 psi	
U	se #4 @12"	As =		0.20 in ²	
		b =			per foot of wall)
		d =		8.6 in	,
st	eel ratio $\rho = A$	s/bd =		0.0019 in	
	Mn = $\Phi^* f y^* \rho [1 - f y^* \rho / (1.7)]$			7.6 kft/f	t
Γ	D/C = Mu/ΦMn			0.08 OK	
Shear Check				say	ok
	hear capacity				
	Vn = Φ2√f'c x F			15.48 k/ft	
	here	$\Phi =$		0.85	
	$D/C = Vu/\Phi Vn$			0.08 OK	



			Subject	Napa River F		01110jeet
GE	ENGINEERING,	, INC.		Veterans Park	x Walls	
			Ву	G.Xu	Date	Jan 2005
		Veterans Pa	nrk (VP) Wall No	0 1a & Planter		
			Wall No.4			
Load Case 1	: Constructio	n Condition (l	Jnusual Conditi	ion)		
Load cases a	are based on	"Flood Walls	and Channel R	etaining Walls,	Load Cond	itions & Loa
-	•		not applicable ir			
Instead, use	surcharge loa	ad for drivewa	ays as public ac	cess, see UBC	Table 16A-	A
	Surcharge =		250) psf		
	-	Upper Prome	nade for desigr		approxima	ate
	Lower prome		-) Finish Grade	•••	
		TW Elev				
			Upper Pro	omenade	18.10 _	
		– – – – – –			∇	-
	er Promenade		Bckfil		N .	
			<u> </u>		due to surch	arge
Elev	12.50		<u>dem1</u> h [·]	1	ko(0.250)	
	q'em1		<u>★</u> <u>★</u> hí			
	q'em2		qem2	h	1 1.5	ft
	90112		qemz			
Soil Pressure at	Wall (Soil press	sure =γ Ki hi)		hh	2 1.0 Backfill pa	ft
Soil Pressure at	Wall (Soil press	sure =γ Ki hi) Thickness(ft)	Pressure(ksf)	h	Backfill pa unit weiç	arameter: ght 1
Name qem1	Layer Backfill	Thickness(ft) 7.10	0.353	<u> </u>	Backfill pa unit weig friction angle	arameter: ght 1.
Name qem1 qem2	Layer Backfill Backfill	Thickness(ft) 7.10 1.00	0.353 0.403		Backfill pa unit weig friction angle sin(e	arameter: ght 1 ,
Name qem1 qem2 q'em1	Layer Backfill Backfill Backfill	Thickness(ft) 7.10 1.00 1.50	0.353 0.403 0.754		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2	Layer Backfill Backfill	Thickness(ft) 7.10 1.00	0.353 0.403		Backfill pa unit weig friction angle sin(e	arameter: ght 1 , , , , , , , ,
Name qem1 qem2 q'em1	Layer Backfill Backfill Backfill	Thickness(ft) 7.10 1.00 1.50	0.353 0.403 0.754	<u> h</u>	Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2	Layer Backfill Backfill Backfill Backfill	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2	Layer Backfill Backfill Backfill Backfill	Thickness(ft) 7.10 1.00 1.50	0.353 0.403 0.754 1.257		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 q'em2 q'em2 q'em2 Resultant Force	Layer Backfill Backfill Backfill Backfill at Bottom of Wa	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 q'em2 q'em2 q'em2 Resultant Force Name	Layer Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips)	Thickness(ft) 7.10 1.00 1.50 1.00 1.00	0.353 0.403 0.754 1.257 Moments(k-ft)		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 q'em2 q'em2 q'em2 Resultant Force Name Pem1 Surcharge P'em1	Layer Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 1.3 0.7 -0.57	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 q'em2 q'em2 q'em2 Resultant Force Name Pem1 Surcharge	Layer Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 1.3 0.7 -0.57 1.4	Thickness(ft) 7.10 1.00 1.50 1.00 1.90 1.00 3.55	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall	Layer Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 1.3 0.7 -0.57 1.4 Σ H	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall	Layer Backfill Backfill Backfill Backfill at Bottom of Wa Force (kips) 1.3 0.7 -0.57 1.4	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom	Layer Backfill Backfill Backfill Backfill Backfill Backfill A Force (kips) 1.3 0.7 -0.57 1.4 Σ H of Wall: Hd = 1.	Thickness(ft) 7.10 1.00 1.50 1.00	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom	Layer Backfill Backfill Backfill Backfill Backfill Backfill A Force (kips) 1.3 0.7 -0.57 1.4 Σ H of Wall: Hd = 1.	Thickness(ft) 7.10 1.00 1.50 1.00 <td>0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft</td> <td></td> <td>Backfill pa unit weig friction angle sin(d at rest coeff. I</td> <td>arameter: ght 1 ,φ φ) 0.6 Ko 0.3</td>	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2	Layer Backfill Backfill	Thickness(ft) 7.10 1.00 1.50 1.00 1.50 1.00 1.50 1.00 II, per foot of wall Mom Arm(ft) 2.37 3.55 0.50 4 kips Md = 5. xting, per foot of v Mom Arm(ft) 2.70	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft Moments(k-ft) 4.4		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2 Surcharge	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill A Force (kips) 1.3 0.7 -0.57 1.4 Σ H of Wall: Hd = 1. at Bottom of Foc Force (kips) 1.6 0.8	Thickness(ft) 7.10 1.00 1.50 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.37 3.55 0.50 4 kips Md = 5. Description of work	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft Moments(k-ft) 4.4 3.3		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2 Surcharge P'em2	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill A Force (kips) 1.3 0.7 -0.57 1.4 Σ H of Wall: Hd = 1. at Bottom of Foo Force (kips) 1.6 0.8 -1.57	Thickness(ft) 7.10 1.00 1.50 1.00 1.50 1.00 1.50 1.00 II, per foot of wall Mom Arm(ft) 2.37 3.55 0.50 4 kips Md = 5. xting, per foot of v Mom Arm(ft) 2.70	$\begin{array}{c} 0.353 \\ 0.403 \\ 0.754 \\ 1.257 \\ \hline \end{array} \\ \hline \\ Moments(k-ft) \\ \hline \\ 3.0 \\ 2.5 \\ -0.28 \\ \hline \\ 5.2 \\ \hline \\ \Sigma M \\ \hline \\ 2 \text{ k-ft} \\ \hline \\ \hline \\ \text{vall} \\ \hline \\ Moments(k-ft) \\ \hline \\ 4.4 \\ \hline \\ 3.3 \\ -1.3 \\ \hline \end{array}$		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3
Name qem1 qem2 q'em1 q'em2 Resultant Force Name Pem1 Surcharge P'em1 At bot of wall Force at Bottom Resultant Force Name Pem2 Surcharge	Layer Backfill Backfill Backfill Backfill Backfill Backfill Backfill A Force (kips) 1.3 0.7 -0.57 1.4 Σ H of Wall: Hd = 1. at Bottom of Foc Force (kips) 1.6 0.8	Thickness(ft) 7.10 1.00 1.50 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.37 3.55 0.50 4 kips Md = 5. Description of work	0.353 0.403 0.754 1.257 Moments(k-ft) 3.0 2.5 -0.28 5.2 Σ M 2 k-ft Moments(k-ft) 4.4 3.3		Backfill pa unit weig friction angle sin(d at rest coeff. I	arameter: ght 1 ,φ φ) 0.6 Ko 0.3

		Napa River Flo		I Project	
MGE ENGINEERING, INC.	Subject	Veterans Park	Walls] /
	Ву	G.Xu	Date	Jan 2005	\mathbf{V}
d Case 2: Normal Condition with Maintenance	Vehicle (Usual C	Condition)			
	truck load	ÚSE V=	16	6 kips	
V _{LE} 16ki					
	6ft Up	per Promenade	F.G. Elev ▽	/ 18.10	
Lower Promenade Elev 12.50 g'em1	↓ ▲	fill h1 h2		. P _{H-15}	
q'em2	qem2	h1		ft	
This load case not a for walls in this area		h2	2 1.0	ft	Ţ

Project	Napa River Flo	ood Ccontro	l Project	
Subject	Veterans Park	Walls		
Ву	G.Xu	Date	Jan 2005	

Soil Pressure at Wall (Soil pressure = γ Ki hi)

Name	Layer	Thickness(ft)	Pressure(ksf)
qem1	Backfill	3.60	0.179
qem2-sub	Backfill	3.50	0.266
qem3-sub	Backfill	1.50	0.304
qw1	Backfill	3.50	0.219
qw2	Backfill	1.50	0.313
q'em1-sub	Backfill	1.50	0.377
q'em2-sub	Backfill	1.50	0.754
q'w1	Backfill	5.60	0.350
q'w2	Backfill	1.50	0.444

Resultant Force at Bottom Of Wall

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	0.3	4.70	1.52
Pem2-sub	0.8	1.64	1.28
Pw1	0.4	1.17	0.45
P'em1-sub	-0.28	0.50	-0.14
P'w1	-0.98	0.50	-0.5
At bot of wall	0.22		2.6
	ΣV		ΣΜ

Force at Bottom of Wall: Vd = .22 kips Md = 2.61 k-ft

Resultant Force at Bottom Of Footing

Name	Force (kips)	Mom Arm(ft)	Moments(k-ft)
Pem1	0.3	6.20	2.00
Pem2-sub	0.8	3.14	2.44
Pem3-sub	0.4	0.73	0.31
Pw1	0.38	2.67	1.02
Pw2	0.4	0.71	0.28
P'em1-sub	-0.28	2.00	-0.57
P'em2-sub	-0.8	0.67	-0.57
P'w1	-0.98	1.87	-1.8
P'w2	-0.60	0.72	-0.4
At bot of ftg	-0.40		2.7
	ΣV		ΣΜ

Backfill parameter:

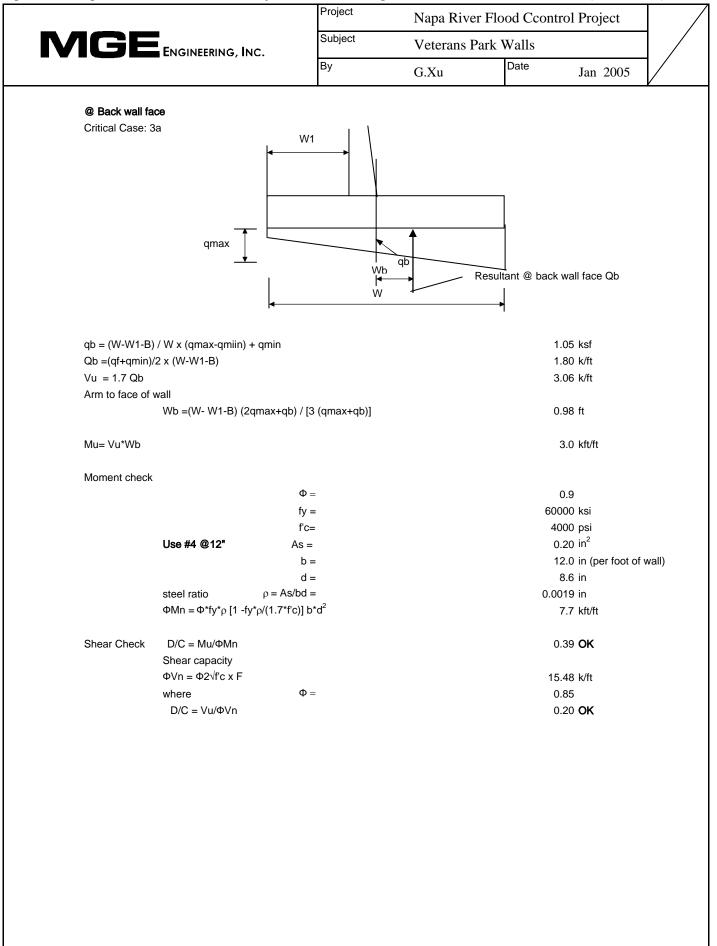
Dry	
unit weight	125 pcf
friction angle, ϕ	37 Deg
sin(ø)	0.602
at rest coeff. Ko	0.398
passive, kp	4.023
Submerged	
unit weight	62.5 pcf
Water	
unit weight	62.5 pcf

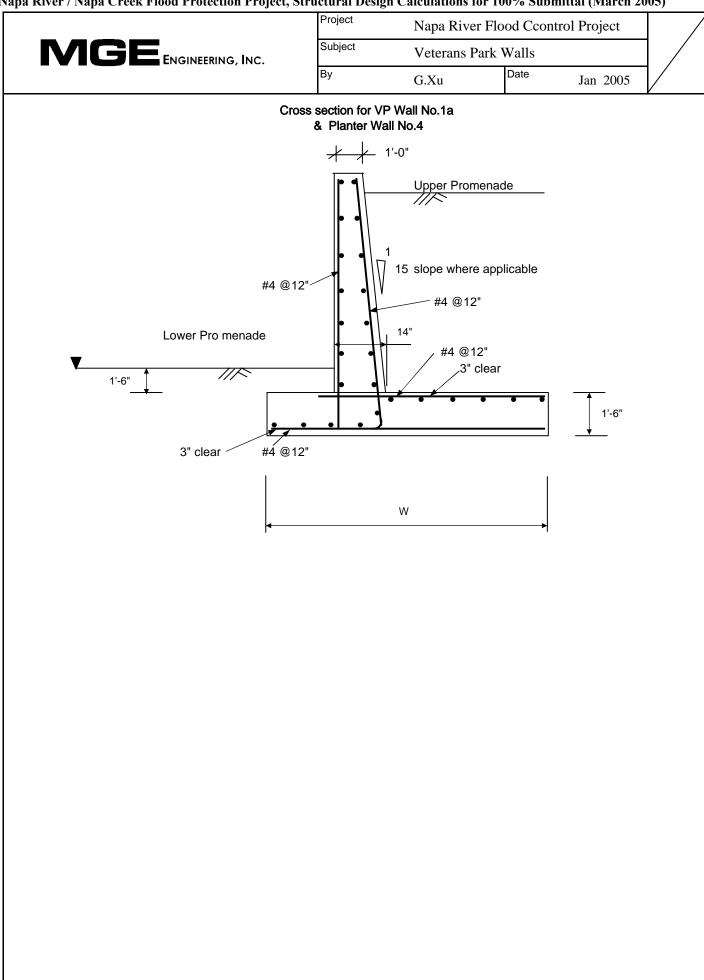
				Project	l	Napa River Flo	ood Ccontr	ol Project
	GE	ENGINEERING,	INC.	Subject	v	Veterans Park	Walls	
				Ву	(G.Xu	Date	Jan 2005
.oad Case 4: Se	ismic Condition	(Extreme Condition	on)					
			ſ					
			L	Upp	per Prom	enade	F.G. El ▽	ev 18.10
						P _{de f} or wall		-
		Lower Promena	de	A	Bckfill		◄/	P _{de for ftg}
				Ц				
	Elev	/ <u>12.50</u>		qem1	💢 h1	_ <u></u>	— <i> </i>	
		q'em1			🕅 h2		V	
		q'em2		qem2	Γ	h1	l 1.5	ft
						h2	2 1.0	ft
	-							
Soil/Water Prope	Soil Type	Thickness(ft)	Unit Wt. (pcf)	Φ	Т	Ка	Ko	Кр
1	back fill	7.10	125	37		0.25	0.40	4.02
Water			62.5					
Soil Pressure (S	oil pressure –v	Ki hi)						
	on probourc = r	1.0.1.11/						
Name	Laver		Pressure(ksf)	1	C	$x = \tan^{-1}[(C_1 + \sqrt{(C_1)^2})]$	+4C ₂))/2]	
Name qem1	Layer Backfill	Thickness(ft) 7.10	Pressure(ksf) 0.221]	C	$\alpha = \tan^{-1}[(C_1 + \sqrt{(C_1^2)})]$ (Equation 3-56)		2-2502, Page 3-67
		Thickness(ft)]	C			2-2502, Page 3-67
qem1	Backfill	Thickness(ft) 7.10	0.221				of EM 1110-2	2-2502, Page 3-67
qem1 qem2	Backfill Backfill	Thickness(ft) 7.10 1.50	0.221 0.267			(Equation 3-56 $C_1 = 2 (\tan \Phi - K_h) / ($	of EM 1110-2 1+K _h tanФ)	2-2502, Page 3-67 2-2502, Page 3-67
qem1 qem2 q'em1 q'em2 qde-wall	Backfill Backfill Backfill Backfill Backfill	Thickness(ft) 7.10 1.50 1.50 1.50 7.10	0.221 0.267 0.754 1.509 0.086		C	(Equation 3-56 $C_1 = 2 (tan\Phi-K_h) / ($ (Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg	Backfill Backfill Backfill Backfill Backfill Backfill	Thickness(ft) 7.10 1.50 1.50 1.50 8.60	0.221 0.267 0.754 1.509		C	(Equation 3-56 $C_1 = 2 (tan\Phi-K_h) / ($ (Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)]$	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k	2-2502, Page 3-67
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom	Thickness(ft) 7.10 1.50 1.50 1.50 1.50 60 0	0.221 0.267 0.754 1.509 0.086 0.104		c c	(Equation 3-56 $C_1 = 2 (\tan \Phi - K_h) / ($ (Equation 3-57 $C_2 = [\tan \Phi (1 - \tan \Phi ($ (Equation 3-58)	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom Force	Thickness(ft) 7.10 1.50 1.50 7.10 8.60 of wall Arm to bot.	0.221 0.267 0.754 1.509 0.086 0.104 Moments		C	(Equation 3-56 $C_1 = 2 (tan \Phi - K_h) / (tan \Phi - K_h) / (tan \Phi - K_h) = tan \Phi (tan \Phi - K_h) = tan \Phi - tan \Phi $	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom Force 0.8	Thickness(ft) 7.10 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9		C C Pem1	(Equation 3-56 $C_1 = 2 (\tan \Phi - K_h) / ($ (Equation 3-57 $C_2 = [\tan \Phi (1 - \tan \Phi ($ (Equation 3-58 $K_h = $ $\beta =$	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom Force 0.8 0.3	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4		c c	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ =	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K_h)$ of EM 1110-2 = 0.15 = 0 = 37	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom Force 0.8	Thickness(ft) 7.10 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9		C Pem1 Pde-wall	(Equation 3-56 $C_1 = 2 (\tan \Phi - K_h) / ($ (Equation 3-57 $C_2 = [\tan \Phi (1 - \tan \Phi ($ (Equation 3-58 $K_h = $ $\beta = $ $\Phi = $ $C_1 = $	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0 = 37 = 1.085	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1	Backfill Backfill Backfill Backfill Backfill Backfill ary For bottom Force 0.8 0.3 -0.57	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28		C C Pem1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ =	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720	2-2502, Page 3-67 (_h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall	Backfill Backfill Backfill Backfill Backfill Backfill Backfill Force 0.8 0.3 -0.57 0.5 Σ V	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0		C Pem1 Pde-wall	(Equation 3-56 $C_1 = 2 (tan \Phi - K_h) / (16) (Equation 3-57)$ $C_2 = [tan \Phi (1-tan \Phi (1-ta$	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0 = 37 = 1.085 = 0.720	2-2502, Page 3-67 ζ _h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottoo of which earth	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft		C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottoo of which earth E =	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50 .52 kips Md = 3 ribution (E) kips	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4	k-ft	C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottoo of which earth E = ie. D+L =	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft		C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottom of which earth E = ie. D+L = Resultant Summa	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4 1.6	k-ft	C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summa Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottoo of which earth E = ie. D+L = Resultant Summa Name	Backfill Co S D V m of wall: Vd = hquake cont 0.3 0.2 ary For Bottom Force	Thickness(ft) 7.10 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4 1.6 Moments	k-ft	C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Demand at botton of which earth E = ie. D+L = Resultant Summ Name Pem2	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50 ribution (E) kips kips Arm to bot. 2.87	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4 1.6 Moments 3.3	k-ft k-ft	Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 $1+K_h \tan \Phi$) of EM 1110-2 $\tan \beta$)- $(\tan \beta - K)$ of EM 1110-2 = 0.15 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =y K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Demand at bottoo of which earth E = ie. D+L = Resultant Summa Name Pem2 Pde-ftg	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50 ribution (E) kips kips Arm to bot. 2.87 5.73	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4 1.6 Moments 3.3 2.6	k-ft k-ft	C Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =γ K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)
qem1 qem2 q'em1 q'em2 qde-wall qde-ftg Resultant Summ Name Pem1 Pde-wall P'em1 At bot of wall Demand at botton of which earth E = ie. D+L = Resultant Summ Name Pem2	Backfill <	Thickness(ft) 7.10 1.50 1.50 1.50 1.50 7.10 8.60 of wall Arm to bot. 2.37 4.73 0.50 ribution (E) kips kips Arm to bot. 2.87	0.221 0.267 0.754 1.509 0.086 0.104 Moments 1.9 1.4 -0.28 3.0 Σ M 3.01 k-ft 1.4 1.6 Moments 3.3	k-ft k-ft	Pem1 Pde-wall P'em1	(Equation 3-56 $C_1 = 2$ (tan Φ -K _h) / ((Equation 3-57 $C_2 = [tan\Phi(1-tan\Phi)$ (Equation 3-58 K _h = β = Φ = C_1 = C_2 = α = Dynamic Component	of EM 1110-2 1+K _h tanΦ) of EM 1110-2 tarβ)-(tanβ-k of EM 1110-2 = 0.15 = 0 = 37 = 1.085 = 0.720 = 57.2 ents qeq =γ K	2-2502, Page 3-67 (h)] / [tanΦ(1+K _h ta 2-2502, Page 3-67 g degree degree h ^{h²} / [2(tanα-tanβ)

				Project	Napa River Flo	od Ccontrol	Project	
M	IGE	ENGINEERING,		Subject	Veterans Park	Walls		1 /
				Ву	G.Xu	Date	Jan 2005	\bigvee
1. Loads	Desseure			erans Park (VP 1a & Planter W				
. Due to Lateral		1		2	3		4	L
Load Case	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ftg	Bot/ Wall	Bot/Ft
Hori Force(k)	1.4	0.9	N/A	N/A	0.2	-0.4	0.5	-0.7
Moment(kft)	5.2	6.4	N/A	N/A	2.6	2.7	3.0	3.6
	– – –	Lower Pror	W1	W2	fy = f'c =	60000 4000		
	B =	1.50 1	ft		H1 =	5.60	ft	
	W1 =	2.50 1	ft		H2 = F =			
	W2 =	3.50 1	ft		Conc. Unit Wt =	150	pcf	
	W =	6.00 1	ft		Backfill Unit Wt =	125	pcf	
-	gainst overturning Due to concrete							
	Location	Dimer		Weight(k/ft)	Arm to toe (ft)	Mot (kft/ft)		
		Thiak/Danth	Width / Loight					

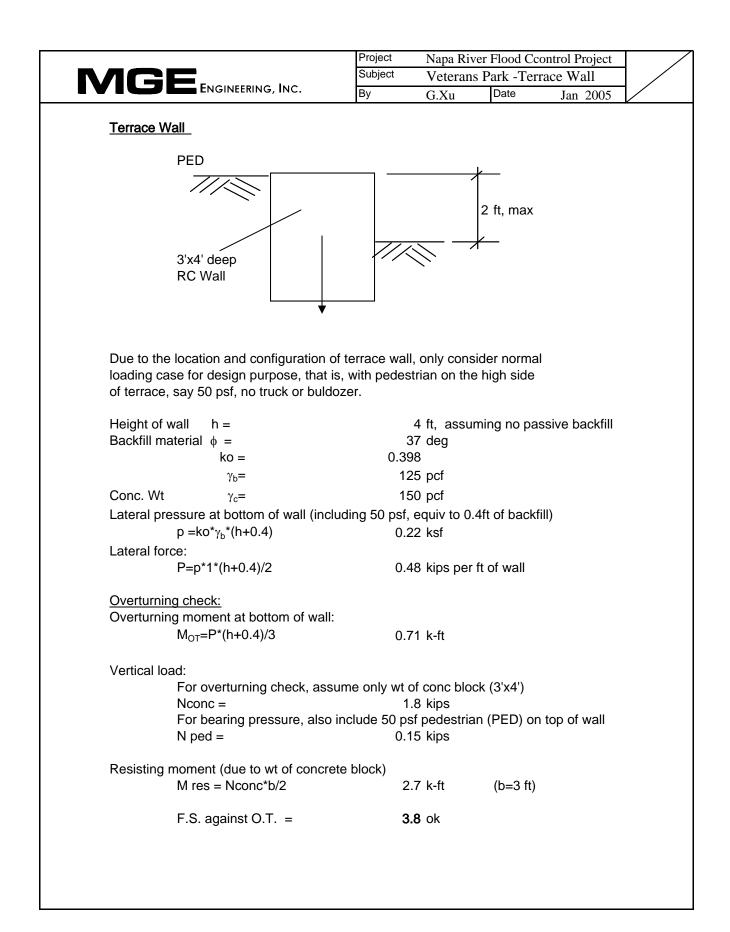
Location	Dime	Dimension		Arm to toe (ft)	Mot (kft/ft)	
Location	Thick/Depth	Width/Height	Weight(k/ft)			
Toe cover	1.50	2.50	0.46875	1.25	0.59	
Heel Soil	7.10	2.00	1.775	5.00	8.88	
Footing	1.00	6.00	0.900	3.00	2.70	
Concrete Key	0.00	0.00	0	0.00	0.00	
Wall Stem	1.50	8.27	1.860	3.25	6.05	
Total			5.00		18.21	

Note: Live load is not included in the resistance to be conservative


2. Overturning Check


Load Case	Resistance Moment	Overturning Moment		Safety Factor
1	18.21	6.4	2.86	Safety Factor > 1.5, OK
2	N/A	N/A	N/A	N/A
3a*	18.21	2.7	6.82	Safety Factor > 1.5, OK
4	18.21	3.6	5.06	Safety Factor > 1.5, OK

				Project	Napa River I	Flood Ccontro	ol Project		/
R/	IGE	_	_	Subject	Veterans Par		3	1	
		ENGINEERING,	INC.	Ву		Date		+/	
					G.Xu	2 410	Jan 2005	\bigvee	
3. Sliding Chec									
	Resistance Due		(0) (2)						
		•	use tan (2¢/3)	0.4					
		Ffr = $P_d \times \mu$ where, P_d weig	the of opporate 8		30 kips/ft				
	Resistance due t		•						
				in lo ignorod.					
	Resistance Due	Sliding Force	0.1		7				
Load Case	to Soil (kips)	(kips)	Sate	ety Factor					
1	2.30	0.9	2.65	> 1.33, OK	Note:				
2	N/A	N/A	N/A	N/A		5 will not be pres	ent in this area		
3a*	2.30	-0.4	5.80	> 1.5, OK	1				
4	2.30	-0.7	3.45	> 1.1, OK					
	* Dry weight is use	ed here where pa	art of it should be	e submerged wt, ho	wever it's not critic	cal in this case.			
. Soil Bearing	Pressure Check		(Allowable bear	ing pressure used:	2.0 ksf, see Geote	ch DDR)			
oad Case 1		Moment due to v	vert load	M due to Hori	Net Moment	N/(W*1)	M/(1*W ² /6)	Net F	Press
	Vert (k/ft)	M (to Toe)	M (to Ctr)	M o.t.	Net Woment	Press due	Press due	q1	1622
Soil & Conc	5.00	-18.21	-3.19	W 0.t.		to vert load	to Moment	Чī	1.3
	5.00	-10.21	-3.19			(ksf)	(ksf)	q2	1.5
						. ,	. ,	Υz	0.3
Sum	5.00		-3 19	64	32	0.83	053		
	5.00		-3.19	6.4	3.2	0.83	0.53	1009	
Notes		: Anti-clockwise	-3.19	6.4	3.2		n compression	100% 75%	Ď
Notes	Postive moment] <u>6.4</u>	3.2	Percentage i	n compression		Ď
Notes	This load ca	ase not appli	cable	6.4	3.2	Percentage i	n compression		Ď
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		, D
	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		Ď
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		Ď
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		, D
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		, D
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		, D
Notes	This load ca	ase not appli this area due	cable	6.4	3.2	Percentage i	n compression		, D
Notes	This load ca	ase not appli this area due	cable		3.2	Percentage i	n compression		, D
Notes	This load ca for walls in t limited acce	ase not appli this area due ess	cable e to]		Percentage i Require perc	n compression eentage	75%	с ОК
Notes	This load ca for walls in t limited acce	ase not appli this area due ess	cable e to	M due to Horiz	3.2 Net Moment	Percentage i Require perc	n compression eentage M/(1*W ² /6)	75% Net F	с ОК
Notes	This load ca for walls in t limited acce	Ase not appli this area due ess Moment due to v M (W/R Toe)	vertical load M (W/R Ctr)]		Percentage i Require perc N/(W*1) Press due	n compression eentage M/(1*W ² /6) Press due	75%	OK
Notes	This load ca for walls in t limited acce	ase not appli this area due ess	cable e to	M due to Horiz		Percentage i Require perc N/(W*1) Press due to vert load	M/(1*W ² /6) Press due to Moment	75% Net F q1	OK
Notes	This load ca for walls in t limited acce	Ase not appli this area due ess Moment due to v M (W/R Toe)	vertical load M (W/R Ctr) -3.19	M due to Horiz Mot	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf)	n compression rentage M/(1*W ² /6) Press due to Moment (ksf)	75% Net F	oK OK Press 0.7
Notes .oad Case 2 .oad Case 3a Goil & Conc	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21	vertical load M (W/R Ctr)	M due to Horiz		Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83	M/(1*W ² /6) Press due to Moment (ksf) -0.09	75% Net F q1 q2	o OK Press 0.7
Notes .oad Case 2 .oad Case 3a Goil & Conc	This load ca for walls in t limited acce	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21	vertical load M (W/R Ctr) -3.19	M due to Horiz Mot	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression	75% Net F q1 q2	o OK Press 0.7
Notes .oad Case 2 .oad Case 3a Goil & Conc Sum Note	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21	vertical load M (W/R Ctr) -3.19	M due to Horiz Mot	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i	M/(1*W ² /6) Press due to Moment (ksf) -0.09	75% Net F q1 q2	o OK Press 0.7
Notes .oad Case 2 .oad Case 3a Goil & Conc Sum Note	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00 :: Postive moment	Ase not applition of this area due as a	vertical load M (W/R Ctr) -3.19 -3.19	M due to Horiz Mot 2.7	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100%	75% Net F q1 q2 100% Ok	o OK ?ress 0.7 0.9
Notes .oad Case 2 .oad Case 3a Goil & Conc Gum Note	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21 : Anti-clockwise Moment due to v	vertical load M (W/R Ctr) -3.19 -3.19	M due to Horiz Mot 2.7	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6)	75% Net F q1 q2 100% Ok Net F	oK OK ?ress 0.7 0.9
Notes .oad Case 2 .oad Case 3a Soil & Conc Sum Note .oad Case 4	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00 :: Postive moment	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21 : Anti-clockwise Moment due to v M (W/R Toe)	vertical load M (W/R Ctr) -3.19 -3.19 vertical load M (W/R Ctr)	M due to Horiz Mot 2.7	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6) Press due	75% Net F q1 q2 100% Ok	o OK Press 0.7 0.9 Press
Notes .oad Case 2 .oad Case 3a Goil & Conc Gum Note	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21 : Anti-clockwise Moment due to v	vertical load M (W/R Ctr) -3.19 -3.19	M due to Horiz Mot 2.7	Net Moment	Percentage i Require perc N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due to vert load	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6) Press due to Moment	75% Net F q1 q2 100% Ok Net F q1	o OK ?ress 0.7 0.9
Notes .oad Case 2 .oad Case 3a Soil & Conc Sum Note .oad Case 4 Soil & Conc	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00 Vert (k/ft) 5.00	Ase not appli this area due ess Moment due to v M (W/R Toe) -18.21 : Anti-clockwise Moment due to v M (W/R Toe)	vertical load M (W/R Ctr) -3.19 -3.19 vertical load M (W/R Ctr) -3.19	M due to Horiz Mot 2.7 M due to Horiz Mot	Net Moment -0.5	Percentage i Require percentage N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due to vert load (ksf)	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6) Press due to Moment (ksf)	75% Net F q1 q2 100% Ok Net F	o OK ?ress 0.7 ?ress 0.9
Notes oad Case 2 oad Case 3a coil & Conc coil & Conc coil & Conc coil & Conc	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00 vert (k/ft) 5.00 5.00	Ase not appli this area due ess Moment due to v -18.21 : Anti-clockwise Moment due to v M (W/R Toe) -18.21	vertical load M (W/R Ctr) -3.19 -3.19 vertical load M (W/R Ctr)	M due to Horiz Mot 2.7	Net Moment	Percentage i Require percent N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due to vert load (ksf) 0.83	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6) Press due to Moment (ksf) 0.07	75% Net F q1 q2 100% Ok Net F q1 q2	OK OK Press 0.7 Press 0.9 O.9
Notes oad Case 2 oad Case 3a coil & Conc coil & Conc coil & Conc	This load ca for walls in t limited acce Vert (k/ft) 5.00 5.00 Vert (k/ft) 5.00	Ase not appli this area due ess Moment due to v -18.21 : Anti-clockwise Moment due to v M (W/R Toe) -18.21	vertical load M (W/R Ctr) -3.19 -3.19 vertical load M (W/R Ctr) -3.19	M due to Horiz Mot 2.7 M due to Horiz Mot	Net Moment -0.5	Percentage i Require percent N/(W*1) Press due to vert load (ksf) 0.83 Percentage i Required per N/(W*1) Press due to vert load (ksf) 0.83	M/(1*W ² /6) Press due to Moment (ksf) -0.09 n compression rcentage 100% M/(1*W ² /6) Press due to Moment (ksf) 0.07 n compression	75% Net F q1 q2 100% Ok Net F q1	ок ОК Press 0. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?


			Project	Napa River	Flood Ccon	trol Project	
	NGE		Subject	Veterans Pa	ırk Walls		
			Ву	G.Xu	Date	Jan 2005	1/
							V
Strength De	esign per EM 1110-2-25	502, Sect 9-8. Eq.(9-5) an	d (9-6)				
	Load Case 1:	U=1.9(D+	-1)				
	Load Cases 2 & 3		•				
	Load Case 4:	U=0.75*1					
			where : D = Dead load	ł			
				including Surcharge	or H-15		
			E = Earthqual				
	Moment at Botton	n of wall Mu=					
		D+L D+E	U				
	L.C. 1	5.2	9.9	<critical< td=""><td></td><td></td><td></td></critical<>			
	L.C. 2	N/A	N/A				
	L.C. 3	2.6	3.7				
	L.C. 4	3.0					
	L.O. 4	0.0	4.5				
	Shear at bottom of	nf wall. Vu-					
		D+L E	U				
	L.C. 1	1.4	2.7	<critical< td=""><td></td><td></td><td></td></critical<>			
	L.C. 2	N/A	2.7 N/A	<cilicai< td=""><td></td><td></td><td></td></cilicai<>			
	L.C. 3	0.2	0.3				
	L.C. 4	0.5	0.7				
		Г	Mu Vu				
		L					
l		ase1, load case2, load cas				9.9 kft/ft	
	Vu = max{load ca	se1, load case2, load cas	e 3, load case4}			2.7 k/ft	
	Check Moment						
			$\Phi =$			0.9	
			fy =			000 psi	
			f'c =			000 psi	
	ι	Jse #4 @12"	As =		().20 in ²	
			b =			12.0 in (per foot of	wall)
			d =			14.5 in	
	s	steel ratio $\rho = A$	s/bd =		0.0	011 in	
	c	ΦMn = Φ*fy*ρ [1 -fy*ρ/(1.7*	*f'c)] b*d ²			12.9 kft/ft	
		$D/C = Mu/\Phi Mn$			(0.76 OK	
	Check Shear						
		Shear capacity					
		ÞVn = Φ2√f'c x B			2'	3.22 k/ft	
			ere Φ=).85	
		$D/C = Vu/\Phi Vn$).05).11 OK	
		$D_1 O = V U / \Psi V \Pi$,		
l		Samanda al constant de	lana la a la c				
	(Concrete shear strength a	lone is adaquate, no s	shear reinforcement is	s required.		

boting Shear and Moment Ch bad Case 1 governs the stren @ Front wall fac	neck (@ face of wall) ngth design	Subject By W1	Veterans Pa G.Xu	ark Walls Date Jan 2005	
poting Shear and Moment Ch pad Case 1 governs the strer	neck (@ face of wall) ngth design	By/	G.Xu	Date Jan 2005	
bad Case 1 governs the stren	ngth design	w1	<u> </u>		
-		W1	<u> </u>		
@ Front wall fac	æ (toe side)				
		▲ →			
		Toe soil cove			
Resultant @ from	t wall face Qf				
	qmax		qf	qmin	
		₩f	ч.		
		Qf			
Critical load cas	e: Case 1 (most severe	e bearing pressure for f	ooting in front of wall)		
af = (W2) / W x	(qmax - qmin) + qmin			0.75 ksf	
Qf = (qf+qmax)/2				2.64 k/ft	
Vu = 1.9 (D+L) =				5.01 k/ft	
Arm to face of w	vall				
	Wf = W1 (2qmax+qf) /	[3 (qmax+qf)]		1.37 ft	
$Mu = Vu^*Wf$				6.9 kft/ft	
Moment Check					
Woment Check		Φ =		0.9	
		fy =		60000 psi	
		fc =		4000 psi	
	Use #4 @12"	As =		0.20 in ²	
		b =		12.0 in (per foot of wall))
		d =		8.6 in	
	steel ratio p	= As/bd =		0.0019 in	
	$\Phi Mn = \Phi^* f y^* \rho \left[1 - f y^* \rho / ($	[1.7*f'c)] b*d ²		7.6 kft/ft	
	$D/C = Mu/\Phi Mn$			0.90 OK	
Shear Check				say ok	
Chear Oncold	Shear capacity				
	$\Phi Vn = \Phi 2 \sqrt{f'c x F}$			15.48 k/ft	
	where	Φ =		0.85	
	$D/C = Vu/\Phi Vn$			0.32 OK	

Napa River / Napa Creek Flood Protection Project, Structural Design Calculations for 100% Submittal (March 2005)

		Project	Napa Rive	er Flood Ccon	trol Project
	ENGINEERING, INC.	Subject	Veterans	Park -Terrac	ce Wall
	ENGINEERING, INC.	Ву	G.Xu	Date	Jan-00
Terrace Wa	all - Cont'd				
Sliding che	<u>ck:</u>				
-	assume μ use tan (2 ϕ / 3)		6 friction co	pefficient	
	Resistance= µ*Nconc		3 kips		
	Driving force = P	0.48	3 kips		
	F.S. against sliding =	1.7	7 > 1.5, Ok	ζ.	
Bearing pre	essure check:				
	Tot vertical:				onc and pede
	Tot moment with respect to ce			e:	
	M = 0.T.		l k-ft		
	N/A =		5 ksf		
	M/(bh ² /6) =	0.47	7 ksf		
	$qmax = N/A + M/(bh^2/6)$	1.12	2 < 2.0 ksf	Ok	
	qmin = N/A - M/($bh^2/6$)	0.18	3 ksf > 0, a	III compressio	on, Ok

Project	Napa River Fl	lood Contr	rol Project	
Subject	Xsection Ana	lyses		
Ву	David An	Date	Feb-05	

XSECTION ANALYSES

NAPA24A.OUT 02/11/2005, 17:49 * * XSECTION * * DUCTILITY and STRENGTH of Circular, Semi-Circular, full and partial Rings, Rectangular, T-, I-, Hammer head, Octagonal, Polygons or any combination of above shapes forming Concrete Sections using Fiber Models VER._2.40,_MAR-14-99 * Copyright (C) 1994, 1995, 1999 By Mark Seyed Mahan. A proper license must be obtained to use this software. * For GOVERNMENT work call 916-227-8404, otherwise leave a * * message at 530-756-2367. The author makes no expressed or* * implied warranty of any kind with regard to this program.* * In no event shall the author be held liable for * incidental or consequential damages arising out of the * use of this program. This output was generated by running: XSECTION VER._2.40,_MAR-14-99 LICENSE (choices: LIMITED/UNLIMITED) UNLIMITED (choices: GOVERNMENT/CONSULTANT) ENTITY CONSULTANT NAME_OF_FIRM FRED_HUANG BRIDGE NAME NAPA RIVER FLOOD CONTROL PROJECT BRIDGE NUMBER 123-456 JOB TITLE CONNECTION of WALL AND 24 INCHES CIDH PILE(Type A, Compression piles--3 Rows) Concrete Type Information:

Typee0e2ecceuf0f2fccfuEW1 0.0050 0.0100 0.0203 0.0245 3.00 4.71 4.84 4.83 3123 1442 0.0050 0.0100 0.0050 0.0200 3.00 2.87 3.00 2.00 3321 150

Steel Type Information:

-----strains----- --strength-Type ey eh eu fy fu E 1 0.0023 0.0115 0.0900 68.00 95.00 29000 2 0.0023 0.0115 0.0600 68.00 95.00 29000

Steel Fiber Information:

Page 1

NAPA24A.OUT

Fiber		xc	УC	area
			-	in^2
No.	type	in	in	TU. Z
1	2	8.50	0.00	0.44
2	2	7.36	4.25	0.44
3	2	4.25	7.36	0.44
4	2	0.00	8.50	0.44
5	2	-4.25	7.36	0.44
6	2	-7.36	4.25	0.44
7	2	-8.50	0.00	0.44
8	2	-7.36	-4.25	0.44
9	2	-4.25	-7.36	0.44
10	2	0.00	-8.50	0.44
11	2	4.25	-7.36	0.44
12	2	7.36	-4.25	0.44

Force Equilibrium Condition of the x-section:

	Max.	Мах	~						
	Conc.	Neutral Ste		Ste	٦				
	Strain		cain Conc.			P/S	Net	Curvature	Moment
sten	epscmax	in. Ter			Tens.		force		(K-ft)
0	0.00000			-	0	0		0.000000	0
1	0.00049	3.10 -0.0			-38	0		0.000055	86
2	0.00054	3.29 -0.0			-43	0		0.000062	93
3	0.00060	3.45 -0.0			-50	0		0.000070	101
4	0.00066	3.58 -0.0			-57	0		0.000079	110
5	0.00073	3.70 -0.0			-65	0		0.000088	119
6	0.00081	3.79 -0.0			-73	0		0.000099	130
7	0.00089	3.87 -0.0			-83	0		0.000110	140
8	0.00099	3.93 -0.0			-93	0		0.000123	152
9	0.00109	3.97 -0.0			-103	0		0.000136	165
10	0.00121	4.01 -0.0			-115	0		0.000151	179
11	0.00134	4.02 -0.0			-128	0		0.000167	193
12	0.00148	4.02 -0.0			-142	0		0.000185	209
13	0.00163	4.06 -0.0			-155	0		0.000206	223
14	0.00181	4.17 -0.0			-164	0		0.000231	232
15	0.00200	4.27 -0.0			-174	0	0.05	0.000258	242
16	0.00221	4.40 -0.0			-183	0		0.000290	249
17	0.00244	4.57 -0.0			-190	0		0.000328	254
18	0.00270	4.71 -0.0	049 218	43	-198	0	0.02	0.000370	260
19	0.00298	4.82 -0.0	055 223	46	-207	0	0.01	0.000415	265
20	0.00330	4.92 -0.0	062 229	50	-216	0	-0.01	0.000466	271
21	0.00364	5.09 -0.0	072 230	54	-221	0	-0.02	0.000527	274
22	0.00403	5.25 -0.0	082 231	57	-225	0	0.06	0.000597	276
23	0.00445	5.40 -0.0		60	-229	0	0.04	0.000675	278
24	0.00492	5.53 -0.0	0107 233	64	-234	0	0.05	0.000760	280
25	0.00544	5.62 -0.0)120 235	68	-240	0	0.03	0.000852	283
26	0.00602	5.66 -0.0)134 239	71	-247	0	-0.05	0.000949	287
27	0.00665	5.70 -0.0)150 243	75	-255	0	-0.03	0.001055	293
28	0.00735	5.72 -0.0)167 247	79	-263	0	-0.05	0.001171	298
29	0.00813	5.73 -0.0			-273	0	-0.03	0.001296	305
30	0.00899	5.74 -0.0	204 257	90	-284	0	-0.06	0.001435	312
31	0.00993	5.69 -0.0)223 265	90	-291	0	0.04	0.001574	318
32	0.01098	5.66 -0.0			-298	0	-0.05	0.001733	323
33	0.01214	5.64 -0.0			-302	0		0.001910	327
34	0.01342	5.59 -0.0			-306	0		0.002095	329
35	0.01484	5.52 -0.0)321 284		-311	0	0.02	0.002290	332
				Da	~~ ²				

Page 2

				NAPA24A.OUT			
36	0.01640	5.41 -0.0347	289	90 -315	0	-0.04 0.002490	332
37	0.01813	5.25 -0.0369	292	90 -319	0	-0.02 0.002687	331
38	0.02005	5.05 -0.0391	294	90 -321	0	-0.03 0.002885	327
39	0.02216	4.92 -0.0420	292	90 -318	0	0.04 0.003131	322
40	0.02450	4.80 -0.0453	288	91 -316	0	0.01 0.003404	318

First Yield of Rebar Information (not Idealized):

Rebar Number 10 Coordinates X and Y (global in.) 0.00, -8.50 Yield strain = 0.00230 Curvature (rad/in)= 0.000184 Moment (ft-k) = 207

Cross Section Information:

Axial Load on Section (kips) = 63Percentage of Main steel in Cross Section = 1.17Concrete modulus used in Idealization (ksi) = 3123Cracked Moment of Inertia (ft⁴) = 0.209

Idealization of Moment-Curvature Curve by Various Methods:

		Points o	Idealized Values				
		=======	=======	======	========	======	========
Method	Conc.			Yield		symbol	Plastic
ID	Strain	n Curv.	Moment	Curv.	Moment	for	Curv.
	in/in	rad/in	(K-ft)	rad/in	(K-ft)	moment	: rad/in
Strain @	0.003	0.000418	266	0.000235	266	Mn	0.003169
Strain @	0.004	0.000592	276	0.000244	276	Mn	0.003160
Strain @	0.005	0.000774	281	0.000249	281	Mn	0.003155
CALTRANS	0.00875	0.001397	310	0.000275	310	Mp	0.003129
UCSD@5phy	0.00583	0.000918	286	0.000253	286	Mn	0.003151

NAPA36BE.OUT 02/11/2005, 17:52 XSECTION * DUCTILITY and STRENGTH of Circular, Semi-Circular, full and partial Rings, Rectangular, T-, I-, Hammer head, Octagonal, Polygons or any combination of above shapes forming Concrete Sections using Fiber Models VER._2.40,_MAR-14-99 Copyright (C) 1994, 1995, 1999 By Mark Seyed Mahan. * A proper license must be obtained to use this software. * For GOVERNMENT work call 916-227-8404, otherwise leave a * * message at 530-756-2367. The author makes no expressed or* * implied warranty of any kind with regard to this program.* * In no event shall the author be held liable for * incidental or consequential damages arising out of the * use of this program. This output was generated by running: XSECTION VER._2.40,_MAR-14-99 LICENSE (choices: LIMITED/UNLIMITED) UNLIMITED ENTITY (choices: GOVERNMENT/CONSULTANT) CONSULTANT NAME_OF_FIRM FRED_HUANG BRIDGE NAME NAPA RIVER FLOOD CONTROL PROJECT BRIDGE NUMBER 123-456 JOB TITLE CONNECTION of WALL AND 36 INCHES CIDH PILE(Type B & E) Concrete Type Information: atraina_ atronath

		5	trains			SCT	engun		-	
Туре	e0	e2	ecc	eu	£0	f2	fcc	fu	E	W
1 0.	0050	0.0100	0.0182	0.0220	3.00	4.50	4.59	4.58	3123	144
20.	0050	0.0100	0.0050	0.0200	3.00	2.87	3.00	2.00	3321	150

Steel Type Information:

* *

*

*

*

*

----strains----- --strength-Type ey eh eu fy fu E 1 0.0023 0.0115 0.0900 68.00 95.00 29000 2 0.0023 0.0115 0.0600 68.00 95.00 29000

Steel Fiber Information:

Page 1

NAPA36BE.OUT

Fiber		xc	ус	area
No.	type	in	in	in^2
1	2	13.85	0.00	1.56
2	2	13.01	4.74	1.56
3	2	10.61	8.90	1.56
4	2	6.92	11.99	1.56
5	2	2.40	13.64	1.56
6	2	-2.41	13.64	1.56
7	2	-6.93	11.99	1.56
8	2	-10.61	8.90	1.56
9	2	-13.01	4.74	1.56
10	2	-13.85	0.00	1.56
11	2	-13.01	-4.74	1.56
12	2	-10.61	-8.90	1.56
13	2	-6.92	-11.99	1.56
14	2	-2.40	-13.64	1.56
15	2	2.41	-13.64	1.56
16	2	6.93	-11.99	1.56
17	2	10.61	-8.90	1.56
18	2	13.01	-4.74	1.56

Force Equilibrium Condition of the x-section:

	Max.		Max.							
	Conc.	Neutral	Steel		Ste	el				
	Strain	Axis	Strain	Conc.	for	ce	P/S	Net	Curvature	Moment
step	epscmax	in.	Tens.	Comp.	Comp.	Tens.	force	force	rad/in	(K-ft)
0	0.00000	0.00	0.0000	0	0	0	0	0.00	0.000000	0
1	0.00044	4.84	-0.0006	178	61	-192	0		0.000033	401
2	0.00049	4.87	-0.0007	193	67	-214	0	0.01	0.000037	441
3	0.00054	4.90	-0.0008	210	74	-238	0	-0.01	0.000041	484
4	0.00059		-0.0008	228	81	-263	0	-0.02	0.000045	531
5	0.00066	4.92	-0.0009	248	90	-291	0	0.00	0.000050	582
б	0.00073	4.92	-0.0010	269	99	-322	0	0.02	0.000056	637
7	0.00080	4.91	-0.0011	291	110	-355	0	0.01	0.000061	698
8	0.00089	4.89	-0.0013	316	122	-391	0	0.00	0.000068	763
9	0.00098	4.86	-0.0014	342	135	-431	0	0.02	0.000075	834
10	0.00109	4.82	-0.0015	369	150	-473	0	0.02	0.000082	910
11	0.00120	4.77	-0.0017	399	166	-519	0	0.01	0.000091	992
12	0.00133	4.72	-0.0018	430	184	-568	0	0.01	0.000100	1081
13	0.00147	4.66	-0.0020	463	205	-622	0	-0.01	0.000110	1176
14	0.00162	4.59	-0.0022	497	229	-680	0	-0.02	0.000121	1279
15	0.00179	4.54	-0.0024	532	254	-740	0	0.01	0.000133	1382
16	0.00198	4.62	-0.0027	560	279	-793	0	0.02	0.000148	1466
17	0.00219	4.75	-0.0030	585	303	-842	0	0.00	0.000165	1540
18	0.00242	4.97	-0.0035	603	330	-887	0	0.01	0.000186	1601
19	0.00268	5.20	-0.0039	619	358	-931	0	0.01	0.000209	1656
20	0.00296	5.42	-0.0045	635	389	-978	0	0.01	0.000235	1713
21	0.00327	5.75	-0.0052	641	418	-1012	0	0.02	0.000267	1750
22	0.00362	6.04	-0.0060	647	449	-1050	0	-0.03	0.000302	1789
23	0.00400		-0.0067	659	472	-1085	0	-0.05	0.000339	1822
24	0.00442	6.39	-0.0076	672	492	-1118	0	-0.02	0.000381	1850
25	0.00489	6.66	-0.0087	674	508	-1136	0	0.02	0.000431	1865
26	0.00540	6.83	-0.0099	683	515	-1152	0	0.01	0.000483	1875
27	0.00597	6.94	-0.0111	694	520	-1169	0	-0.01	0.000540	1884
28	0.00660	7.01	-0.0124	709	527	-1190	0	0.03	0.000601	1902
29	0.00730	7.03	-0.0138	727	537	-1218	0	-0.01	0.000665	1934
					Da	~~ ²				

Page 2

				NAPA36BE.OUT			
30	0.00807	7.03 -0.0152	746	549 -1248	0	-0.03 0.000736	1969
31	0.00892	7.01 -0.0168	766	563 -1283	0	0.03 0.000812	2010
32	0.00986	6.99 -0.0185	786	579 -1319	0	-0.01 0.000896	2051
33	0.01090	6.97 -0.0204	805	597 -1356	0	-0.01 0.000988	2091
34	0.01205	6.92 -0.0224	821	619 -1395	0	-0.04 0.001088	2133
35	0.01332	6.90 -0.0247	830	636 -1421	0	0.01 0.001200	2168
36	0.01473	6.74 -0.0266	850	636 -1440	0	-0.04 0.001308	2188
37	0.01628	6.52 -0.0286	867	636 -1457	0	0.04 0.001418	2200
38	0.01800	6.27 -0.0306	882	636 -1473	0	-0.01 0.001535	2206
39	0.01990	6.11 -0.0330	889	643 -1486	0	0.01 0.001673	2213
40	0.02200	5.95 -0.0358	891	650 -1496	0	-0.03 0.001826	2217

First Yield of Rebar Information (not Idealized):

Rebar Number 14 Coordinates X and Y (global in.) -2.40, -13.64 Yield strain = 0.00230 Curvature (rad/in)= 0.000126 Moment (ft-k) = 1330

Cross Section Information:

Axial Load on Section (kips) = 46 Percentage of Main steel in Cross Section = 2.76 Concrete modulus used in Idealization (ksi) = 3123 Cracked Moment of Inertia (ft⁴) = 1.949

Idealization of Moment-Curvature Curve by Various Methods:

	Points on Curve			Idealized Values				
	=======	=======	======	========	=======	=========		
Method Con	с.		Yield		symbol	Plastic		
ID Str	ain Curv.	Moment	Curv.	Moment	for	Curv.		
in/	in rad/in	(K-ft)	rad/in	(K-ft)	moment	c rad/in		
Strain @ 0.003	0.000239	1718	0.000163	1718	Mn	0.001662		
Strain @ 0.004	0.000340	1822	0.000173	1822	Mn	0.001652		
Strain @ 0.005	0.000442	1867	0.000177	1867	Mn	0.001648		
CALTRANS 0.009	74 0.000885	2045	0.000194	2045	Mp	0.001631		
UCSD@5phy0.006	94 0.000632	1918	0.000182	1918	Mn	0.001643		

NAPA24CB.OUT 02/13/2005, 12:40 * * XSECTION * * DUCTILITY and STRENGTH of * Circular, Semi-Circular, full and partial Rings, Rectangular, T-, I-, Hammer head, Octagonal, Polygons or any combination of above shapes forming Concrete Sections using Fiber Models VER._2.40,_MAR-14-99 * Copyright (C) 1994, 1995, 1999 By Mark Seyed Mahan. * A proper license must be obtained to use this software. * For GOVERNMENT work call 916-227-8404, otherwise leave a * * message at 530-756-2367. The author makes no expressed or* * implied warranty of any kind with regard to this program.* * In no event shall the author be held liable for * incidental or consequential damages arising out of the * use of this program. This output was generated by running: XSECTION VER._2.40,_MAR-14-99 LICENSE (choices: LIMITED/UNLIMITED) UNLIMITED ENTITY (choices: GOVERNMENT/CONSULTANT) CONSULTANT NAME_OF_FIRM FRED_HUANG BRIDGE NAME NAPA RIVER FLOOD CONTROL PROJECT BRIDGE NUMBER 123-456 JOB TITLE CONNECTION of WALL AND 24 INCHES CIDH PILE(TypeC Single Pile) Concrete Type Information:

Type e0 e2 ecc eu f0 f2 fcc fu E 1 0.0050 0.0100 0.0207 0.0245 3.00 4.75 4.88 4.88 3123

2 0.0050 0.0100 0.0050 0.0200 3.00 2.87 3.00 2.00 3321

Steel Type Information:

-----strains----- --strength-Type ey eh eu fy fu E 1 0.0023 0.0115 0.0900 68.00 95.00 29000 2 0.0023 0.0115 0.0600 68.00 95.00 29000

Steel Fiber Information:

Page 1

W 144

150

NAPA24CB.OUT

Fiber		xc	ус	area
No.	type	in	in	in^2
1	2	7.95	2.58	1.27
2	2	4.91	6.76	1.27
3	2	0.00	8.36	1.27
4	2	-4.91	6.76	1.27
5	2	-7.95	2.58	1.27
б	2	-7.95	-2.58	1.27
7	2	-4.91	-6.76	1.27
8	2	0.00	-8.36	1.27
9	2	4.91	-6.76	1.27
10	2	7.95	-2.58	1.27
11	2	2.58	7.95	1.27
12	2	-2.58	7.95	1.27
13	2	2.58	-7.95	1.27
14	2	-2.58	-7.95	1.27

Force Equilibrium Condition of the x-section:

	Max.		Max.						
	Conc.	Neutral	Steel		Ste	el			
	Strain	Axis	Strain	Conc.	for	ce	P/S	Net Curvature	Moment
step	epscmax	in.	Tens.	Comp.	Comp.	Tens.	force	force rad/in	(K-ft)
0	0.00000	0.00	0.0000	0	0	0	0	0.00 0.000000	0
	0.00049	2.83	-0.0006	93	47	-124	0	0.00 0.000053	161
	0.00054		-0.0007	101	51	-138	0	0.00 0.000059	177
	0.00060	2.83	-0.0007	110	57	-152	0	0.01 0.000065	195
	0.00066		-0.0008	120	63	-168	0	0.01 0.000072	213
	0.00073		-0.0009	130	70	-185	0	0.00 0.000080	234
	0.00081		-0.0010	141	77	-203	0	0.01 0.000088	256
	0.00089		-0.0011	153	85	-224	0	0.00 0.000097	280
	0.00099		-0.0012	166	95	-245	0	0.01 0.000107	306
	0.00109		-0.0013	179	105	-269	0	-0.01 0.000118	335
	0.00121		-0.0014	193	117	-295	0	0.00 0.000130	365
	0.00134		-0.0016	208	129	-323	0	0.01 0.000143	398
	0.00148		-0.0017	224	144	-353	0	0.01 0.000157	434
	0.00163		-0.0019	240	160	-386	0	-0.01 0.000172	472
	0.00181		-0.0021	257	179	-421	0	0.01 0.000190	514
	0.00200		-0.0022	275	200	-460	0	0.00 0.000208	558
	0.00221		-0.0025	292	221	-498	0	0.00 0.000230	602
	0.00244		-0.0028	303	240	-528	0	-0.01 0.000257	634
-	0.00270		-0.0032	307	258	-550	0	0.01 0.000292	654
	0.00298		-0.0037	312	279	-576	0	0.00 0.000330	675
	0.00330		-0.0043	317	302	-604	0	0.00 0.000372	698
	0.00364		-0.0050	319	325	-629	0	0.01 0.000422	717
	0.00403		-0.0058	314	345	-644	0	0.00 0.000485	726
	0.00445		-0.0068	311	364	-660	0	0.00 0.000553	735
	0.00492		-0.0078	311	380	-676	0	0.01 0.000626	743
	0.00544		-0.0088	315	390	-690	0	-0.01 0.000701	748
	0.00602		-0.0099	319	400	-705	0	0.01 0.000783	754
	0.00665		-0.0111	324	412	-721	0	-0.01 0.000874	760
	0.00735		-0.0124	330	426	-741	0	-0.01 0.000971	771
	0.00813		-0.0136	342	432	-759	0	-0.01 0.001065	784
	0.00899		-0.0147	356	432	-773	0	0.00 0.001161	797
	0.00993		-0.0159	371	432	-788	0	-0.01 0.001268	810
	0.01098		-0.0172	386	432	-803	0	-0.01 0.001384	823
33	0.01214	3.96	-0.0186	399	432	-816	0	0.01 0.001510	834

Page 2

				NAPA2	4CB.OUT			
34	0.01342	3.84 -0.0201	410	432	-826	0	-0.01 0.001645	842
35	0.01484	3.72 -0.0217	418	432	-835	0	0.00 0.001793	849
36	0.01640	3.59 -0.0233	424	432	-840	0	0.01 0.001949	854
37	0.01813	3.45 -0.0250	427	432	-844	0	0.01 0.002120	856
38	0.02005	3.30 -0.0269	427	432	-844	0	0.00 0.002305	857
39	0.02216	3.18 -0.0290	421	438	-844	0	0.00 0.002511	857
40	0.02450	3.08 -0.0314	416	447	-848	0	0.00 0.002746	862

First Yield of Rebar Information (not Idealized): Rebar Number 8

Coordinates X and Y (global in.) 0.00, -8.36 Yield strain = 0.00230 Curvature (rad/in)= 0.000214 Moment (ft-k) = 570

Cross Section Information:

Axial Load on Section (kips) = 15 Percentage of Main steel in Cross Section = 3.93 Concrete modulus used in Idealization (ksi) = 3123 Cracked Moment of Inertia (ft⁴) = 0.495

Idealization of Moment-Curvature Curve by Various Methods:

		Points o	n Curve	Ic	3		
		=======	=======	======	=======	======	========
Method	Conc.			Yield		symbol	Plastic
ID	Strair	n Curv.	Moment	Curv.	Moment	for	Curv.
	in/in	rad/in	(K-ft)	rad/in	(K-ft)	moment	c rad/in
Strain @ (0.003	0.000332	676	0.000253	676	Mn	0.002493
Strain @ (0.004	0.000480	725	0.000272	725	Mn	0.002474
Strain @ (0.005	0.000637	744	0.000278	744	Mn	0.002467
CALTRANS (0.00989	0.001262	810	0.000303	810	Mp	0.002443
UCSD@5phy(0.00815	0.001068	785	0.000294	785	Mn	0.002452

Project	Napa River Flo	ood Control		
Subject	LPile Analyses			
Ву	David An	Date	Feb-05	

LPILE ANALYSES

		Project	Napa River	Flood Contr	rol Project	
	, INC.	Subject	LPile Analy	ses (Deflect	tion)	\neg
		Ву	David An	Date	Mar-05	
	De	eflection Ca	lculations			
	Note: Defle	ections are unde	r load case 2(service)	only.		
1. Deflection @ worse location (Sta. 1+88) for	Wall #1 Type A					
	Δpile Δ	wall	∆wall			
		w A				
Load @ pile hea	ad (Case2 only,	see calc. of wall	A-Station 2+52)			
	Laterial Force,	V =	2	41.9 kips		
	Axial Force, P			38.2 kips		
bending momer				75.8 kft		
(w/o safety facto		ian, m –	0.			
)		,	24.0 ft		
wall hight, h =						
equivalent w =				09.5 k/ft		
E = 57sqrt(f'c) =	:			120 ksf		
f'c =				000 psf		
I = bd^3/12				849 ft^4		
where b =	(pile spacing)			3.00 ft		
d =	(average thickr	ness of wall)	1.	794 ft		
∆wall = Wh^3/	(15Ec x I) =		(0.61 in		
∆pile =	(from Lpie)		().28 in		
Total Deflection @ Top of Wall	$, \Delta = \Delta pile + \Delta w$	all =	().89 in		
2. Deflection @ left side of joint (Sta. 2+56) for	Wall #1 Type A	۱.				
Load @ pile hea	ad (Case2 only,	see calc. of wall	A-Station 2+52)			
	Laterial Force,	V =	2	25.1 kips		
	Axial Force, P			65.2 kips		
bending momer				06.5 kft		
(w/o safety facto		,				
wall hight, h =	.,			20.0 ft		
				20.0 n 76.0 k/ft		
equivalent w = $5 - 57 \operatorname{cart}(f_0) = 10$	_					
E = 57sqrt(f'c) =	:			120 ksf		
f'c =				000 psf		
$I = bd^3/12$	/ 			849 ft^4		
where b =	(pile spacing)		8	3.00 ft		

		Project	Napa River Flood	d Control Project	/
MG	ENGINEERING, INC.	Subject	LPile Analyses (I	Deflection)	
	LINGINEERING, INC.	Ву	David An D	ate Mar-05	
		kness of wall)	1.794 ft		V
	Δ wall = Wh^3/(15Ec x I) =		0.24 in	I	
	∆pile = (from Lpie)		0.11 in	I	
Total Defle	ection @ Top of Wall, $\Delta = \Delta pile + \Delta pile$	wall =	0.35 in	ı	
3. Deflection @ right side	of joint (Sta. 2+56) for Wall #1 Typ	e B-station 2+61	(under load case 2, spaci	ng-9ft)	
		∆pile ∆wall			
		ţ			
		ł			
4. Deflection @ right side	of joint (Sta. 2+56) for Wall #1 Typ			n	
4. Deflection @ right side	Load @ pile head (Case2 only	, see calc. of wall			
4. Deflection @ right side		, see calc. of wall	B-Station 2+61, spacing 9ft	ft	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F	y, see calc. of wall e, V = P =	B-Station 2+61, spacing 9ft 512.5 kf	ft ips	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa	y, see calc. of wall e, V = P =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki	it ps ps	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F	y, see calc. of wall e, V = P =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki	it ps ps	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa	y, see calc. of wall e, V = P =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki	ft ps ps	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h =	y, see calc. of wall e, V = P =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft	ft ips ips	
4. Deflection @ right side	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δpile = from Lpile	v, see calc. of wall e, V = P = actor)	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in	ft ips ips	
	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h =	y, see calc. of wall e, V = D = actor) from Lpile	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra	ft ips ips ad	
	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ =	w, see calc. of wall e, V = P = hctor) from Lpile wall =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra	ft ips ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = ection @ Top of Wall , Δ = Δ pile + Δ ^x Use H / 128 for offset of wall	w, see calc. of wall e, V = P = actor) from Lpile wall = #1 type A	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in	ft ips ad 1.81 in	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = Δ wall = ϕ x h = i Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty	wall = #1 type A #P = #P = #1 type A	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in section Sta. 3+15 (spacin	ft ips ad 1.81 in	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = ection @ Top of Wall , Δ = Δ pile + Δ ^x Use H / 128 for offset of wall	<pre>w, see calc. of wall a, V = p = inctor) from Lpile wall = #1 type A ype B-use typical y, see calc. of wall</pre>	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in section Sta. 3+15 (spacin	ft ips ips ad 1.81 in g 12ft)	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = ection @ Top of Wall , Δ = Δ pile + Δ r Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only	<pre>w, see calc. of wall a, V = p = inctor) from Lpile wall = #1 type A ype B-use typical y, see calc. of wall</pre>	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in 1.28 in B-Station 3+15 (spacing	ft ips ips ad 1.81 in g 12ft) ft	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = ection @ Top of Wall , Δ = Δ pile + Δ r Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M =	wall = #1 type A #, v = p = (tor) from Lpile #1 type A ype B-use typical y, see calc. of wall	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in 1.28 in B-Station 3+15 (spacing 388.4 kf	ft ips ad 1.81 in g 12ft) ft ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = $\Delta pile =$ from Lpile Rotated angle of pile head ϕ = $\Delta wall = \phi \ge h =$ ection @ Top of Wall, $\Delta = \Delta pile + \Delta r$ Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M = Laterial Force, F (w/o safety fa	wall = wall = from Lpile wall = #1 type A ype B-use typical = v, see calc. of wall c, V = p =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in B-Station 3+15 (spacin B-Station 3+15) 388.4 kf 71.8 ki 41.6 ki	ft ips ips ad 1.81 in g 12ft) ft ips ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = $\Delta pile =$ from Lpile Rotated angle of pile head ϕ = $\Delta wall = \phi \ge h =$ dwall = $\phi \ge h =$ ection @ Top of Wall , $\Delta = \Delta pile + \Delta c$ Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F	wall = wall = from Lpile wall = #1 type A ype B-use typical = v, see calc. of wall c, V = p =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in section Sta. 3+15 (spacin B-Station 3+15) 388.4 kf 71.8 ki	ft ips ips ad 1.81 in g 12ft) ft ips ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = a ction @ Top of Wall, Δ = Δ pile + Δ r Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M = Laterial Force, F (w/o safety fa wall hight, h =	wall = wall = from Lpile wall = #1 type A ype B-use typical = v, see calc. of wall c, V = p =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in B-Station 3+15 (spacin B-Station 3+15) 388.4 kf 71.8 ki 41.6 ki	ft ips ips ad 1.81 in g 12ft) ft ips ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = a ction @ Top of Wall, Δ = Δ pile + Δ r Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M = Laterial Force, F (w/o safety fa wall hight, h =	wall = wall = from Lpile wall = #1 type A ype B-use typical = v, see calc. of wall c, V = p =	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in B-Station 3+15 388.4 kf 71.8 ki 41.6 ki 16.0 ft	ft ips ad 1.81 in g 12ft) ft ips ips	
Total Defie	Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile Rotated angle of pile head ϕ = Δ wall = ϕ x h = ection @ Top of Wall, Δ = Δ pile + Δ r Use H / 128 for offset of wall f joint (Sta. 4+67.79) for Wall #1 Ty Load @ pile head (Case2 only Moment, M = Laterial Force Axial Force, F (w/o safety fa wall hight, h = Δ pile = from Lpile	wall = #1 type A wall = #1 type A ype B-use typical a b , V = b b c , V = b c c c c c c c c	B-Station 2+61, spacing 9ft 512.5 kf 78.6 ki 50.2 ki 19.3 ft 0.53 in 0.005513 ra 1.28 in B-Station 3+15) 388.4 kf 71.8 ki 41.6 ki 16.0 ft 0.42 in	ft ips ips ad 1.81 in g 12ft) ft ips ips	

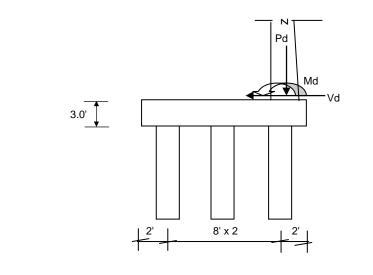
		Project	Napa River Flo	od Cor	ntrol Project	
MGE	ENGINEERING, INC.	Subject	LPile Analyses	(Defle	ection)	\Box /
		Ву	David An	Date	Mar-05	\bigvee
Total Deflect	tion @ Top of Wall, $\Delta = \Delta pile + \Delta pile$	\wall =			1.27 in	
	Use H / 140 for offset of wa	ll #1 type B				
Deflection @ right side o	f joint (Sta. 4+67.79) for Wall #1	Type C (under loa	d case 2 use results of	f Station	4+83)	
	Load @ pile head (Case2 on			olulion		
	Moment, M	=	158.1	kft		
	Laterial Ford	ce, V =	39.0	kips		
	Axial Force,	P =	26.7	kips		
	(w/o safety f	actor)				
	wall hight, h =		11.9	ft		
	∆pile = from Lpile		0.5	in		
	Rotated angle of pile head ϕ =	from Lpile	0.006877			
			0.000011			
	Δ wall = $\phi x h =$		0.98	in		
Total Deflect	tion @ Top of Wall, $\Delta = \Delta pile + \Delta pile$	∆wall =			1.48 in	
7. Deflection @ for Wall #1	Type C (@ station 4+83, used fo					
	Load @ pile head (Max. see			1.4		
	Moment, M Laterial Force		265.2 51.5			
	Axial Force,	-	26.7	•		
	(w/o safety f		20.7	nipo		
	wall hight, h =)	11.88	ft		
	∆pile = from Lpile		0.62	in		
	∆pile = from Lpile Rotated angle of pile head∳ =	= from Lpile	0.00793			
			0.00733	lau		
	Δ wall = ϕ x h =		1.13	in		
Total Deflec	tion @ Top of Wall, $\Delta = \Delta pile + \Delta pile$	∆wall =			1.75 in	
	Use H / 81 for offset of wall		4+67.79 to 10+26.92)		-	
	Type C (The forces use results ation11+16.92 to end of wall)	@ station 4+83, bi	it soil profile is from 9+	30 to en	d of wall)	
0360 101 310	Load @ pile head (Max. see	calc. of wall C-stati	on 4+83)			
	Moment, M		265.2	kft		
	Laterial Ford		51.5			
	Axial Force,		26.7			
	Station 9+30 to end of wall p					
	(w/o safety f	actor)				
	wall hight, h =		11.88	ft		
	∆pile = from Lpile		1.47	in		
	Rotated angle of pile head ϕ =	from Lpile	0.013608305			
	Awall – e x b –		4.04	in		
	Δ wall = ϕ x h =		1.94	IN		
Total Deflec	tion @ Top of Wall, $\Delta = \Delta pile + \Delta pile$	∆wall =			3.41 in	
			11, 16,02 to and of wall	、		
	Use H / 42 for offset of wall	#1 type C station	11+10.92 to end of wall)		

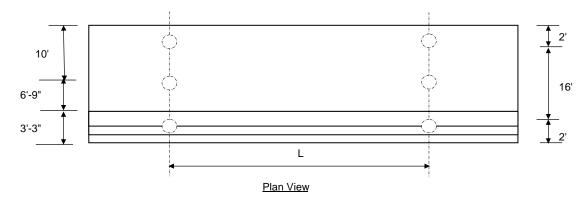
	Project Napa River Flood	Control Project
	Subject Flood Wall Design	n (Wall #1, Type A)
EntointEEkinto, into.	By David An Da	te Mar-05
Pile Head Load	s for Station 2+52 (Wall #1, Ty	pe A)
Backfill Properties		
	Backfill Thickness = (17.00') - (-3.00') =	20.00 ft
	Backfill Unit Weight =	125 pcf
	Φ =	37 degree
	C =	0 pcf
	SMF= Tan(Φ_d) / Tan Φ = 2/3 =	0.67
	$\Phi_{\rm d} =$	27 degree
	Ka = Tan ² (45° - Φ/2) =	0.25
	Ko = Tan ² (45° - $\Phi_d/2$) = Kp = Tan ² (45° + $\Phi/2$) =	0.38
	$\kappa p = ran (45^{\circ} + \Psi/2) =$	4.02
Water Property	Water Unit Weight =	62.5 pcf
Pile and Wall Data		
	Station =	2+52
	Finish Grade Elevation(behind) =	17.00 ft
	Finish Grade Elevation(front) =	0.00 ft
	Top of Footing Elevation =	-3.00 ft
	Pile Spacing =	8.00 ft
	Pile Diameter =	2.00 ft
	100 Year Flood Level =	15.27 ft
	Water Elevation (Mean higher) =	3.76 ft
		-2.84 ft

				Project	Napa River Fl	ood Control	Project	/
	IGE	ENGINEERING	INC.	Subject	Flood Wall De	esign (Wall	#1, Type A)	
				Ву	David An	Date	Mar-05	
qw2a	Load		from back of pile)		vice Condition (USE V ck	=	52) 0 kips Elev. +17.00' 5 Pes 7 Backfill Elev00' Elev3.00'	
	Backfill Soil Pre Name qem qesub qw1a=qw2a	essure at Wall(S Thickness(ft) 17.00 3.00 3.00	Soil pressure =γ k Pressure(ksf) 0.808 0.880 0.188	(i hi)	Note qem - Moist soil pi qesub - Submerge qw - Water pressu	ressure at rest ed soil pressure		gnored.
	Backfill Resulta	Int Forces Sum	mary					
	Name	Force	Arm to bot.	Moments				
	Pem	55.0	8.67	477				
	Pesub	20.3	1.48	30				
	Pw1a	2.3	1.00	2				
	1 11/10							
	Ph-15	0.0		0				
	Ph-15		1.00	-	-			
	Ph-15 Pw2a	-2.3	1.00 Safety Factor	-2	-			
	Ph-15		1.00 Safety Factor 1.3	-	-			
	Ph-15 Pw2a At bot of wall	-2.3 75.2 Σ V	Safety Factor	-2 506.5				
	Ph-15 Pw2a At bot of wall ding Summary (-2.3 75.2 Σ V	Safety Factor 1.3	-2 506.5	H-15 Truck Loadi			Momen
(for V_{LEFT})	Ph-15 Pw2a At bot of wall ding Summary (Z	-2.3 75.2 Σ V Left)	Safety Factor 1.3 Moment	-2 506.5	b (for V _{RIGHT})	Z	ΔP _{PH (RIGHT)}	
(for V _{LEFT}) 0.1	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00	-2.3 75.2 Σ V Left) ΔP _{PH (LEFT)} 0.000	Safety Factor 1.3 Moment 0.000	-2 506.5	b (for V _{RIGHT}) 0.1	Z 2.00	ΔP _{PH (RIGHT)} 0.000	0.000
(for V _{LEFT}) 0.1 0.2	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00	-2.3 75.2 Σ V Left) 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2	Z 2.00 4.00	ΔP _{PH (RIGHT)} 0.000 0.000	0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00	-2.3 75.2 Σ V Left) 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3	Z 2.00 4.00 6.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000	0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00	-2.3 75.2 Σ V Left) 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4	Z 2.00 4.00 6.00 8.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00 10.00	-2.3 75.2 Σ V Left) 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5	Z 2.00 4.00 6.00 8.00 10.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00 10.00 12.00	-2.3 75.2 Σ V Left) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6	Z 2.00 4.00 6.00 8.00 10.00 12.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
(for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00	-2.3 75.2 Σ V Left) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7	Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 (for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00	-2.3 75.2 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 (for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Ph-15 Pw2a At bot of wall	-2.3 75.2 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 (for V _{LEFT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Ph-15 Pw2a At bot of wall ding Summary (Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00	-2.3 75.2 Σ V Left) ΔP _{PH (LEFT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Safety Factor 1.3 Moment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2 506.5	b (for V _{RIGHT}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Z 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00	ΔP _{PH (RIGHT)} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000

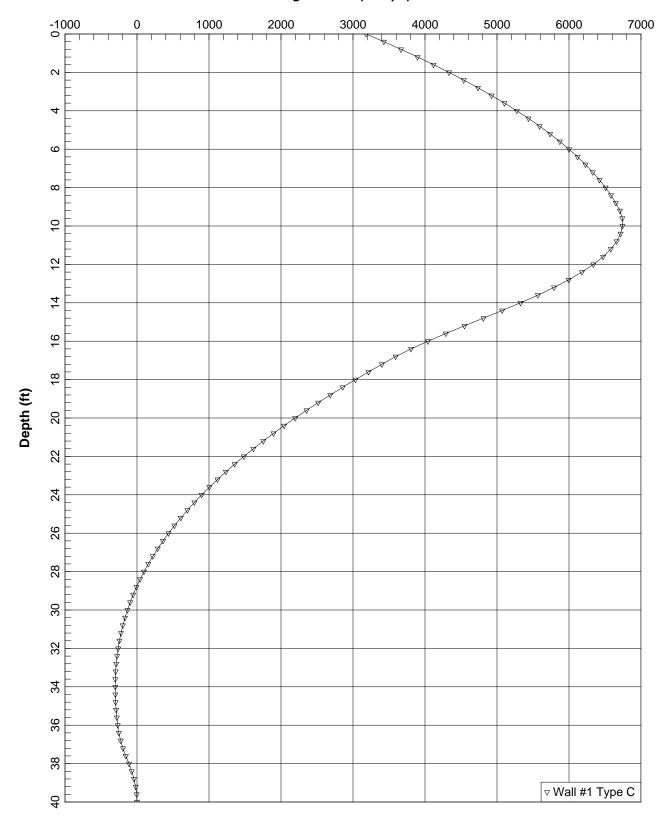
Demand at Top of Pile: Vd = 98 kips Md = 658 k-ft

Project	Napa River Flood Control Project				
Subject	Flood Wall Des	sign (Wall a	#1, Type A)		
Ву	David An	Date	Mar-05		

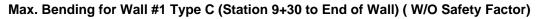

Loads at Pile Head (Station 2+52)

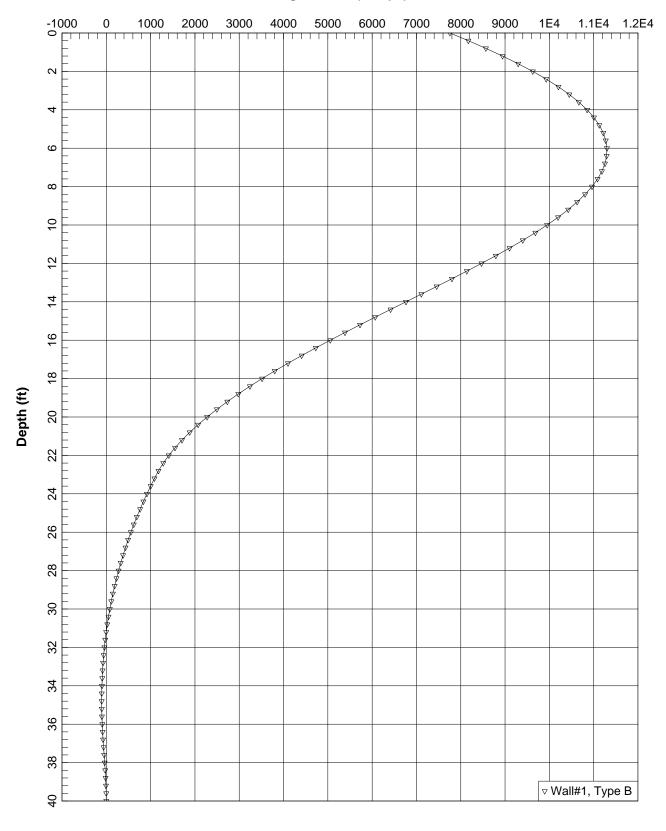

1. Loads

	Load Case	1	2	3	4
Forces w/o	Shear (k)		75.2		
Safety Factor	Moments(kft)		506.5		
	Safety Factor		1.3		
Forces w/	Shear (k)		97.8		
Safety Factor	Moments(kft)		658.5		

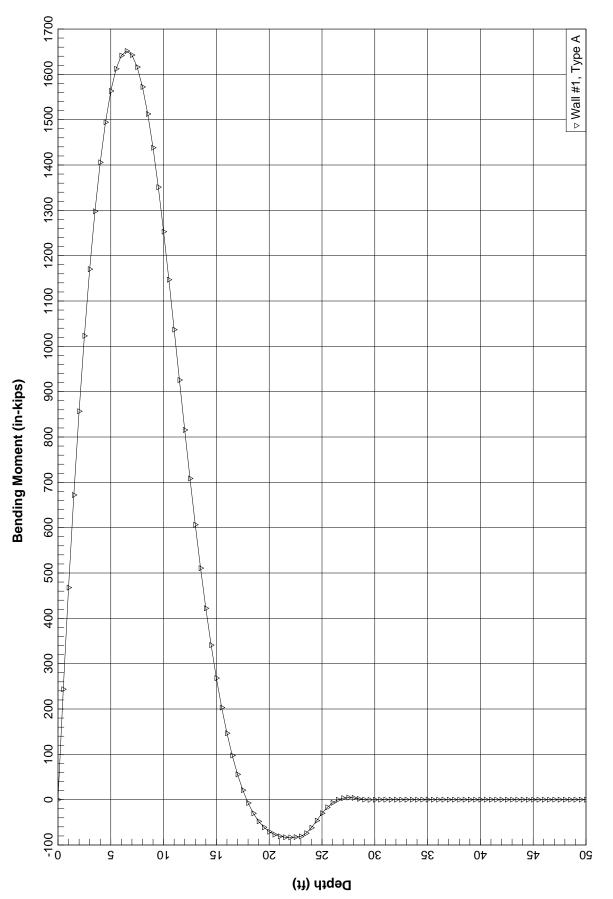

Demand at top of Footing:

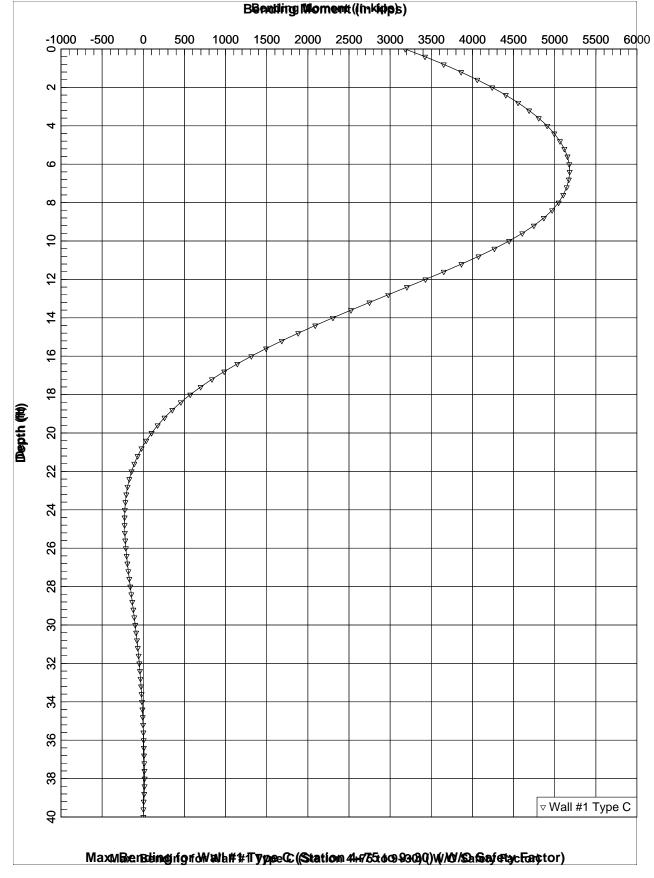
	Vd=	75	kips
	Md=	507	kft
	Pd = [Lx(Bt + Bb)/2xh)x0.15 =	40	kips
Where			
	Wall thickness @ Top Bt =	1.00	ft
	Wall thickness @ Bottom (1:15 batter) Bb =	2.33	ft
	Front of Wall to Center of Footing (6'-9") =	6.75	ft
	Wall Height h =	20.00	ft
	Pile Spacing L =	8.00	ft

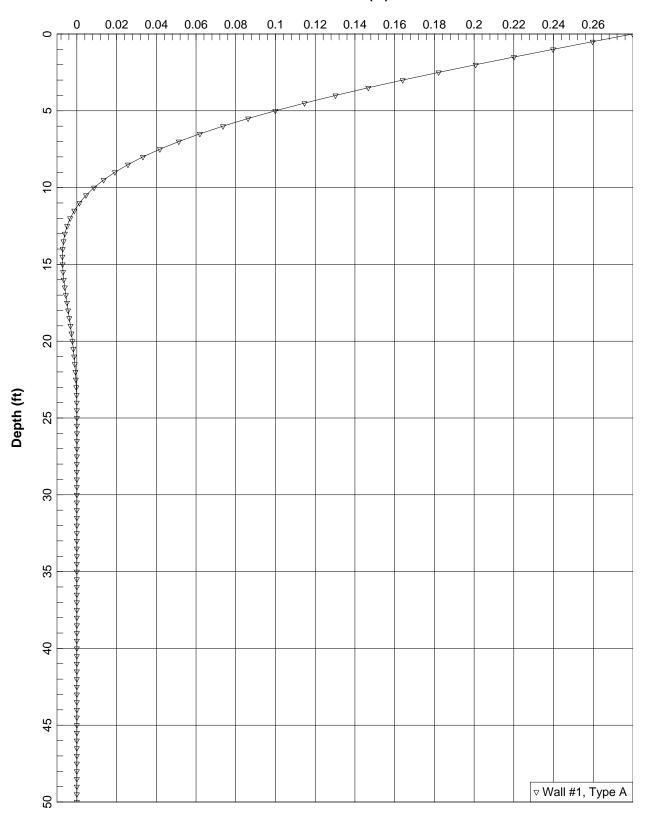


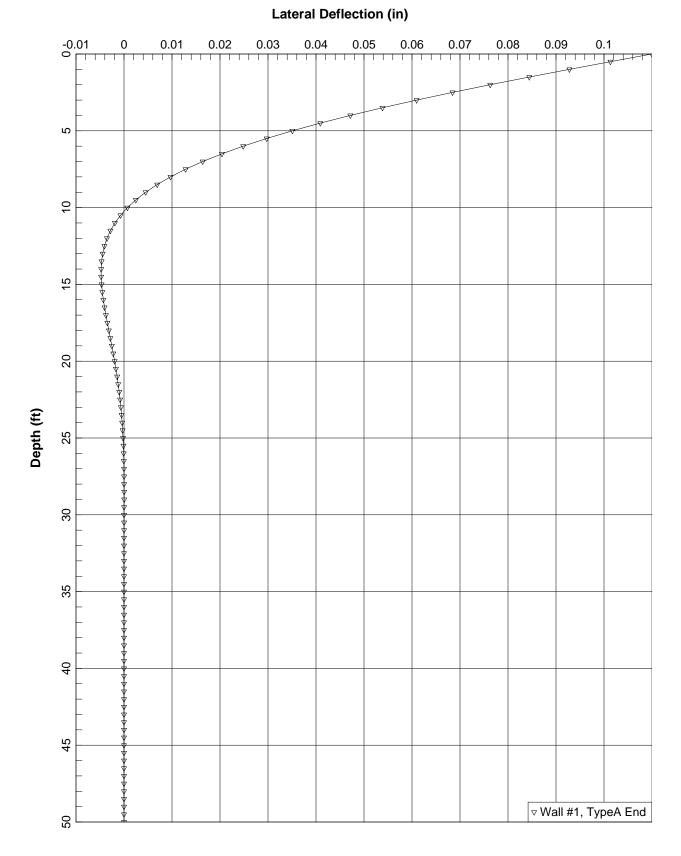


			Project	Napa River F	Flood Contro	l Project	
ЛG	ENGINEERING, INC		Subject	Flood Wall Design (Wall		#1, Type A)	1
		LINGINEERING, INC.		David An	Date	Mar-05	
Piles Fo	rce (under load cas	e 2)					
	Loads at Bottom of F	ooting					
	Mdmax= Md	- Pd x c - Σ(Wsoil x Arms) + Vd*	D/2		102	2 k-ft
	Vdmax = Vd					75	i kips
	Pdmax= Pd -	+Wfooting +	Wsoil			176	i kips
	Where						
	Md = (Load Case2 w	ithout Embe	dment Safety Facto	rs)		507	′k-ft
	Vd = (Same as Md)					75	i kip
	Pd =					40.0) kips
	c = From Center of V	Vall to Cente	er of Footing			7.92	2 ft
	D = Depth of Footing)				3.00) ft
	Wfooting = 16 x D x	L x 0.15				57.6	6 kips
	Wsoil-1 (resisting sid	le, RSP, Re	c.) = 3' x (20'/2+6.75	') x L x 0.12		48	8 kips
	Mor	ment Arm fo	r Wsoil-1 = 20'/2 - (2	0'/2+6.75')/2		1.6	6 ft
	Wsoil-2 (driving, Rec	2.) = (20'/2-6	.75'-2.33') x (20.00')	x L x 0.12		18	8 kips
	Mor	ment Arm fo	r Wsoil-3 = (20'/2-6.	75-2.33')/2 - 20'/2		-9.5	5 ft
	Wsoil-3 (driving, Tri.)) = (2.33'-1.0	00') x (20.00') x L / 2	x 0.12		13	8 kips
	Mor	ment Arm fo	r Wsoil-3 = - (2.33-1	.00') * 2 / 3 - 1.00'	- 6.75'	-8.6	6 ft
	Pile Force						
	$I_{PILES} = 8^{2*2} =$		(3 Rows 8ft x 2)			128	3 ft^2
	Pile reaction						
	Ten	ision		Rt=Pdmax/2-Md			kip:
	Con	npression		Rc=Pdmax/2+Mo			kip:
	Laterial Force		Vpile = (Vd-Rsp)/2	(2 piles take late	ral force)	25.1	kip
	where						
	Laterial resistance of	f ftgs	@ Top of ftg	$q_{pt} = Kp x \gamma' x h1$) ksf
			Where	$\gamma' = 120-62.5$		57.50) pcf
				h1 =		3.00) ft
			@ Top of ftg	$q_{pb} = Kp x \gamma' x h1$		1.39) ksf
			Where	γ' = 120-62.5		57.50) pcf
				h2 =		6.00) ft
			$R_{sp} = (q_{pt} + q_{pb})/2 x ($	h2-h1) x L		24.98	3 kip:

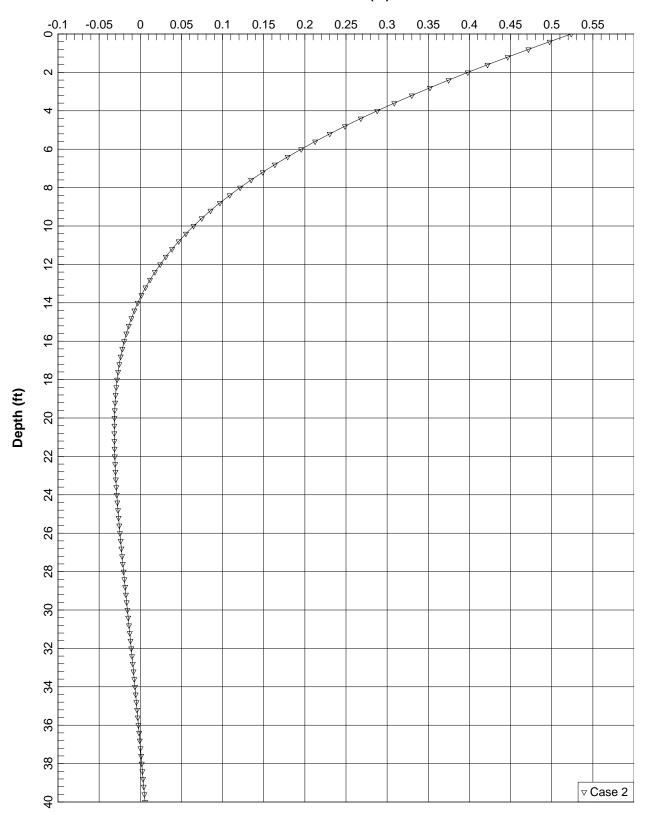

Bending Moment (in-kips)

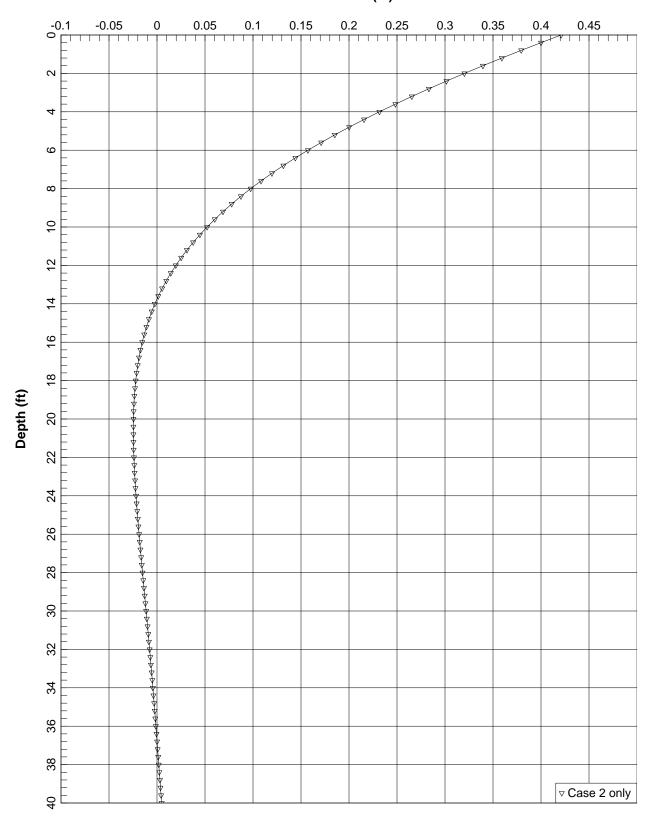

Bending Moment (in-kips)

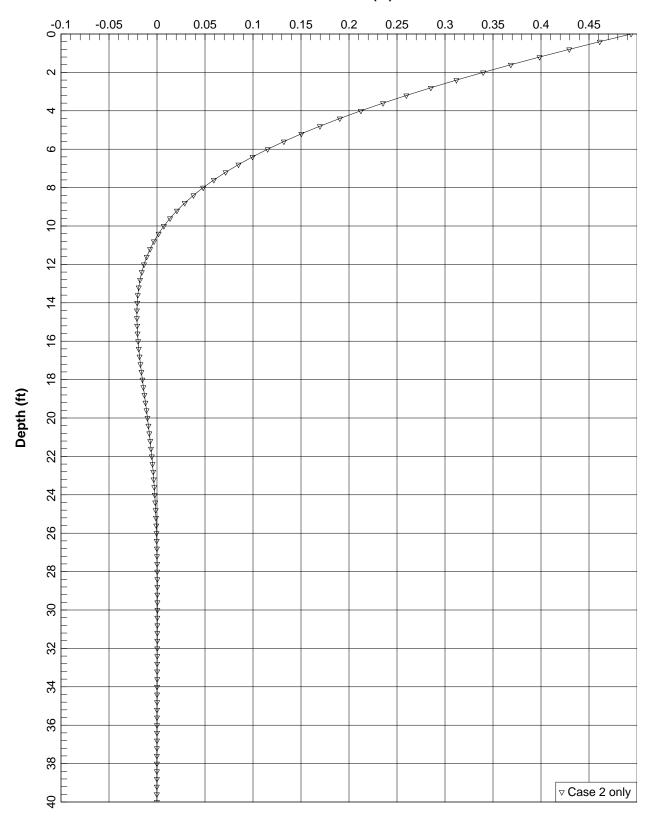

Wall #1 Type B, Max. Bending @ Station 2+61 (W/O Safety Factor)

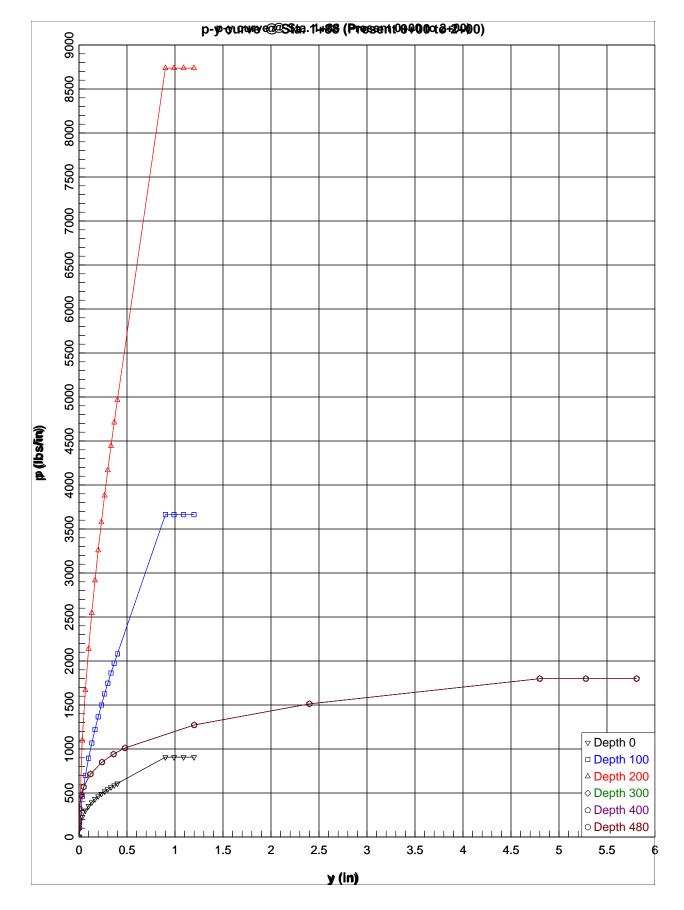

Bending @ Station 1+88 for Wall #1, Type A (W/O Safety Factor)

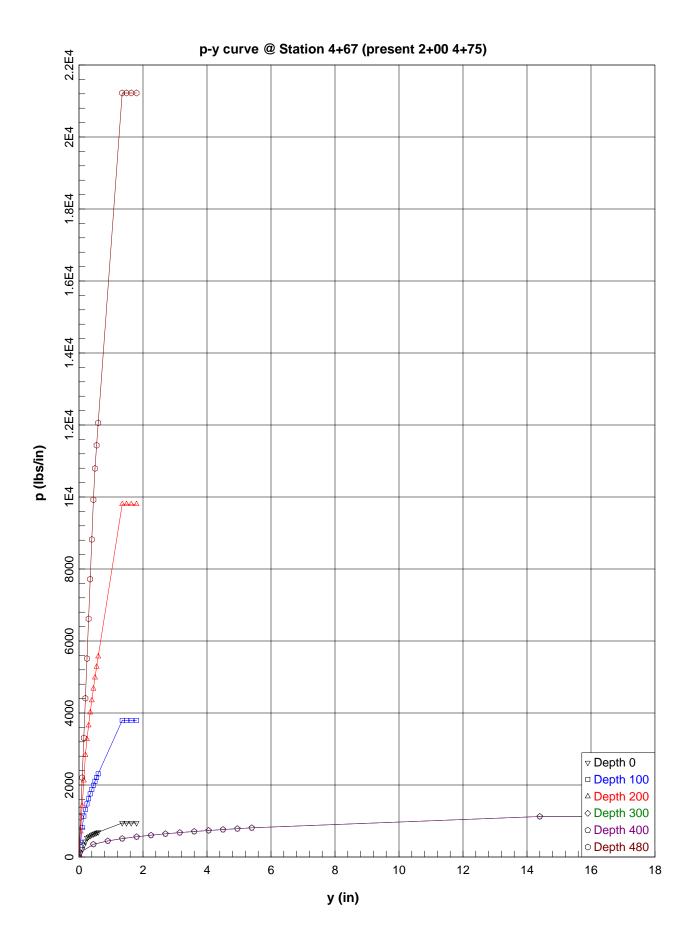
Napa River / Napa Creek Flood Protection Project, Structural Design Calculations for 100% Submittal (March 2005)

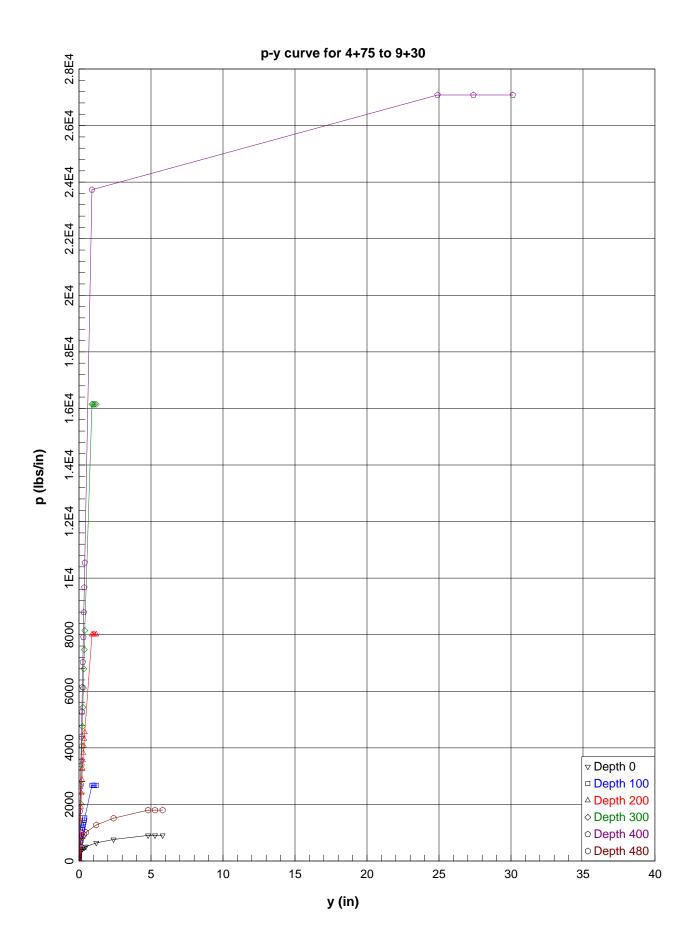


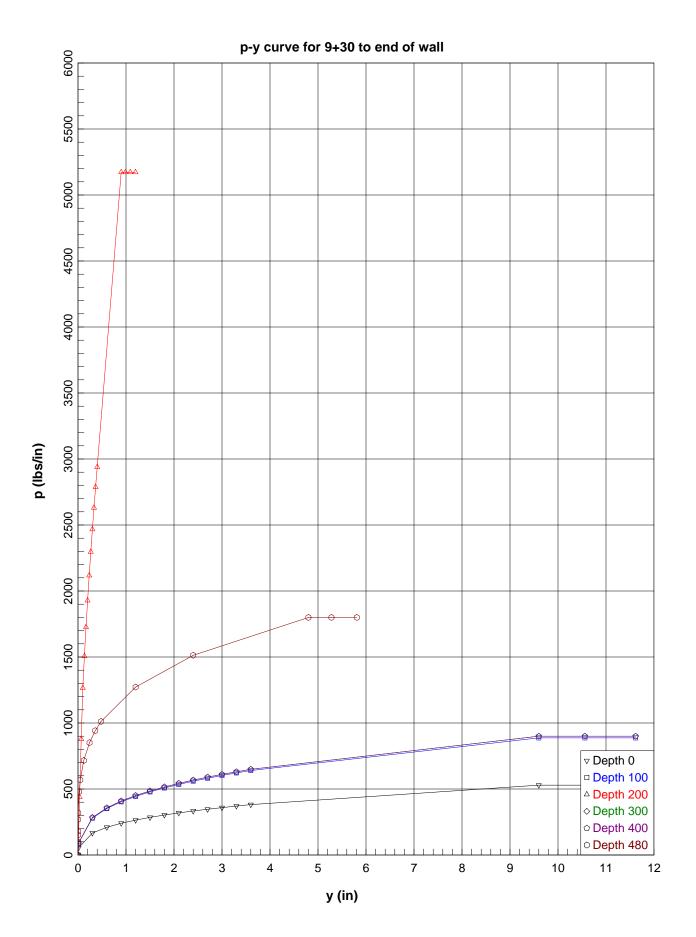

Pile Head Deflection @ Sta. 1+88, Wall #1, Type A




Pile Head Deflection @ Right Side of Joint (Station 2+56) Between Wall #1 Type A & Type B




Pile Head Deflection @ Left Side of Joint (Station 4+67) Between Wall #1 Type B & Type C



Pile Head Deflection @ Right Side of Joint (Station 4+67) Between Wall #1 Type B & Type C

Page 189 of 234

Napa24AMax _____ LPILE Plus for Windows, Version 4.0 (4.0.10) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) Copyright ENSOFT, Inc., 1985-2003 AII Rights Reserved _____ This program is licensed to: david an mge Name of input data file: Name of output file: Name of plot output file: Name of runtime file: C: \DA Works\Lpile\ Napa24AMax. I pd Napa24AMax. I po Napa24AMax. I pp Napa24AMax. I pr _____ Time and Date of Analysis _____ Date: March 26, 2005 Time: 21: 5:10 _____ Problem Title _____ Napa River Flood Control Project--24 CIDH Pile, Type A-Station 1+88, Max. Loads Program Options · · Units Used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: - Only internally-generated p-y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis includes automatic computation of pile-top deflection vs. pile embedment length No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile Additional p-y curves computed at specified depths Solution Control Parameters: 100 - Number of pile increments Page 1

Napa24AMax - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry 600.00 in Pile Length Depth of ground surface below top of pile = -72.00 in Slope angle of ground surface .00 deg. Structural properties of pile defined using 2 points
 Depth
 Pile
 Moment of
 Pile

 X
 Diameter
 Inertia
 Area

 in
 in
 in**4
 Sq. in

 0.0000
 24.000
 16286.0000
 452.4000

 600.0000
 24.000
 16286.0000
 452.4000
 Poi nt Modul us of Elasticity lbs/Sq.in _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3500000.000 1 2 3500000.000 _____ Soil and Rock Layering Information _____ The soil profile is modelled using 4 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 -72.000 in 276.000 in 125.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 125.000 lbs/in**3 = Layer 2 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 276.000 in 576.000 in p-y subgrade modulus k for top of soil layer = 500.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 500.000 lbs/in**3 Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 5 Distance from top of pile to bottom of layer = 6 p-y subgrade modulus k for top of soil layer = 7 p-y subgrade modulus k for bottom of layer = 7 576.000 in 696.000 in 125.000 lbs/in**3 125.000 lbs/in**3 Layer 4 is stiff clay without free water Distance from top of pile to top of layer = p-y subgrade modulus k for top of soil layer = 696.000 in 768.000 in 60.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 60.000 lbs/in**3 (Depth of lowest layer extends 168.00 in below pile tip)

Napa24AMax Effective Unit Weight of Soil vs. Depth							
Distributio	on of effec using 8 p	tive unit wei oints	ght of	soil with	depth		
Point No.	Depth X in	Eff. Unit Ibs/in*	*3 -				
1 2 3 4 5 6 7 8	276.00 576.00 576.00	. 0318 . 0318 . 0411 . 0411 . 0318 . 0318	0 0 0 0 0				
			trength	of Soils			
Distributio defined usi	n of shear ng 8 poin	strength par ts	ameters	with dept	th		
No.		Cohesi on c I bs/i n**2	Angl e	e of Fricti Deg.		E50 or k_rm	ROD %
2 27 3 27 4 57 5 57 6 69 7 69	6.000 6.000 6.000 6.000 6.000	. 00000 . 00000 8. 33000 8. 33000 . 00000 . 00000 8. 33000 8. 33000 8. 33000		38.00 38.00 .00 .00 38.00 38.00 .00 .00		. 00500 . 00500 . 00500 . 00500 . 00500 . 00500	. 0 . 0 . 0 0 0 . 0 . 0
Notes:							
 Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. 							
		L	oadi ng	Туре			
	Static loading criteria was used for computation of p-y curves						
		ad Loading an					
Number of loads specified = 1							

Napa24AMax Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 41900.000 lbs Bending moment at pile head = .000 in-l Axial load at pile head = 88200.000 lbs .000 in-lbs (Zero moment at pile head for this load indicates a free-head condition) Output of p-y Curves at Specified Depths _____ p-y curves are generated and printed for verification at 6 depths. Depth Below Pile Head Depth Depth Below Ground Surface No. in in -----_ _ _ _ _ 1 72.000 . 000 100.000 2 172.000 272.000 200.000 3 4 300.000 372.000 5 400.000 472.000 480.000 552.000 6 Depth of ground surface below top of pile = -72.00 in p-y Curve in Sand Computed Using Reese Criteria SOLL Layer Number=1Depth below pile head=.000 inDepth below ground surface=72.000 inEquivalent Depth (see note)=72.000 inPile Diameter=24.000 inAngle of Friction=38.000 deg.Avg. Eff. Unit Weight=.03180 lbs/k=125.000 pciA (static)=1.0600 Soil Layer Number = .03180 lbš/in**3 B (static) = . 7100 = 855.956 lbs/in Pst Psd 4372.464 lbs/in = 855.956 lbs/in 907.313 lbs/in Ps = pu = 872.2559 Cbar = 2.5357 n = 599.1693 = m .0212 in .4000 in yk = уm = . 9000 yu = in p-multiplier 1.00000 = y-multiplier = 1.00000 If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in p, lbs/in

Napa24AMax

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	1	
Depth below pile head	=	100.000	in
Depth below ground surface	=	172.000	in
Equivalent Depth (see note)	=	172.000	in
Pile Diameter	=	24.000	
Angle of Friction	=	38.000	deg.
Avg. Eff. Unit Weight	=		lbš/in**3
k	=	125.000	рсі
A (static)	=	. 8800	
B (static)	=	. 5000	
Pst	=	4161. 706	
Psd	=	10445.332	
Ps	=	4161. 706	
pu	=	3662.301	lbs/in
Cbar	=	3632.3602	
n	=	1. 6447	
m	=	3162.8964	
yk	=	. 0107	
ym	=	. 4000	
yu	=	. 9000	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000 . 0333 . 0667 . 1000 . 1333 . 1667 . 2000 . 2333 . 2667 . 3000 . 3333 . 3667	. 000 459. 303 700. 044 895. 754 1066. 969 1222. 005 1365. 259 1499. 404 1626. 215 1746. 943 1862. 512 1973. 631

		Napa24AMax
. 4000	2080. 853	
. 9000	3662. 301	
24.9000	3662.301	
48.9000	3662.301	
72.9000	3662.301	

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	1	
Depth bélow pile head	=	200.000	in
Depth below ground surface	=	272.000	in
Equivalent Depth (see note)	=	272.000	in
Pile Diameter	=	24.000	
Angle of Friction	=	38.000	deg.
Avg. Eff. Unit Weight	=		lbš/in**3
k	=	125.000	рсі
A (static)	=	. 8800	-
B (static)	=	. 5000	
Pst	=	9928.992	lbs/in
Psd	=	16518. 199	
Ps	=	9928.992	lbs/in
pu	=	8737.513	lbs/in
Čbar	=	8666. 0803	
n	=	1. 6447	
m	=	7546. 0342	
yk	=	. 0306	in
ym	=	. 4000	in
yu	=	. 9000	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, lbs/in
. 0000 . 0333 . 0667 . 1000 . 1333 . 1667 . 2000 . 2333 . 2667 . 3000 . 3333 . 3667 . 4000 . 9000 24. 9000 24. 9000 48. 9000 72. 9000	$\begin{array}{c} . 000 \\ 1095. \ 804 \\ 1670. \ 164 \\ 2137. \ 089 \\ 2545. \ 572 \\ 2915. \ 458 \\ 3257. \ 234 \\ 3577. \ 277 \\ 3879. \ 821 \\ 4167. \ 853 \\ 4443. \ 580 \\ 4708. \ 686 \\ 4964. \ 496 \\ 8737. \ 513 \\ 8737. \ 513 \\ 8737. \ 513 \\ 8737. \ 513 \\ 8737. \ 513 \\ 8737. \ 513 \\ 8737. \ 513 \end{array}$

Napa24AMax p-y Curve Computed Using Criteria for Stiff Clay without Free Water Soil Layer Number = Depth below pile head 300.000 in = Depth below ground surface = Equivalent Depth = 372.000 in 949.861 in 24.000 in Di ameter = Undrained cohesion, c 8.33000 lbs/in**2 = 8.33000 lbs/in**2 Avg. Undrained cohesion, c =.03240 lbs/in**3 Average Eff. Unit Weight = Epsilon-50 = . 00500 5294.543 lbs/in Pct = Pcd = 1799.280 lbs/in v50 = 300 in p-multiplier 1.00000 = y-multiplier 1.00000 = y, in p, lbs/in ----------_ _ _ _ _ . 000 . 0000 . 0000 101.181 . 0002 151.301 . 0005 179.928 . 0024 269.055 319.962 . 0048 . 0240 478.455 . 0480 568.982 . 1200 715.457 850.827 . 2400 . 3600 941.595 . 4800 1011.810 1.2000 1272.283 2.4000 1513.008 4.8000 1799.280 5.4000 1799.280 1799.280 6.0000 p-y Curve Computed Using Criteria for Stiff Clay without Free Water

Soil Layer Number	=	2	
Depth bélow pile head	=	400.000	in
Depth below ground surface	ce =	472.000	in
Equivalent Depth	=	1049. 861	in
Diameter	=	24.000	
Undrained cohesion, c	=		lbs/in**2
Avg. Undrained cohesion,	C =		lbs/in**2
Average Eff. Unit Weight	=		lbs/in**3
Epsilon-50	=	. 00500	
Pct	=	5835.246	
Pcd	=	1799. 280	
y50	=	. 300	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	
		<i>,</i> .	
y, in	p, Ibs/	ĩn	
		·	
. 0000	. 000		
. 0000	101.181		
. 0002	151.301		
. 0005	179.928		
. 0024	269.055		
. 0048	319.962		
		Pag	ge 7

Napa24AMax

. 0240	478. 455 568. 982
. 1200	715. 457
. 2400	850. 827
. 3600	941.595
. 4800	1011.810
1.2000	1272.283
2.4000	1513.008
4.8000	1799. 280
5.4000	1799. 280
6.0000	1799. 280

p-y Curve Computed Using Criteria for Stiff Clay without Free Water

Soil Layer Number Depth below pile head Depth below ground surfa Equivalent Depth Diameter Undrained cohesion, c Avg. Undrained cohesion, Average Eff. Unit Weight Epsilon-50 Pct Pcd y50 p-multiplier y-multiplier	= = C =	8.33000	in in lbs/in**2 lbs/in**2 lbs/in**3 lbs/in lbs/in
y, in	p, Ibs/i	n	
. 0000 . 0000 . 0002 . 0005 . 0024 . 0048 . 0240 . 0480 . 1200 . 2400 . 3600 . 4800 1. 2000	. 000 101. 181 151. 301 179. 928 269. 055 319. 962 478. 455 568. 982 715. 457 850. 827 941. 595 1011. 810 1272. 283		

1.2000	1272. 283	
2.4000	1513.008	
4.8000	1799. 280	
5.4000	1799. 280	
6.0000	1799. 280	

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are She	ear and	Moment (BC Type 1)
Specified shear force at pile head	=	41900.000 lbs
Specified bending moment at pile head	1 =	.000 in-1bs
Specified axial load at pile head	=	88200.000 lbs
	Page	8
	гаус	0

Napa24AMax

(Zero moment for this load indicates free-head conditions)

Depth X	Deflect. y	Μ	Shear V	SI ope S Rad	Total Stress	Soil Res p lbs/in
	y in 279840 259716 239745 220070 200819 182109 164046 146721 130217 114600 099927 086241 073574 061943 051355 041804 033275 025738 019156 013483 008663 004634 001330 - 001320 - 003385 - 004935 - 006037 - 006756	M I bs-in -3. 516E-07 243673. 2899 467725. 9286 671997. 0811 856832. 2984 1. 023E+06 1. 406E+06 1. 406E+06 1. 494E+06 1. 612E+06 1. 641E+06 1. 641E+06 1. 641E+06 1. 616E+06 1. 572E+06 1. 512E+06 1. 512E+06 1. 351E+06 1. 037E+06 3. 351E+06 1. 037E+06 3. 351E+06 3. 352E+06 3. 352E+06 3. 352E+06 3. 352E+06 3. 352E+06 3. 352E+06 3. 352E+06\\ 3. 352E+0				
$\begin{array}{c} 168.\ 000\\ 174.\ 000\\ 180.\ 000\\ 186.\ 000\\ 192.\ 000\\ 198.\ 000\\ 204.\ 000\\ 210.\ 000\\ 216.\ 000\\ 222.\ 000\\ 228.\ 000\\ 234.\ 000\\ 240.\ 000\\ 246.\ 000\\ \end{array}$	007153 007283 007197 006943 006559 006084 005547 004974 004974 004388 003807 003245 002713 002219 001771	422111. 9306 341082. 0555 268095. 2348 203255. 2611 146464. 2776 97457. 7182 55837. 5032 21103. 0098 -7320. 5287 -30056. 4169 -47753. 7919 -61067. 8285 -70642. 7735 -77097. 6615	-14150. 6448 -12835. 0517 -11483. 0655 -10131. 2244 -8810. 1498 -7544. 7868 -6354. 7363 -5254. 6561 -4254. 7084 -3361. 0349 -2576. 2418 -1899. 8778 -1328. 8935 -858. 0706	-4. 388E-05 -3. 708E-06 2. 835E-05 5. 316E-05 7. 157E-05 8. 440E-05 9. 247E-05 9. 652E-05 9. 528E-05 9. 528E-05 9. 118E-05 8. 546E-05 7. 853E-05 7. 075E-05	505.9846 446.2794 392.5006 344.7246 302.8794 266.7699 236.1029 210.5095 200.3542 217.1067 230.1466 239.9568 247.0119 251.7680	214. 5851 223. 9459 226. 7161 223. 8976 216. 4606 205. 3270 191. 3564 175. 3370 157. 9790 139. 9122 121. 6855 103. 7692 86. 5589 70. 3820
270.000 276.000 282.000 288.000	001021 -7.25E-04 -4.81E-04 -2.89E-04 -1.49E-04 -5.47E-05 -3.91E-08 2.54E-05	-81014.5025 -82928.6920 -83321.3635 -82613.3891 -81160.7325 -73996.6074 -61996.5049 -46228.8189 -29966.1356 -16813.1579 -6955.1405 -284.7989 3468.4407 4694.7652	-480. 4131 -187. 4933 30. 2486 183. 2557 720. 5080 1598. 7416 2315. 0737 2669. 7864 2451. 5403 1917. 6010 1377. 2710 868. 5059 414. 8526 35. 0387	6. 243E-05 5. 380E-05 4. 505E-05 3. 632E-05 2. 770E-05 1. 953E-05 1. 237E-05 6. 678E-06 2. 667E-06 2. 053E-07 -1. 046E-06 -1. 427E-06 -1. 259E-06 -8. 295E-07	254. 6541 256. 0645 256. 3538 255. 8322 254. 7618 249. 4831 240. 6410 229. 0230 217. 0401 207. 3486 200. 0850 195. 1701 197. 5159 198. 4195	55. 5039 42. 1361 30. 4446 20. 5578 158. 5263 134. 2182 104. 5592 13. 6784 -86. 4271 -91. 5527 -88. 5573 -81. 0311 -70. 1867 -56. 4179

		Napa24	AMax		
336.000 8.17E-07	3889. 7829	-252. 8136	-3.777E-07	197.8263	-39.5328
342.000 -2.21E-07	1661. 4018	-302.1797	-8.552E-08	196. 1844	23.0775
348.000 -2.09E-07	263. 7166	-157.7869	1.580E-08	195. 1545	25.0535
354.000 -3.11E-08	-232.0580	-26, 1812	1.746E-08	195, 1312	18, 8151
360.000 3.72E-10	-50. 4765	19.3874	2.595E-09	194.9974	-3. 6256
366.000 1.68E-13	. 5878	4.2064	-3.096E-11	194.9606	-1.4348
372.000 -4.24E-16	2.676E-04	048979	-1.401E-14	194. 9602	. 016312
378.000 -1.94E-19	-6.713E-07	-2.230E-05	3.536E-17	194. 9602	7.470E-06
384.000 4.85E-22	-3.092E-10	5.594E-08	1.619E-20	194. 9602	-1.863E-08
390.000 2.25E-25	7.666E-13	2.577E-11	-4.038E-23	194.9602	-8.632E-12
396.000 0.000	3.573E-16	-6.388E-14	0.0000	194. 9602	2.127E-14
402.000 0.000	-8.755E-19	-2.978E-17	0.0000	194.9602	9.974E-18
408.000 0.000	-4.128E-22	7.296E-20	0.0000	194.9602	-2.430E-20
414.000 0.000	9.998E-25	3.440E-23	0.0000	194.9602	-1.152E-23
420.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
426.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
432.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
438.0000.000444.0000.000	0.0000	0.0000	0.0000 0.0000	194. 9602 194. 9602	0. 0000 0. 0000
444.000 0.000 450.000 0.000	0.0000 0.0000	0.0000 0.0000	0.0000	194. 9602	0.0000
456.000 0.000 456.000	0.0000	0.0000	0.0000	194. 9602	0.0000
462.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
468.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
474.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
480.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
486.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
492.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
498.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
504.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
510.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
516.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
522.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
528.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
534.000 0.000 E40.000	0.0000	0.0000	0.0000 0.0000	194.9602	0.0000
540.0000.000546.0000.000	0.0000 0.0000	0. 0000 0. 0000	0.0000	194. 9602 194. 9602	0. 0000 0. 0000
540.000 0.000 552.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
558.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
564.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
570.000 0.000	0.0000	0.0000	0.0000	194, 9602	0.0000
576.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
582.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
588.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000
594.000 0.000	0.0000	0.0000	0.0000	194.9602	0.0000
600.000 0.000	0.0000	0.0000	0.0000	194. 9602	0.0000

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection	=	
Computed slope at pile head	=	00335409
Computed slope at pile head Maximum bending moment	=	1651454.896 lbs-in
Maximum shear force	=	41900.000 lbs
Depth of maximum bending moment	=	78.000 in
Depth of maximum shear force	=	0.000 in
Number of iterations	=	13
Number of zero deflection points	=	22

Napa River / Napa Creek Flood Protection Project, Structural Design Calculations for 100% Submittal (March 2005)

Napa24AMax

	Su	mmary of Pile	e-head Respor	ise	
Definition of	symbols for	pile-head bou	undary condit	i ons:	
y = pile-head M = pile-head V = pile-head S = pile-head R = rotationa	moment, lbs- shear force, slope, radia	in Ibs Ins	in-Ibs/rad		
BC Bounda Type Conditi 1	ry Bounda on Conditi 2	on Axia I be	al Pile He d Deflect s in	ead Maximum ion Moment in-Ibs	Maximum Shear Ibs
				2798 1. 651E+06	
	Pile-	head Deflecti	on vs Pile	lenath	
Boundary Cond	lition Type 1,	Shear and Mo	oment		
Shear = 41900. bs Moment = 0. in-lbs Axial Load = 88200. bs					
Lenath	Pile Head Deflection in	Moment	Shear		
in in in-lbs lbs 600.000 .27984028 1651454.896 41900.000 570.000 .27959828 1649720.067 41900.000 540.000 .27955372 1648395.136 41900.000 510.000 .27956165 1649395.802 41900.000 510.000 .27956165 1649395.802 41900.000					

540.000	. 21900312	1048393.130	41900.000
510.000	. 27956165	1649395.802	41900.000
480.000	. 27972084	1650386.050	41900.000
450.000	. 27953744	1649326.265	41900.000
420.000	. 27953160	1649358.869	41900.000
390.000	. 27956456	1650196.570	41900.000
360.000	. 27951241	1649725.995	41900.000
330.000	. 27951766	1649722.315	41900.000

The analysis ended normally.

Napa36B-JL _____ LPILE Plus for Windows, Version 4.0 (4.0.10) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) Copyright ENSOFT, Inc., 1985-2003 AII Rights Reserved _____ This program is licensed to: david an mge Name of input data file: Name of output file: Name of plot output file: Name of runtime file: C: \DA Works\Lpile\ Napa36B-JL. I pd Napa36B-JL. I po Napa36B-JL. I pp Napa36B-JL. I pr Time and Date of Analysis Date: March 27, 2005 Time: 1:51:47 _____ Problem Title _____ Napa Project--Wall #1 Type B-36 CIDH Pile, Left of Joint (Station 4+67)-AB Program Options · · Units Used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: - Only internally-generated p-y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis includes automatic computation of pile-top deflection vs. pile embedment length No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile Additional p-y curves computed at specified depths Solution Control Parameters: - Number of pile increments 100 Page 1

Napa36B-JL - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry Pile Length 480.00 in Depth of ground surface below top of pile = -36.00 in Slope angle of ground surface .00 deg. Structural properties of pile defined using 2 points PileMoment ofPileXDiameterInertiaAreaininin**4Sq.in0.000036.000Sq.in Poi nt Modul us of Depth Elasticity
 in
 in**4
 Sq. in

 0.0000
 36.000
 82448.0000
 1018.0000

 480.0000
 36.000
 82448.0000
 1018.0000
 lbs/Sq.in _ _ _ _ _ 3500000.000 1 2 3500000.000 _____ Soil and Rock Layering Information The soil profile is modelled using 4 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = -36.000 in 276.000 in 60.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 60.000 lbs/in**3 Layer 2 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 276.000 in 420.000 in Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 420.000 in 564.000 in 60.000 lbs/in**3 60.000 lbs/in**3 Layer 4 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = 564.000 in 636.000 in 500.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 500.000 lbs/in**3 (Depth of lowest layer extends 156.00 in below pile tip) _____

Effective Unit Weight of Soil vs. Depth

Distribution of effective unit weight of soil with depth is defined using 8 points

Point No.	Depth X in	Eff. Unit Weight Ibs/in**3
1	-36.00	. 04110
2	276.00	. 04110
3	276.00	. 03180
4	420.00	. 03180
5	420.00	. 04110
6	564.00	. 04110
7	564.00	. 03180
8	636.00	. 03180

_____ Shear Strength of Soils _____

Distribution of shear strength parameters with depth defined using 8 points

Point No.	Depth X in	Cohesion c Ibs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	-36.000	. 00000	39.00		
2	276.000	. 00000	39.00		
3	276.000	3. 47000	. 00	. 02000	. 0
4	420.000	3. 47000	. 00	. 02000	. 0
5	420.000	. 00000	39.00		
6	564.000	. 00000	39.00		
7	564.000	8.33000	. 00	. 00500	. 0
8	636.000	8.33000	. 00	. 00500	. 0

Notes:

- (1)
- (2)
- Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. (3)
- (4)

Loadi ng Type ------

Static loading criteria was used for computation of p-y curves

_____ Pile-head Loading and Pile-head Fixity Conditions -----

Number of loads specified = 1

Load Case Number 1

	Napa36B-JL
Pile-head boundary conditions are S	Shear and Moment (BC Type 1)
	71800.000 Ibs
Bending moment at pile head =	4660800.000 in-1bs
Axial load at pile head =	41600.000 Ibs
•	

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Output of p-y Curves at Specified Depths

p-y curves are generated and printed for verification at 6 depths.

Depth No.	Depth Below Pile Head in	Depth Below Ground Surface in
1	. 000	36.000
2	100.000	136.000
3	200.000	236.000
4	300.000	336.000
5	400.000	436.000
6	480.000	516.000

Depth of ground surface below top of pile = -36.00 in

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	1	
Depth below pile head	=	. 000	in
Depth below ground surface	=	36.000	in
Equivalent Depth (see note)	=	36.000	in
Pile Diameter	=	36.000	
Angle of Friction	=	39.000	deg.
Avğ. Eff. Unit Weight	=		lbš/in**3
k	=	60.000	рсі
A (static)	=	2. 1100	
B (static)	=	1. 5400	
Pst	=	447.300	
Psd	=	4844.679	
Ps	=	447.300	
pu	=	943.802	lbs/in
Cbar	=	801. 3264	
n	=	3. 3772	
m	=	339. 9477	
yk	=	. 2445	in
ym	=	. 6000	
yu	=	1. 3500	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in p, lbs/in

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	1	
Depth below pile head	=	100.000	in
Depth below ground surface	=	136.000	in
Equivalent Depth (see note)	=	136.000	in
Pile Diameter	=	36.000	
Angle of Friction	=	39.000	deg.
Avg. Eff. Unit Weight	=		lbš/in**3
k	=	60.000	рсі
A (static)	=	. 9356	
B (static)	=	. 5700	
Pst	=	4053.943	
Psd	=	18302.122	
Ps	=	4053.943	
pu	=	3792.689	lbs/in
Cbar	=	3003.1313	
n	=	1. 9491	
m	=	1975. 9219	
yk	=	. 1284	
ym	=	. 6000	
yu	=	1.3500	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000 . 0500 . 1000 . 1500 . 2000 . 2500 . 3000 . 3500 . 4000 . 4500 . 5000 . 5500	. 000 408. 000 816. 000 1134. 643 1315. 105 1474. 624 1619. 220 1752. 482 1876. 753 1993. 661 2104. 397 2209. 860

. 6000	2310. 748
1.3500	3792.689
37.3500	3792.689
73.3500	3792.689
109.3500	3792.689

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	1	
Depth bélow pile head	=	200.000	in
Depth below ground surface	=	236.000	in
Equivalent Depth (see note)	=	236.000	in
Pile Diameter	=	36.000	
Angle of Friction	=	39.000	
Avg. Eff. Unit Weight	=		lbš/in**3
k	=	60.000	рсі
A (static)	=	. 8800	
B (static)	=	. 5000	
Pst	=	11137.270	lbs/in
Psd	=	31759. 565	
Ps	=	11137.270	lbs/in
pu	=	9800.798	lbs/in
Cbar	=	7596. 8368	
n	=	1. 6447	
m	=	5642.8835	
yk	=	. 2042	in
ym	=	. 6000	
yu	=	1. 3500	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000 . 0500 . 1000 . 1500 . 2000 . 2500 . 3000 . 3500 . 4000 . 4500 . 5000 . 5500 . 6000 1. 3500 37. 3500 73. 3500	$\begin{array}{c} . 000 \\ 708.\ 000 \\ 1416.\ 000 \\ 2124.\ 000 \\ 2832.\ 000 \\ 3270.\ 245 \\ 3653.\ 613 \\ 4012.\ 603 \\ 4351.\ 964 \\ 4675.\ 047 \\ 4984.\ 327 \\ 5281.\ 695 \\ 5568.\ 635 \\ 9800.\ 798 \\ 9800.\ 798 \\ 9800.\ 798 \\ 9800.\ 798 \end{array}$
109. 3500	9800. 798

Napa36B-JL p-y Curve Computed Using the Soft Clay Criteria for Static Loading Conditions
Soil Layer Number=2Depth below pile head=300.000 inDepth below ground surface=336.000 inEquivalent Depth=1462.217 inPile Diameter=36.000 inCohesion, c=3.470 lbs/in**2Avg Eff Unit Weight=.04044 lbs/in**3E50 parameter=.500V50=1.80000 inp-multiplier=1.00000
y, in p, lbs/in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
p-y Curve Computed Using the Soft Clay Criteria for Static Loading Conditions
Soil Laver Number - 2

Soil Layer Number Depth below pile head Depth below ground surface Equivalent Depth Pile Diameter Cohesion, c Avg Eff Unit Weight E50 parameter Default J parameter Y50 p-multiplier y-multiplier			in in Ibs/in**2 Ibs/in**3
y, in p,	lbs∕in	l	
. 0000	. 000		

. 0000	. 000	
. 0144	112. 428	
. 4500	354.126	
. 9000	446. 171	
1.3500	510. 738	
1.8000	562.140	
2.2500	605.547	
2.7000	643.490	
3. 1500	677.419	
3.6000	708. 252	

4.0500	736. 612
4.5000	762. 941
4.9500	787. 569
5. 4000	810. 746
14. 4000	1124. 280
27. 0000	1124. 280
36.0000	1124. 280

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	3	
Depth below pile head	=	480.000	in
Depth below ground surface	=	516.000	in
Equivalent Depth (see note)	=	367.479	in
Pile Diameter	=	36.000	in
Angle of Friction	=	39.000	deg.
Avg. Eff. Unit Weight	=	. 03850	lbs/in**3
k	=	60.000	рсі
A (static)	=	. 8800	•
B (static)	=	. 5000	
Pst	=	24115.408	lbs/in
Psd	=	65055.439	lbs/in
Ps	=	24115.408	lbs/in
pu	=	21221.559	lbs/in
Cbar	=	16449. 3465	
n	=	1. 6447	
m	=	12218. 4731	
yk	=	. 4736	in
ym	=	. 6000	
yu	=	1.3500	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000	. 000
. 0500	1102. 436
. 1000	2204. 871
. 1500	3307. 307
. 2000	4409. 742
. 2500	5512. 178
. 3000	6614. 613
. 3500	7717. 049
. 4000	8819. 484
. 4500	9921. 920
. 5000	10792. 509
. 5500	11436. 395
. 6000	12057. 704
1. 3500	21221. 559
37. 3500	21221. 559
73. 3500	21221. 559
109. 3500	21221. 559

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shea	ar and	Moment (BC Type 1)
Specified shear force at pile head	=	71800.000 Ibs
Specified bending moment at pile head	=	4660800.000 in-1bs
Specified axial load at pile head	=	41600.000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth X in	Deflect. y in	Moment M Ibs-in	Shear V Ibs	SI ope S Rad.	Total Stress I bs/i n**2	Soil Res p Ibs/in
$\begin{array}{c} 0.\ 000\\ 4.\ 800\\ 9.\ 600\\ 14.\ 400\\ 19.\ 200\\ 24.\ 000\\ 28.\ 800\\ 33.\ 600\\ 38.\ 400\\ 43.\ 200\\ 48.\ 000\\ 52.\ 800\\ 57.\ 600\\ 62.\ 400\\ 67.\ 200\\ 72.\ 000\\ 72.\ 000\\ 72.\ 000\\ 72.\ 000\\ 74.\ 800\\ 86.\ 400\\ 91.\ 200\\ 96.\ 000\\ 100.\ 800\\ 105.\ 600\\ 110.\ 400\\ 115.\ 200\\ 120.\ 000\\ 124.\ 800\\ 129.\ 600\\ 134.\ 400\\ 139.\ 200\\ 124.\ 800\\ 153.\ 600\\ 134.\ 400\\ 139.\ 200\\ 144.\ 000\\ 148.\ 800\\ 153.\ 600\\ 158.\ 400\ 158.\ 40$	$\begin{array}{c} . 421009\\ . 400006\\ . 379403\\ . 359224\\ . 339494\\ . 320236\\ . 301471\\ . 283218\\ . 265495\\ . 248316\\ . 231696\\ . 215644\\ . 200172\\ . 185284\\ . 170986\\ . 157282\\ . 144171\\ . 131653\\ . 119725\\ . 108382\\ . 097619\\ . 087428\\ . 077800\\ . 068723\\ . 060188\\ . 052181\\ . 044688\\ . 037694\\ . 031185\\ . 025144\\ . 019555\\ . 014400\\ . 009661\\ . 015411\\ . 015284\\ . 005486\\ . 005486\\ . 005481\\ . 005486\\ . 005481\\ . 005486\\ . 005481\\ . 005486\\ . 005481\\ . 011029\\ . 013356\\ . 015411\\ . 017210\\ \end{array}$	4. $661E+06$ 4. $999E+06$ 5. $321E+06$ 5. $625E+06$ 5. $910E+06$ 6. $173E+06$ 6. $414E+06$ 6. $631E+06$ 6. $823E+06$ 7. $130E+06$ 7. $243E+06$ 7. $330E+06$ 7. $425E+06$ 7. $425E+06$ 7. $425E+06$ 7. $425E+06$ 7. $390E+06$ 7. $334E+06$ 7. $327E+06$ 7. $162E+06$ 7. $162E+06$ 7. $162E+06$ 7. $162E+06$ 6. $613E+06$ 6. $613E+06$ 6. $613E+06$ 6. $654E+06$ 5. $864E+06$ 5. $864E+06$ 5. $439E+06$ 4. $769E+06$ 4. $769E+06$ 4. $769E+06$ 4. $313E+06$ 4. $313E+06$ 4. $313E+06$ 4. $365E+06$ 3. $636E+06$ 3. $636E+06$ 3	71800.0000 68623.0053 65059.8637 61141.3788 56900.0664 52354.5330 47529.8992 42472.3049 37219.9423 31798.4588 26245.8208 20685.7412 15230.2610 9906.8717 4740.4822 -246.5525 -5034.3885 -9605.6410 -13945.3195 -18040.7551 -21881.5182 -25459.3277 -28767.9549 -31803.1195 -34562.3820 -37045.0314 -39251.9694 -41185.5927 -42849.6736 -42249.2401 -45390.4562 -46927.4599 -47340.1932 -47528.2401 -47501.7024 -47271.1411 -46847.4766	$\begin{array}{c} 004414 \\ 004334 \\ 004248 \\ 004157 \\ 003961 \\ 003961 \\ 003856 \\ 003748 \\ 003636 \\ 003521 \\ 003403 \\ 003284 \\ 003163 \\ 003163 \\ 003040 \\ 002917 \\ 002793 \\ 002793 \\ 002670 \\ 002244 \\ 002203 \\ 002244 \\ 002203 \\ 002242 \\ 002205 \\ 001242 \\ 002265 \\ 001948 \\ 001212 \\ 001307 $	$\begin{array}{c} 1058. \ 4076\\ 1132. \ 2800\\ 1202. \ 6102\\ 1269. \ 0072\\ 1331. \ 1168\\ 1388. \ 6162\\ 1441. \ 1902\\ 1488. \ 5688\\ 1530. \ 5332\\ 1566. \ 8938\\ 1597. \ 4855\\ 1622. \ 1982\\ 1641. \ 1264\\ 1654. \ 3946\\ 1662. \ 1549\\ 1664. \ 5843\\ 1661. \ 8817\\ 1654. \ 2657\\ 1641. \ 9716\\ 1625. \ 2495\\ 1604. \ 3613\\ 1579. \ 5790\\ 1551. \ 1820\\ 1551. \ 1820\\ 1519. \ 4551\\ 1484. \ 6869\\ 1447. \ 1672\\ 1407. \ 1862\\ 1365. \ 0319\\ 1320. \ 9893\\ 1275. \ 3387\\ 1228. \ 3545\\ 1180. \ 3040\\ 1131. \ 4466\\ 1082. \ 0327\\ 1032. \ 3032\\ 982. \ 4885\\ 932. \ 8082\\ 883. \ 4706\\ 834. \ 6725\\ 786. \ 5987\\ 739. \ 4221\\ 693. \ 3037\\ 648. \ 3923\\ \end{array}$	$\begin{array}{c} -620.\ 2471\\ -703.\ 5007\\ -781.\ 1417\\ -851.\ 5604\\ -915.\ 6532\\ -978.\ 3191\\ -1031.\ 9450\\ -1075.\ 3859\\ -113.\ 0985\\ -1145.\ 8530\\ -1145.\ 8530\\ -1167.\ 7462\\ -1148.\ 9536\\ -1124.\ 1632\\ -1093.\ 9157\\ -1058.\ 7467\\ -1019.\ 1844\\ -975.\ 7473\\ -928.\ 9412\\ -879.\ 2581\\ -827.\ 1734\\ -773.\ 1445\\ -717.\ 6095\\ -660.\ 9852\\ -603.\ 6667\\ -546.\ 0260\\ -488.\ 4112\\ -431.\ 1463\\ -374.\ 5301\\ -318.\ 8369\\ -264.\ 3158\\ -211.\ 1909\\ -159.\ 6618\\ -109.\ 9038\\ -62.\ 0684\\ -16.\ 2844\\ 27.\ 3418\\ 68.\ 7254\\ 107.\ 8015\\ 144.\ 5248\\ 178.\ 8680\\ 210.\ 8209\\ 240.\ 3888\\ 267.\ 5913\\ \end{array}$
2011000	018770	2.,002.00	Page		0.0.0720	20,.07,0

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection	=	.42100917 in
	=	00441437
	=	7437358.642 lbs-in
Maximum shear Force	=	71800.000 Ibs
Depth of maximum bending moment	=	72.000 in
Depth of maximum shear force	=	0.000 in
Number of iterations	=	12
Number of zero deflection points	=	2

-----Summary of Pile-head Response _____ Definition of symbols for pile-head boundary conditions: = pile-head displacment, in y = pile-nead urspress. M = pile-head moment, lbs-in choor force lb V = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad Boundary Boundary BC Axi al Pile Head Maximum Maxi mum Type Condition Moment Condition Condition 1 2 Load Deflection lbs in Shear in-Ibs l bs -----------1 V= 71800.000 M= 4.66E+06 41600.0000 .4210 7.437E+06 71800.0000 _____ Pile-head Deflection vs. Pile Length ------Boundary Condition Type 1, Shear and Moment Shear 71800. Ibs = Moment = Axial Load = 4660800. in-lbs 41600. Ibs PilePile HeadMaximumLengthDeflectionMomentininin-lbs Maxi mum Shear l bs _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _
 480.000
 . 42100917
 7437358.642
 71800.000

 456.000
 . 42114490
 7436906.651
 71800.000

 432.000
 . 42121030
 7435485.202
 71800.000

 408.000
 . 42100963
 7435977.744
 71800.000

 384.000
 . 42166717
 7434184.040
 71800.000

 320.000
 . 42166717
 7434184.040
 71800.000
 . 42356876 360.000 7428832.972 71800.000 . 42613568 7420564.450 336.000 71800.000 312.000 7409714.676 71800.000 . 43003301 . 43408814 288.000 7399741.386 71800.000 264.000

The analysis ended normally.

. 44559254

Page 11

71800.000

7376036.238

Napa24C-49 _____ LPILE Plus for Windows, Version 4.0 (4.0.8) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) Copyright ENSOFT, Inc., 1985-2003 AII Rights Reserved _____ This program is licensed to: David An MGE Engineering, Inc. Path to file locations: C: \100%submital -napa-final \Lpile\ Napa24C-49. I pd Napa24C-49. I po Napa24C-49. I pp Napa24C-49. I pr Name of input data file: Name of output file: Name of plot output file: Name of runtime file: Time and Date of Analysis _____ Date: March 29, 2005 Time: 14:34: 3 _____ Problem Title _____ Napa River Flood Control Project--24 CIDH Pile, Type C-Sta. 4+75 to 9+30 Program Options · · Units Used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: - Only internally-generated p-y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis includes automatic computation of pile-top deflection vs. pile embedment length No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile Additional p-y curves computed at specified depths Solution Control Parameters: - Number of pile increments 100 Page 1

Napa24C-49 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry 480.00 in Pile Length Depth of ground surface below top of pile = -36.00 in Slope angle of ground surface .00 deg. Structural properties of pile defined using 2 points
 Depth
 Pile
 Moment of
 Pile

 X
 Diameter
 Inertia
 Area

 in
 in
 in**4
 Sq. in

 0.0000
 24.000
 16286.0000
 452.4000

 480.0000
 24.000
 16286.0000
 452.4000
 Poi nt Modul us of Elasticity lbs/Sq.in _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3500000.000 1 2 3500000.000 _____ Soil and Rock Layering Information _____ The soil profile is modelled using 4 layers Layer 1 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = -36.000 in 96.000 in 500.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 500.000 lbs/in**3 Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 96.000 in 456.000 in p-y subgrade modulus k for top of soil layer = 60.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 60.000 lbs/in**3 Layer 3 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 456.000 in 600.000 in 500.000 lbs/in**3 500.000 lbs/in**3 Layer 4 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = 600.000 in 756.000 in 60.000 lbs/in**3 p-y subgrade modulus k for bottom of layer 60.000 lbs/in**3 (Depth of lowest layer extends 276.00 in below pile tip)

Page 2

raye z

Napa24C-49 Effective Unit Weight of Soil vs. Depth			
Distribution of effective unit weight of soil with depth is defined using 8 points			
Point Depth X Eff. Unit Weight No. in Ibs/in**3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Shear Strength of Soils			
Distribution of shear strength parameters with depth defined using 8 points			
Point Depth X Cohesion c Angle of Friction E50 No. in Ibs/in**2 Deg. k_r	~m %		
1 -36.000 9.72200 .00 .005 2 96.000 9.72200 .00 .005 3 96.000 .00000 38.00 4 456.000 .00000 38.00 5 456.000 8.33000 .00 .005 6 600.000 8.33000 .00 .005 7 600.000 .00000 38.00 8 756.000 .00000 38.00	500 . 0 500 . 0 500 . 0		
Notes:			
 Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. 			
Loadi ng Type			
Static loading criteria was used for computation of p-y curves			
Pile-head Loading and Pile-head Fixity Conditions			
Number of Loads specified = 1			

Napa24C-49 Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 39000.000 lbs Bending moment at pile head = 1897200.000 lbs 1897200.000 in-lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Output of p-y Curves at Specified Depths p-y curves are generated and printed for verification at 6 depths. Depth Below Pile Head Depth Depth Below Ground Surface No. in in -----_ _ _ _ _ 1 . 000 36.000 100.000 2 136.000 3 200.000 236.000 4 300.000 336.000 5 400.000 436.000 6 480.000 516.000 Depth of ground surface below top of pile = -36.00 in p-y Curve Computed Using Criteria for Stiff Clay without Free Water Soil Layer Number=1Depth below pile head=.000 inDepth below ground surface=36.000 inEquivalent Depth=36.000 inDiameter=24.000 inUndrained cohesion, c=Average Eff. Unit Weight=Ensilon-50=.00500= = .00500 = 904.442 lbs/in = 2099.952 lbs/in - .300 in Epsilon-50 Pct Pcd y50 1.00000 p-multiplier = = y-multiplier 1.00000 p, lbs/in y, in

. 0000	. 000
. 0000	50. 861
. 0002	76.054
. 0005	90.444
. 0024	135. 246
. 0048	160. 835
. 0240	240. 505
. 0480	286.010
. 1200	359.638

Page 4

Napa24C-49

. 2400	427.684
. 3600	473.311
. 4800	508.605
1. 2000	639.537
2. 4000	760.542
4. 8000	904.442
5. 4000	904.442
6. 0000	904.442

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	2	
Depth below pile head	=	100.000	in
Depth below ground surface	=	136.000	in
Equivalent Depth (see note)	=	139. 503	in
Pile Diameter	=	24.000	
Angle of Friction	=	38.000	deg.
Avğ. Eff. Unit Weight	=	. 03431	lbš/in**3
k	=	60.000	рсі
A (static)	=	. 8800	•
B (static)	=	. 5000	
Pst	=	3039.477	lbs/in
Psd	=	8909.928	lbs/in
Ps	=	3039.477	lbs/in
pu	=	2674.740	lbs/in
Cbar	=	2652.8724	
n	=	1. 6447	
m	=	2310. 0023	
yk	=	. 0533	
ym	=	. 4000	
yu	=	. 9000	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000 . 0333 . 0667 . 1000 . 1333 . 1667 . 2000 . 2333 . 2667 . 3000 . 3333 . 3667 . 4000 . 9000 24. 9000 48. 9000 72. 9000	. 000 279. 006 511. 273 654. 209 779. 254 892. 484 997. 109 1095. 081 1187. 696 1275. 869 1360. 275 1441. 429 1519. 738 2674. 740 2674. 740 2674. 740
. 21 , 0000	207.117.10

Napa24C-49

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number Depth below pile head Depth below ground surface Equivalent Depth (see note) Pile Diameter Angle of Friction Avg. Eff. Unit Weight k A (static) B (static) Pst Psd Ps pu Cbar n m		2 200.000 in 236.000 in 239.503 in 24.000 in 38.000 deg. .03718 lbs/in**3 60.000 pci .8800 .5000 9103.040 lbs/in 16758.822 lbs/in 9103.040 lbs/in 8010.676 lbs/in 7945.1848 1.6447 6918.3107 2205 in	
	=	. 2205 in	
yk ym	=	. 2205 III . 4000 in	
yu	=	. 9000 in	
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	
y-mui ti pi i ci	-	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
y, in .0000 .0333 .0667 .1000 .1333 .1667 .2000 .2333 .2667 .3000 .3333 .3667 .4000 .9000 24.9000 48.9000	p, lbs/in .000 479.006 958.013 1437.019 1916.026 2395.032 2874.039 3279.698 3557.075 3821.147 4073.937 4316.990 4551.520 8010.676 8010.676 8010.676
72. 9000	8010. 676

p-y Curve in Sand Computed Using Reese Criteria

Soil Layer Number	=	2
Depth below pile head	=	300.000 in
Depth below ground surface Equivalent Depth (see note)	=	336.000 in
Equivalent Depth (see note)	=	339.503 in
Pile Diameter	=	24.000 in
Angle of Friction	=	38.000 deg.
Avg. Eff. Unit Weight	=	.03835 lbs/in**3
k	=	60.000 pci
A (static)	=	. 8800
		Page 6

		Napa24C-49
B (static)	=	. 5000
Pst	=	18347.372 lbs/in
Psd	=	24607.717 lbs/in
Ps	=	18347.372 lbs/in
pu	=	16145.687 lbs/in
Ċbar	=	16013. 6889
n	=	1.6447
m	=	13944.0025
yk	=	.5413 in
ym -	=	.4000 in
yu	=	.9000 in
p-multiplier	=	1.00000
y-multiplier	=	1.00000

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
. 0000 . 0333 . 0667 . 1000 . 1333 . 1667 . 2000 . 2333 . 2667 . 3000 . 3333 . 3667 . 4000 . 9000 24. 9000 48. 9000	$\begin{array}{c} 000\\ 679.\ 006\\ 1358.\ 013\\ 2037.\ 019\\ 2716.\ 026\\ 3395.\ 032\\ 4074.\ 039\\ 4753.\ 045\\ 5432.\ 051\\ 6111.\ 058\\ 6790.\ 064\\ 7469.\ 071\\ 8148.\ 077\\ 16145.\ 687\\ 16145.\ 687\\ 16145.\ 687\\ 16145.\ 687\end{array}$
72. 9000	16145. 687

p-y Curve in Sand Computed Using Reese Criteria

y-multiplier

Napa24C-49 1.00000

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

=

y, in	p, Ibs/in
y, in .0000 .0333 .0667 .1000 .1333 .1667 .2000 .2333 .2667 .3000 .3333 .3667 .4000 .9000 .24,9000	p, lbs/in .000 879.006 1758.013 2637.019 3516.026 4395.032 5274.039 6153.045 7032.051 7911.058 8790.064 9669.071 10548.077 23733.173 27080.169
48. 9000 72. 9000	27080. 169 27080. 169 27080. 169

p-y Curve Computed Using Criteria for Stiff Clay without Free Water

Soil Layer Number Depth below pile head Depth below ground surface Equivalent Depth Diameter Undrained cohesion, c Avg. Undrained cohesion, c Average Eff. Unit Weight Epsilon-50 Pct Pcd y50 p-multiplier y-multiplier	= 3254.393 in = 24.000 in = 8.33000 lbs/in**2
y, in	o, Ibs/in
. 0002 . 0005 . 0024 . 0048 . 0240 . 0480 . 1200 . 2400 . 3600 . 4800	. 000 101. 181 151. 301 179. 928 269. 055 319. 962 178. 455 568. 982 715. 457 350. 827 941. 595 011. 810 272. 283 Page 8

Napa24C-49

3.008
9. 280
9. 280
9. 280

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and	d Moment (BC Type 1)
Specified shear force at pile head =	39000.000 İbs
Specified bending moment at pile head =	1897200.000 in-1bs
Specified axial load at pile head =	26700.000 Ibs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth X in	Deflect. y in	Moment M Ibs-in	Shear V Ibs	SI ope S Rad.	Total Stress I bs/i n**2	Soil Res p Ibs/in
0.000 4.800 9.600 14.400 19.200 24.000 28.800 33.600 38.400 43.200 48.000 52.800 57.600 62.400 67.200 72.000 76.800 81.600 86.400 91.200 96.000 100.800 100.800 105.600 110.400 115.200 120.000 124.800 129.600 134.400 139.200 144.000 148.800 153.600 158.400 163.200 168.000	.626419 .588855 .552131 .516316 .481473 .447660 .414929 .383328 .352899 .323678 .295695 .268977 .243543 .219407 .196580 .175064 .154858 .135954 .183400 .101999 .086908 .073038 .060356 .048825 .038400 .029035 .020679 .038400 .029035 .020679 .038400 .029035 .0206780 .001125 .003742 .007880 .011344 .014191 .016475 .018250	1.897E+06 2.079E+06 2.248E+06 2.405E+06 2.548E+06 2.548E+06 2.795E+06 2.898E+06 3.065E+06 3.128E+06 3.128E+06 3.213E+06 3.213E+06 3.245E+06 3.245E+06 3.245E+06 3.192E+06 3.091E+06 3.091E+06 2.940E+06 2.845E+062.845E+06 2.845E+062.845E	39000.0000 36371.9489 33708.2220 31012.3417 28287.9282 25538.7025 22768.4905 19981.2283 17180.9671 14371.8817 11558.2782 8744.6055 5935.4687 3135.6458 350.1095 -2415.9454 -5157.0667 -7867.4971 -10541.1119 -13171.3321 -15832.7789 -18503.2184 -21067.7942 -23373.8992 -25283.2770 -26805.6197 -27961.7834 -29267.5820 -29466.3370 -29396.4149 -29083.8705 -28554.7752 -27834.9363 -26949.6436 -25923.4457	007906 007738 007556 007360 007152 006932 006701 006461 006214 005959 005433 005433 005433 004619 004892 004619 004346 004346 004346 004346 003537 003274 003274 003274 002522 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002287 002061 001266 00196 -9. 380E-04 -7. 918E-04 -6. 574E-04 -5. 345E-04 -4. 228E-04 -3. 220E-04	$\begin{array}{c} 1456.\ 9309\\ 1590.\ 9900\\ 1715.\ 6715\\ 1830.\ 8542\\ 1936.\ 4293\\ 2032.\ 3013\\ 2118.\ 3880\\ 2194.\ 6212\\ 2260.\ 9467\\ 2317.\ 3253\\ 2363.\ 7325\\ 2400.\ 1596\\ 2426.\ 6140\\ 2443.\ 1197\\ 2449.\ 7181\\ 2446.\ 4686\\ 2433.\ 4496\\ 2410.\ 7592\\ 2378.\ 5168\\ 2336.\ 8640\\ 2285.\ 9670\\ 2225.\ 4397\\ 2155.\ 6057\\ 2076.\ 8917\\ 1990.\ 7010\\ 1898.\ 4383\\ 1801.\ 4384\\ 1700.\ 9589\\ 1598.\ 1743\\ 1494.\ 1720\\ 1389.\ 9494\\ 1286.\ 4118\\ 1184.\ 3724\\ 1084.\ 5521\\ 987.\ 5813\\ 894.\ 0020\\ \end{array}$	$\begin{array}{c} -543.\ 6134\\ -551.\ 4078\\ -558.\ 4784\\ -564.\ 8051\\ -570.\ 3672\\ -575.\ 1435\\ -579.\ 1115\\ -582.\ 2478\\ -584.\ 5277\\ -585.\ 9246\\ -586.\ 4102\\ -585.\ 9246\\ -586.\ 4102\\ -585.\ 9534\\ -584.\ 5203\\ -582.\ 0726\\ -578.\ 5675\\ -573.\ 9554\\ -568.\ 1785\\ -561.\ 1676\\ -552.\ 8386\\ -543.\ 0865\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 8335\\ -565.\ 8496\\ -546.\ 835\\ -565.\ 8496\\ -565.\$
172.800	019567	1.0112+00	-24779.9552 Page	-2.318E-04	804.2710	249. 2421

	Nepel4	C 40		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -22229.\ 8976\\ -20864.\ 5199\\ -19464.\ 0327\\ -18045.\ 4233\\ -16624.\ 1458\\ -15214.\ 1054\\ -13827.\ 6612\\ -12475.\ 6477\\ -11167.\ 4108\\ -9910.\ 8580\\ -8712.\ 5200\\ -7577.\ 6216\\ -6510.\ 1613\\ -5512.\ 9960\\ -4587.\ 9309\\ -3735.\ 8117\\ -2956.\ 6191\\ -2249.\ 5621\\ -1613.\ 1715\\ -1045.\ 3909\\ -543.\ 6645\\ -105.\ 0215\\ 273.\ 8442\\ 596.\ 4985\\ 866.\ 6982\\ 1088.\ 3260\\ 1265.\ 3327\\ 1401.\ 6847\\ 1501.\ 3167\\ 1568.\ 0916\\ 1605.\ 7646\\ 1617.\ 9538\\ 1608.\ 1151\\ 1579.\ 5225\\ 1535.\ 2532\\ 1478.\ 1759\\ 1410.\ 9442\\ 1335.\ 9920\\ 1255.\ 5336\\ 1171.\ 5650\\ 1085.\ 8679\\ 1000.\ 0164\\ 915.\ 3841\\ 833.\ 1530\\ 754.\ 3229\\ 679.\ 7222\\ 610.\ 0174\\ 545.\ 7245\end{array}$	-1. $515E-04$ -8. $069E-05$ -1. $891E-05$ 3. $445E-05$ 7. $993E-05$ 1. $181E-04$ 1. $496E-04$ 1. $749E-04$ 1. $749E-04$ 2. $093E-04$ 2. $195E-04$ 2. $256E-04$ 2. $279E-04$ 2. $248E-04$ 2. $195E-04$ 2. $123E-04$ 2. $123E-04$ 2. $123E-04$ 2. $123E-04$ 2. $037E-04$ 1. $938E-04$ 1. $716E-04$ 1. $598E-04$ 1. $477E-04$ 1. $356E-04$ 1. $477E-04$ 1. $356E-04$ 1. $477E-04$ 1. $356E-04$ 1. $118E-04$ 1. $356E-04$ 1. $236E-04$ 1. $236E-04$ 1. $236E-04$ 1. $236E-05$ 5. $972E-05$ 5. $972E-05$ 5. $106E-05$ 4. $304E-05$ 3. $568E-05$ 2. $897E-05$ 5. $106E-05$ 4. $304E-05$ 5. $972E-05$ 5. $106E-05$ 4. $304E-05$ 5. $972E-05$ 5. $106E-05$ 4. $304E-05$ 5. $972E-05$ 5. $106E-05$ 4. $304E-05$ 5. $972E-05$ 5. $106E-05$ 4. $304E-05$ 5. $972E-06$ 6. $3. 789E-06$ -1. $461E-06$ -3. $789E-06$ -5. $712E-06$ -7. $265E-06$ -1. $461E-06$ -3. $789E-06$ -1. $003E-05$ -1. $042E-05$	718. 7633 637. 7761 561. 5340 490. 1933 423. 8475 362. 5328 306. 2333 254. 8866 208. 3895 166. 6026 129. 3566 96. 4561 67. 6854 75. 2249 96. 4448 114. 2638 128. 9392 140. 7294 149. 8915 156. 6784 161. 3369 164. 1055 165. 2128 164. 8763 163. 3013 160. 6802 157. 1918 153. 0008 148. 2583 143. 1009 137. 6516 132. 0201 126. 3028 120. 5836 114. 9345 109. 4162 104. 0791 98. 9635 94. 1010 89. 5149 85. 2208 81. 2280 77. 5396 74. 1536 71. 0635 68. 2589 65. 7261 63. 4490 61. 4092	$\begin{array}{c} 266.\ 7049\\ 279.\ 8721\\ 289.\ 0353\\ 294.\ 5011\\ 296.\ 5862\\ 295.\ 6127\\ 291.\ 9041\\ 285.\ 7810\\ 277.\ 5580\\ 267.\ 5407\\ 256.\ 0229\\ 243.\ 2846\\ 229.\ 5897\\ 215.\ 1854\\ 200.\ 3002\\ 185.\ 1437\\ 169.\ 9060\\ 154.\ 7576\\ 139.\ 8495\\ 125.\ 3133\\ 111.\ 2620\\ 97.\ 7907\\ 84.\ 9772\\ 72.\ 8834\\ 61.\ 5559\\ 51.\ 0273\\ 41.\ 3176\\ 32.\ 4352\\ 24.\ 3781\\ 17.\ 1352\\ 10.\ 6876\\ 5.\ 0095\\ .\ 069345\\ -4.\ 1688\\ -7.\ 7447\\ -10.\ 7008\\ -13.\ 0814\\ -14.\ 9319\\ -16.\ 2982\\ -17.\ 2261\\ -17.\ 7608\\ -17.\ 7463\\ -15.\ 0625\\ -13.\ 9812\\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -12.\ 8076\ -1$
360.000 6.80E-04 -47612.7743 364.800 7.10E-04 -41388.5736 369.600 7.24E-04 -35560.8163 374.400 7.23E-04 -30141.8845 379.200 7.10E-04 -25136.1100 384.000 6.86E-04 -20540.7557	1335. 9920	8.292E-06	94. 1010	-16. 2982
	1255. 5336	4.545E-06	89. 5149	-17. 2261
	1171. 5650	1.305E-06	85. 2208	-17. 7608
	1085. 8679	-1.461E-06	81. 2280	-17. 9463
	1000. 0164	-3.789E-06	77. 5396	-17. 8252
	915. 3841	-5.712E-06	74. 1536	-17. 4383
393.6006.17E-04-12540.6248398.4005.73E-04-9103.2839403.2005.26E-04-6012.8846408.0004.77E-04-3244.5463412.8004.26E-04-771.2591417.6003.75E-041435.4656422.4003.25E-043404.9883	754. 3229	-8. 481E-06	68. 2589	-16.0212
	679. 7222	-9. 393E-06	65. 7261	-15.0625
	610. 0174	-1. 003E-05	63. 4490	-13.9812
	545. 7245	-1. 042E-05	61. 4092	-12.8076
	487. 2185	-1. 059E-05	59. 5869	-11.5699
	434. 7438	-1. 056E-05	60. 0763	-10.2946
	388. 4227	-1. 036E-05	61. 5275	-9.0059
427. 2002. 76E-045166. 9783432. 0002. 29E-046750. 8879436. 8001. 85E-048185. 4608441. 6001. 44E-049498. 2682446. 4001. 07E-0410715. 2689451. 2007. 41E-0511860. 3867456. 0004. 62E-0512955. 0998460. 8002. 35E-0511740. 9666	348. 2643	-9.995E-06	62.8257	-7.7268
	314. 1718	-9.494E-06	63.9928	-6.4785
	285. 9488	-8.865E-06	65.0499	-5.2811
	263. 3049	-8.120E-06	66.0172	-4.1538
	245. 8599	-7.269E-06	66.9139	-3.1149
	233. 1470	-6.319E-06	67.7576	-2.1821
	-12. 5804	-5.274E-06	68.5643	-100.2043
	-456. 1218	-4.234E-06	67.6697	-84.6046
465. 6005. 54E-068577. 4161470. 400-8. 94E-064057. 3787475. 200-2. 18E-051071. 2062	-800. 4639 -781. 9729 -422. 7139 Page	-3.378E-06 -2.846E-06 -2.630E-06	65.3387 62.0082 59.8079	-58. 8713 66. 5759 83. 1154

Page 10

480.000 -3.4 Output Verifi	2E-05 0. cati on:	0000	Napa240 0. 0000	C-49 -2.585E-06	59. 0186	93. 0154
Computed forc		s are with	in speci	fied conver	aence limits	
					genee rim to	
Output Summar	y for Load Ca	ase No. 1:				
Pile-head deflection=.62641918 inComputed slope at pile head=00790575Maximum bending moment=3244577.711 lbs-inMaximum shear force=39000.000 lbsDepth of maximum bending moment=67.200 inDepth of maximum shear force=0.000 inNumber of iterations=21Number of zero deflection points=3						
Summary of Pile-head Response						
Definition of	symbols for	pile-head	boundary	/ conditions	:	
<pre>y = pile-head displacment, in M = pile-head moment, lbs-in V = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad</pre>						
BC Bounda Type Conditi 1	ry Bounda on Conditi 2	on L	oad I bs	Deflection in	Moment in-Ibs	Shear Ibs
	0.000 M= 1.90					
Pile-head Deflection vs. Pile Length						
Boundary Condition Type 1, Shear and Moment						
Shear = Moment =)0. lbs)0. in-lbs				
Moment = Axial Load =)0. Ibs				
		00. Ibs Maximu Moment in-Ibs		<i>l</i> aximum Shear Ibs		

		Napa	a24C-49
336.000	. 62738309	3243871.757	39000.000
312.000	. 62741641	3243931.947	39000.000
288.000	. 62750231	3243656.714	39000.000
264.000	. 62816991	3243422.764	39000.000

The analysis ended normally.

Napa24C-9E _____ LPILE Plus for Windows, Version 4.0 (4.0.8) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) Copyright ENSOFT, Inc., 1985-2003 AII Rights Reserved _____ This program is licensed to: David An MGE Engineering, Inc. Path to file locations: C: \100%submital -napa-final \Lpile\ Name of input data file: Napa24C-9E. I pd Napa24C-9E. I po Napa24C-9E. I pp Napa24C-9E. I pr Name of output file: Name of plot output file: Name of runtime file: Time and Date of Analysis _____ Date: March 29, 2005 Time: 14:37:35 _____ Problem Title _____ Napa River Flood Control Project -- 24 CIDH Pile, Type C-Sta. 9+30 to End of Wall _____ Program Options · · Units Used in Computations - US Customary Units, inches, pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: - Only internally-generated p-y curves used in analysis Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis includes automatic computation of pile-top deflection vs. pile embedment length No computation of foundation stiffness matrix elements Output pile response for full length of pile Analysis assumes no soil movements acting on pile Additional p-y curves computed at specified depths Solution Control Parameters: - Number of pile increments 100 Page 1

Napa24C-9E - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry 480.00 in Pile Length Depth of ground surface below top of pile = -36.00 in Slope angle of ground surface .00 deg. Structural properties of pile defined using 2 points Pile Moment of Pile Diameter Inertia Area in in**4 Sq.in Poi nt Modul us of Depth X Elasticity x in lbs/Sq.in
 0.0000
 24.000
 16286.0000
 452.4000

 480.0000
 24.000
 16286.0000
 452.4000
 _ _ _ _ _ 1 3500000.000 2 3500000.000 _____ Soil and Rock Layering Information The soil profile is modelled using 4 layers Layer 1 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = -36.000 in Distance from top of pile to bottom of layer = 108.000 in Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 108.000 in 204.000 in 60.000 lbs/in**3 60.000 lbs/in**3 Layer 3 is soft clay, p-y criteria by Matlock, 1970 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 204.000 in 432.000 in Layer 4 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = 432.000 in 636.000 in 500.000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 500.000 lbs/in**3 (Depth of lowest layer extends 156.00 in below pile tip) _____ Effective Unit Weight of Soil vs. Depth _____ Distribution of effective unit weight of soil with depth

Page 2

is defined using 8 points	is	defi ned	usi ng	8 points
---------------------------	----	----------	--------	----------

Napa24C-9E

Point No.	Depth X in	Eff. Unit Weight Ibs/in**3
1	-36.00	. 03360
2 3	108.00	. 03360
3	108.00	. 04110
4	204.00	. 04110
5	204.00	. 03470
6	432.00	. 03470
7	432.00	. 03470
8	636.00	. 03470

_____ Shear Strength of Soils _____

Distribution of shear strength parameters with depth defined using 8 points

Point No.	Depth X in	Cohesion c Ibs/in**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1	-36.000	5.55600	. 00	. 02000	. 0
2	108.000	5.55600	. 00	. 02000	. 0
3	108.000	. 00000	35.00		
4	204.000	. 00000	35.00		
5	204.000	4. 16700	. 00	. 02000	. 0
6	432.000	4. 16700	. 00	. 02000	. 0
7	432.000	8.33000	. 00	. 00500	. 0
8	636.000	8.33000	. 00	. 00500	. 0

Notes:

- Cohesion = uniaxial compressive strength for rock materials. (1)
- (2) (3)
- Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata.
- (4)

Loadi ng Type _____ Static loading criteria was used for computation of p-y curves _____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head $\ = \ 39000.000$ lbs Page 3

Bending r Axial loa	noment at pile ad at pile head	head = =	Napa24C-9E 1897200.000 in-1bs 26700.000 lbs
Non-zero may rota	moment at pile	head for t plied pile∙	this load case indicates the pile-head -head loading, but is not a free-head
	Outp	ut of p-y (Curves at Specified Depths
p-y curve	es are generate	d and print	ted for verification at 6 depths.
Depth No.	Depth Below in	Pile Head	Depth Below Ground Surface in
1 2 3 4 5 6	. 0 100. 0 200. 0 300. 0 400. 0 480. 0	00 00 00 00 00	36.000 136.000 236.000 336.000 436.000 516.000
p-y Curve Soil Laye Depth bel Depth bel Equivaler Pile Diar Cohesion, Avg Eff U E50 parar Default Y50 p-multipl y-multipl	e Computed Usin er Number ow pile head ow ground surf nt Depth neter C Jnit Weight neter J parameter ier	g the Soft = ace = = = = = = = = = = = = = = = = = = =	36.000 in 24.000 in 5.556 lbs/in**2 .03360 lbs/in**3 .02000 .500 1.20000 in 1.00000 1.00000
	y, in .0000 .0096 .3000 .6000 .9000 1.2000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3.0000 3.0000 3.6000 9.6000	p, lbs/ir .000 52.907 166.647 209.962 240.346 264.535 284.962 302.817 318.784 333.293 346.639 359.030 370.619 381.526 529.070	Page 4

		Napa24C-9E
18.0000	529.070	·
24.0000	529.070	

p-y Curve Computed Using the Soft Clay Criteria for Static Loading Conditions

Soil Layer Number	=	1
Depth bélow pile head	=	100.000 in
Depth below ground surface	=	136.000 in
Equi val ent Depth	=	136.000 in
Pile Diameter	=	24.000 in
Cohesion, c	=	5.556 lbs/in**2
Avg Eff Unit Weight	=	.03360 lbs/in**3
E50 parameter	=	. 02000
Default J parameter	=	. 500
Y50	=	1.20000 in
p-multiplier	=	1.00000
y-multiplier	=	1.00000

y, in	p, Ibs/in
$\begin{array}{c} . \ 0000 \\ . \ 0096 \\ . \ 3000 \\ . \ 6000 \\ . \ 9000 \\ 1. \ 2000 \\ 1. \ 2000 \\ 1. \ 5000 \\ 1. \ 8000 \\ 2. \ 1000 \\ 2. \ 1000 \\ 2. \ 4000 \\ 2. \ 7000 \\ 3. \ 0000 \\ 3. \ 3000 \\ 3. \ 3000 \\ 3. \ 6000 \\ 9. \ 6000 \\ 18. \ 0000 \\ 24. \ 0000 \end{array}$	$\begin{array}{c} . \ 000\\ 88.\ 751\\ 279.\ 548\\ 352.\ 209\\ 403.\ 178\\ 443.\ 755\\ 478.\ 021\\ 507.\ 973\\ 534.\ 757\\ 559.\ 097\\ 581.\ 484\\ 602.\ 268\\ 621.\ 710\\ 640.\ 006\\ 887.\ 510\\ 887.\ 510\\ 887.\ 510\\ 887.\ 510\\ \end{array}$

p-y Curve in Sand Computed Using Reese Criteria

		Napa24	C-9E
ym	=	. 4000	in
yu	=	. 9000	in
p-multiplier	=	1.00000	
y-multiplier	=	1.00000	

If Psd <= Pst then actual depth is used in place of equivalent depth in computations.

y, in	p, Ibs/in
$\begin{array}{c} 0,000\\ 0333\\ 0667\\ 1000\\ 1333\\ 1667\\ 2000\\ 2333\\ 2667\\ 3000\\ 3333\\ 3667\\ 4000\\ 9000\\ 24,9000\\ 48,9000\\ 72,9000\\ \end{array}$. 000 438.687 877.375 1264.977 1506.765 1725.706 1928.009 2117.448 2296.528 2467.019 2630.226 2787.147 2938.565 5171.874 5171.874 5171.874
,2. ,660	01711074

p-y Curve Computed Using the Soft Clay Criteria for Static Loading Conditions

Soil Layer Number Depth below pile head Depth below ground surface Equivalent Depth Pile Diameter Cohesion, c Avg Eff Unit Weight E50 parameter Default J parameter Y50 p-multiplier y-multiplier	= = = = = = = = = = = = = = = = = = =	3 300.000 in 336.000 in 624.125 in 24.000 in 4.167 lbs/in**2 .03606 lbs/in**3 .02000 .500 1.20000 in 1.00000 1.00000
y, in	p, lbs/in	1
. 0000 . 0096 . 3000 . 6000 . 9000 1. 2000 1. 5000 1. 8000 2. 1000 2. 4000 2. 7000 3. 0000	000 90.007 283.505 357.194 408.885 450.036 484.787 515.163 542.325 567.010 589.714 610.793	Page 6
		rage u

Napa24C-9E

18.0000 900.072 24.0000 900.072		
---	--	--

p-y Curve Computed Using the Soft Clay Criteria for Static Loading Conditions

Soil Layer Number Depth below pile head Depth below ground surfa Equivalent Depth Pile Diameter Cohesion, c Avg Eff Unit Weight E50 parameter Default J parameter Y50 p-multiplier y-multiplier	= = = = = = = = = = = = =		in in Ibs/in**2 Ibs/in**3
y, in .0000 .0096 .3000 .6000 .9000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3.0000 3.3000 3.6000 9.6000	p, lbs/ir .000 90.007 283.505 357.194 408.885 450.036 484.787 515.163 542.325 567.010 589.714 610.793 630.509 649.064 900.072	1	

p-y Curve Computed Using Criteria for Stiff Clay without Free Water

*2
*2
*3

Page 7

y, in	p, Ibs/in	Napa24C-9E
$\begin{array}{c} . \ 0000 \\ . \ 0002 \\ . \ 0002 \\ . \ 0005 \\ . \ 0024 \\ . \ 0048 \\ . \ 0240 \\ . \ 0480 \\ . \ 1200 \\ . \ 2400 \\ . \ 3600 \\ . \ 4800 \\ 1. \ 2000 \\ 2. \ 4000 \\ 4. \ 8000 \\ 5. \ 4000 \\ 6. \ 0000 \end{array}$. 000 101. 181 151. 301 179. 928 269. 055 319. 962 478. 455 568. 982 715. 457 850. 827 941. 595 1011. 810 1272. 283 1513. 008 1799. 280 1799. 280 1799. 280	

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear	
Specified shear force at pile head =	39000.000 Ibs
Specified bending moment at pile head =	1897200.000 in-1bs
Specified bending moment at pile head = Specified axial load at pile head =	26700.000 Ibs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Depth X in	Deflect. y in	Moment M Ibs-in	Shear V I bs	SI ope S Rad.	Total Stress I bs/i n**2	Soil Res p lbs/in
$\begin{array}{c} 0.\ 000\\ 4.\ 800\\ 9.\ 600\\ 14.\ 400\\ 19.\ 200\\ 24.\ 000\\ 28.\ 800\\ 33.\ 600\\ 38.\ 400\\ 43.\ 200\\ 43.\ 200\\ 48.\ 000\\ 52.\ 800\\ 57.\ 600\\ 62.\ 400\\ 67.\ 200\\ 72.\ 000\\ 76.\ 800\\ 81.\ 600\\ 86.\ 400\\ 91.\ 200\\ 96.\ 000\\ \end{array}$	1. 470 1. 405 1. 341 1. 278 1. 216 1. 155 1. 095 1. 036 978577 922351 . 867467 . 813975 . 761922 . 711351 . 662303 . 614815 . 568924 . 524660 . 482052 . 441127 . 401907	1.897E+06 2.083E+06 2.262E+06 2.434E+06 2.600E+06 2.758E+06 3.054E+06 3.054E+06 3.321E+06 3.444E+06 3.559E+06 3.667E+06 3.667E+06 3.861E+06 3.948E+06 4.026E+06 4.162E+06 4.219E+06 4.270E+06	39000. 0000 37629. 7985 36237. 2025 34823. 9293 33391. 7317 31942. 3983 30477. 7543 28999. 6619 27510. 0222 26010. 7754 24503. 9029 22991. 4288 21475. 4216 19957. 9967 18441. 3190 16927. 6061 15419. 1320 13918. 2315 12427. 3054 10948. 8267 9485. 3482	013586 013419 013236 013038 012826 012601 012362 012111 011848 011574 011289 010994 010994 01056 009727 009391 009348 008348 007991	1456. 9309 1593. 7383 1725. 6419 1852. 5641 1974. 4335 2091. 1850 2202. 7598 2309. 1059 2410. 1780 2505. 9374 2596. 3527 2681. 3994 2761. 0604 2835. 3260 2904. 1943 2967. 6710 3025. 7698 3078. 5128 3125. 9303 3168. 0614 3204. 9542	-283.0373 -287.8799 -292.3684 -296.4954 -300.2536 -303.6353 -306.6330 -309.2388 -311.4445 -313.2417 -314.6218 -315.5757 -316.0939 -316.1664 -315.7826 -314.9311 -313.5998 -311.7754 -309.4438 -306.5890 -303.1937
100. 800	. 364413	4. 313E+06	8039. 5116	007630	3236. 6658	-299. 2383

		Napa24C OF			
110.400.2 115.200 .2 120.000 .2 124.800 .2 129.600 .1 134.400 .1 139.200 .1 144.000 .1 148.800 .0 153.600 .0 158.400 .0 163.200 .0 177.600 .0 172.800 .0 177.600 .0 192.000 .0 201.600 .0 201.600 .0 211.200 .0 205.600 .0 235.200 .0 240.000 .0 244.800 .0 259.200 .0 244.800 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 273.600 .0 312.000 .0 314.800 .0 355.200 .0 360.000 .0 360.000 .0 360.000 .0 360.000 .0 360.000 .0 360.000 .0 364.800 .0 374.400 .0	51206 4. 231E+06 27731 4. 145E+06 27731 4. 145E+06 05931 4. 041E+06 85764 3. 920E+06 67182 3. 784E+06 50129 3. 633E+06 34545 3. 470E+06 20363 3. 298E+06 04072 2. 942E+06 14470 2. 764E+06 23750 2. 590E+06 31983 2. 423E+06 379237 2. 265E+06 51057 1. 987E+06 51057 1. 987E+06 55736 1. 858E+06 62891 1. 612E+06 645466 1. 494E+06 67438 1. 381E+06 68852 1. 272E+06 670179 1.065E+06 70179 1.065E+06 70177 967097.0363 69784 873644.8427 69038 784200.5487 67022 268445.8500 54358 210105.6901 51869 155459.6868 49318 104451.1406 44107 13102.	3868. 6134 $$ $-213. 5960$ $$ $-4292. 9032$ $$ $-8339. 1583$ $$ $-12320. 5356$ $$ $-16203. 3919$ $$ $-23528. 0921$ $$ $-26890. 0728$ $$ $-26890. 0728$ $$ $-32754. 3242$ $$ $-34945. 4341$ $$ $-36402. 8292$ $$ $-37252. 5120$ $$ $-36716. 6522$ $$ $-35589. 8989$ $$ $-37752. 5120$ $$ $-36716. 6522$ $$ $-35589. 8989$ $$ $-37252. 5120$ $$ $-36716. 6522$ $$ $-35589. 8989$ $$ $-31715. 5313$ $$ $-29044. 2603$ $$ $-27217. 1613$ $$ $-26451. 8276$ $-8. 9$ $-25666. 3968$ $-7. 4$ $-24865. 0159$ $-6. 0$ $-24051. 1541$ $-4. 7$ $-23227. 7750$ $-3. 5$ $-22397. 4525$ $-2. 4$ $-21562. 4521$ $-1. 3$ $-20724. 7898$ $-4. 4$ $-19048. 5492$ $-1. 1$ $-19048. 5492$ $-1. 1$ $-17381. 3014$ $2. 5$ $-14919. 9001$ $3. 9$ $-14114. 3733$ $4. 3$ $-13317. 9361$ $4. 6$ $-12531. 4655$ $4. 8$ $-1755. 7837$ $5. 0$ $-10991. 6629$ $5. 2$ $-10239. 8299$ $5. 3$ $-6687. 6409$ $5. 3$ $-6687. 6409$ $5. 3$ $-6687.$	006898 328 006528 329 006159 328 005792 326 005792 326 005428 322 005069 317 004716 311 004372 303 004036 294 003101 261 002816 248 002545 235 002290 222 002050 209 001613 184 001613 184 001613 184 001613 184 001613 184 001613 184 001613 184 001613 184 001613 184 00165 152 052-04 162 37E-04 107 39E-05 84 16E-05 77 87E-04 50 39E-04 51 502E-04 25 995E-04 25 995E-04 25	34.8229 -849 34.8229 -849 9307 -851 34.5450 -848 52.7279 -837 26.6514 -820 726.6514 -820 726.6314 -724 47.3913 -675 36.3621 -724 47.3913 -675 36.3621 -724 47.3913 -675 36.9444 -534 15.8682 -378 39.3413 -228 39.3413 -228 39.3413 -228 32.8076 175 57.6376 294 42.8631 157 28.0276 161 35.9238 165 46.6156 168 50.1538 170 $72.925.9173$ 173 18.1935 174 43.4201 174 71.6039 174 72.7456 174 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 73.8785 172 74.1078 133 74.1078 133 <td< td=""><td>. 7006 . 2347 . 6859 . 0255 . 9142 . 9931 . 8637 . 0566 . 9815 . 8438 . 4935 . 6073 . 3552 . 8928 . 6317 . 1216 . 1533 . 3272 . 5698 . 6317 . 1216 . 1533 . 3272 . 5698 . 8530 . 1766 . 1147 . 7743 . 4885 . 4202 . 3349 . 3857 . 5820 . 3349 . 6911 . 6896 . 3632 . 7398 . 8437 . 6896 . 3632 . 7398 . 8437 . 6896 . 3652 . 7178 . 8953 . 8437 . 6896 . 3152 . 7178 . 4351 . 4351 . 4351 . 4725 . 4351 . 4725 . 4351 . 4725 . 5435 . 6410 . 3152 . 7178 . 8280 . 3152 . 5435 . 6410 . 3857 . 6410 . 3152 . 5435 . 6410 . 3857 . 6410 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 3853 . 4040 . 38523 . 4040 . 4842 . 7935 . 4885 . 4936 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 7937 . 7937</td></td<>	. 7006 . 2347 . 6859 . 0255 . 9142 . 9931 . 8637 . 0566 . 9815 . 8438 . 4935 . 6073 . 3552 . 8928 . 6317 . 1216 . 1533 . 3272 . 5698 . 6317 . 1216 . 1533 . 3272 . 5698 . 8530 . 1766 . 1147 . 7743 . 4885 . 4202 . 3349 . 3857 . 5820 . 3349 . 6911 . 6896 . 3632 . 7398 . 8437 . 6896 . 3632 . 7398 . 8437 . 6896 . 3652 . 7178 . 8953 . 8437 . 6896 . 3152 . 7178 . 4351 . 4351 . 4351 . 4725 . 4351 . 4725 . 4351 . 4725 . 5435 . 6410 . 3152 . 7178 . 8280 . 3152 . 5435 . 6410 . 3857 . 6410 . 3152 . 5435 . 6410 . 3857 . 6410 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 38523 . 4040 . 3853 . 4040 . 38523 . 4040 . 4842 . 7935 . 4885 . 4936 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6885 . 4040 . 4842 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 8280 . 7937 . 6855 . 7937 . 7937
360.0000 364.8000	21999-235862.7390 19908-248720.9871	-2951.9907 4.4 -2391.6737 4.2	56E-04 23 52E-04 24	32. 8091 118 42. 2834 114	. 6759 . 7895
374.4000 379.2000	16031-266586. 3425 14252-271777. 4796	-1327.8995 3.8 -825.1421 3.5	817E-04 25	55. 4472 106	
384.0000 388.8000	12584-274599.7408 11026-275149.2964 09580-273523.9627	-342.2583 3.3 120.4148 3.1	61E-04 26 29E-04 26	51. 3517 98 51. 7566 94	. 5131 . 2673 . 9495
398.4000	08244-269823.2415 07017-264148.4054	983.7475 2.6	69E-04 25	57.8322 85	. 5557 . 0793

Page 9

	Napa240	C-9E		
408.000005897-256602.6506	1761. 8851	2.225E-04	248.0909	76.5096
412.800004881-247291.3443	2117.8991	2.013E-04	241.2300	71.8295
417.600003965-236322.4169	2451. 1195	1.809E-04	233. 1478	67.0123
422.400003144-223806.9755	2760. 7862	1.616E-04	223. 9261	62.0155
427.200002414-209860.2825	3045.8693	1.433E-04	213. 6497	56.7692
432.000001768-194603.3629	3419. 8038	1.263E-04	202.4080	99.0369
436.800001201-177062.5337	4199. 3981	1. 106E-04	189. 4834	225.7941
441.600 -7.06E-04-154317.4973	5214.7248	9.668E-05	172. 7242	197.2587
446.400 -2.73E-04-127025.9561	6058.2548	8.483E-05	152. 6150	154. 2122
451.200 1.08E-04 -96179.9953	6118. 7414	7.543E-05	129. 8868	-129.0094
456.000 4.51E-04 -68305.3739	5379. 5335	6.851E-05	109. 3480	-178. 9938
460.800 7.66E-04 -44554.0333	4461. 3068	6.376E-05	91.8473	-203.6006
465.600 .001063 -25493.1701	3443. 0601	6.081E-05	77.8027	-220. 6689
470.400 .001350 -11516.2426	2351. 6979	5.925E-05	67.5041	-234.0653
475.200 .001632 -2932.0564	1201. 1743	5.864E-05	61.1790	-245.3195
480.000 .001913 0.0000	0.0000	5.852E-05	59.0186	-255.1698

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection	=	1.46979886 in
Computed slope at pile head	=	01358650
	=	4387600.616 lbs-in
Maximum shear force	=	
	=	115.200 in
Depth of maximum shear force	=	0.000 in
Number of iterations	=	28
Number of zero deflection points	=	2

Summary of Pile-head R	lesponse

Definition of symbols for pile-head boundary conditions:

y = pile-head displacment, in M = pile-head moment, lbs-in V = pile-head shear force, lbs S = pile-head slope, radians R = rotational stiffness of pile-head, in-lbs/rad BC Pile Head Maxi mum Boundary Boundary Axi al Maximum Type Condition Condi ti on Deflection Load Moment Shear Ibs 2 1 in in-Ibs l bs 1 V= 39000.000 M= 1.90E+06 26700.0000 1.4698 4.388E+06 39000.0000 -----_ _ _ _ _ _ _ _ _ Pile-head Deflection vs. Pile Length _____ Boundary Condition Type 1, Shear and Moment Shear 39000. Ibs = Page 10

				Napa24C-9E
Moment	=	1897200.	in-Ibs	·
Axial Load	=	26700.	lbs	

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
in	in	in-lbs	Ibs
$\begin{array}{c} 480.\ 000\\ 456.\ 000\\ 432.\ 000\\ 408.\ 000\\ 384.\ 000\\ 360.\ 000\\ 336.\ 000\\ 312.\ 000\\ 288.\ 000\\ 264.\ 000\\ \end{array}$	1.46979886 1.46839770 1.48850195 1.47567339 1.48329151 1.49572061 1.53730311 1.62513322 1.81916295 2.01884044	4387600.616 4384920.430 4384670.359 4384003.829 4384787.531 4379186.412 4354570.300 4305573.345 4220653.912 4143886.323	39000.000 39000.000 39000.000 39000.000 39000.000 -40062.433 -45047.132 -51497.531 -58111.233

The analysis ended normally.

the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B Sacramento, CA 95827 916/361-3871

SHEET NO BY 🚅 JOB NO.

CALCULATIONS FOR

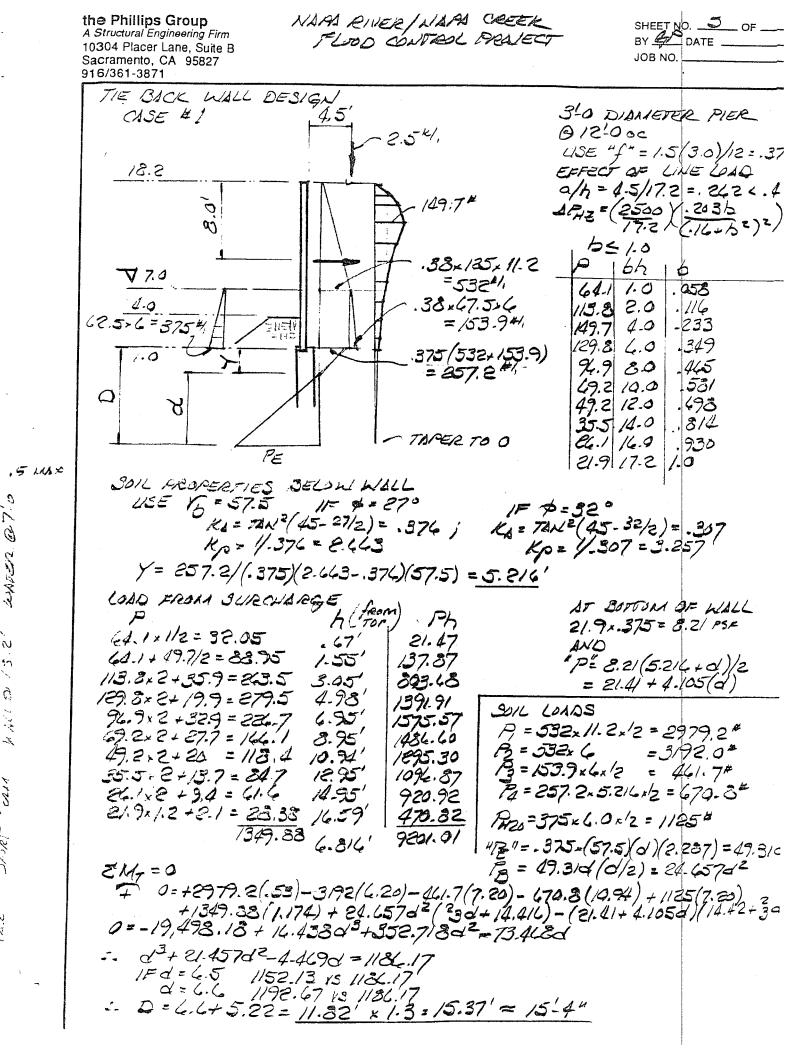
NAPA RIVER / NAPA CREEK FLOOD PROTECTION PROJECT

CONTRACT 2 WEST (BROWN STREET TO FIFTH STREET) VALUE ENGINEERING PLANS

RECEIVED

MAR 27 2006

VALLEY RES. OFFICE CORPS OF ENGINEERS



the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B Sacramento, CA 95827 916/361-3871

SHEET NO. ____OF BY ____DATE 3/15/66 JOB NO.

SOIL INFORMATION AT GENERAL STORE AREA STA. 15,35 THROUGH 14+30 (OLD STATION & OLOGE TO BLOODE) THIS WALL IS ADJACENT TO THE GENERAL STORE AND IS PACK FILLED WITH CLONTROLLED LOW STRENGTH MATERIALS). THIS MATERIAL WILL "JET. U.S" LIKE CONCRETE JO NO LATERAL PRESSURES ARE EXERTED ON THE WALL. THE INTENTION IS TO BUILD THE WALL IN LIFTS TO LIMIT THE PRESSURE EXERTED ON THE WALL BY THE BACKFILL. 194- = 115 ACF (MAX.) - CLSAN = 35° , RESISTING MATERIAL - & TO-33' DELSE DENSE SAND , GRAVEL YATOIST = 115 PCF, YGAT = 120 PCF 12=120-62-5=57.5PCF #= 38° -39 70 -53' CLAYS Ym = 115 POF, YSAT = 120 POF, 15 = 57.5 PCF R TEST \$= 15, C = 250 PSF 97557 \$= 92° C= 0 PSF QTEST \$= 0°, C= 1200 PSF AT PLAZA / NAPA RIVER INAL (3 STARY) STA. 16+30 THROUGH 19+48 (00 9TA- 2+00+ TO 4+50=) THE EACK WALL SUALYSIS r=125 x= \$=37° BACK FILL KACTIVE = .25, 16pass = 4.02, Gor = 130 PCE Ko=, 38 (AT REST) RESISTING MATERIAL SANDY CLAY Ym=115ACE, Ygar=120ACE, Yg=57.5AC Rrest \$=15°, C=250ASE Steet \$=32°, C=0ASE Rrest \$=0°, C=1400ASE +15 TO+4 FAT CLAY QUIT 13' VM=112PCF, Vg=120PCF, Vb=575m +1 TO -2' Rizer \$= 10° C= 500 PSF STEST \$= 27° C=0 PSF QTEST \$= 10° C=500 PSF -2'70 -6' SANDY CLAY Vm=115 PCF, Ygor=120 PCF, Yb=57.5 PCF RTEST \$= 15° C= 250 PSF STEAT #= 32° C=0 PSF Quest #= 0° C=1200 PSF CLAYEY SAND ; GRAVEL YM=123 MCM, YSAT=136 MCM, 6=73. -6 TO -26

the Phillips Group SHEET NO. ____ OF ____ NAPA RIVER/NAPA GREEK A Structural Engineering Firm BY CP DATE _ ROOD CONTRAL PROJECT 10304 Placer Lane, Suite B JOB NO. 5 Sacramento, CA 95827 916/361-3871 SOIL PROFILES 2+00 TO 4+75 GENERAL STORE TO PAST 3 STORY BUILL ESSENTIBLLY WILL FROM \mathcal{O} 5N 0. ひょう オフィノいのひ CASE FROM 18+15 TO 19+50 T TYPICAL WIDTH = 13:5 RAILING WEIGHT = 40#1, DEAD Q 1 CONC- CURS = [14x23.75-2×5.75] /124 × 150 9143 9-64 4-0: = 217.2 #/, DEND CONC. "BEAM" = 3.0 × 3.5 × 150 = 1575" PT. CONC. 9LAB = .75(150) = 112.5 #/1-1.0(150) = 150. #/1-x7.75' = 7.75(112.5+37.5/2) = 1017Q ELEV. 18.20' γ 0 $\tilde{+}$ È LF. ONC. SLABE (12+11.129)×150 = 144.56 # Z Г, 0 Ģ. 2×12 Ď x 2.25' = 325. 25*/, 0.4 MISC. = 2/12×120=20 PSIT Q) UNIBALANCED D+L MOMENTO (*-1)) FIN GANE @ PIER & MO = 40x 8.83' + 217x 8.83' + 133x 7.75x 5.625 + 37.5x7.75/2×4.33' - 165x 2.25x 2.87: = +7 29.57 *-1/1 DEAD FOR JLAB DESIGN MD= 6361.29 2-11. 12-174M @ PIER & ML = 300 x7.75 x 5. (25 = 13078.1 +-11, TOTAL UNBOLANICED ON = 20707.7*-ML FOR SLAB = 300 x 7.7572 = 9009.38 "-11. 0 0 Mu=1-4× C3(1-29+1-7×9007.38=24221.75*-1, 14 TRY. #5012 a = 9- for 2000 fy - 6000 Ð U a=.3/x60/.85,12,4=.456 +AAN = (.9X-31)(LO)(9-.452/2) = 146.84= 12.237 1= #5 8 6 'oc a= .912 #MALL = (.9) . 62/60 (9-. 912/2) = 236.05= 23-34-3 0 IF LIVE LOAD = 250 ASE ML = 7507.8 "." \mathcal{O} - Mue 21,669 #-1 2 23840 #-1 1-00 det #5 HORIZ. OGoc BOTTERA V) Ľ 121

3 57 G 1.74 -× CALA JSUNE

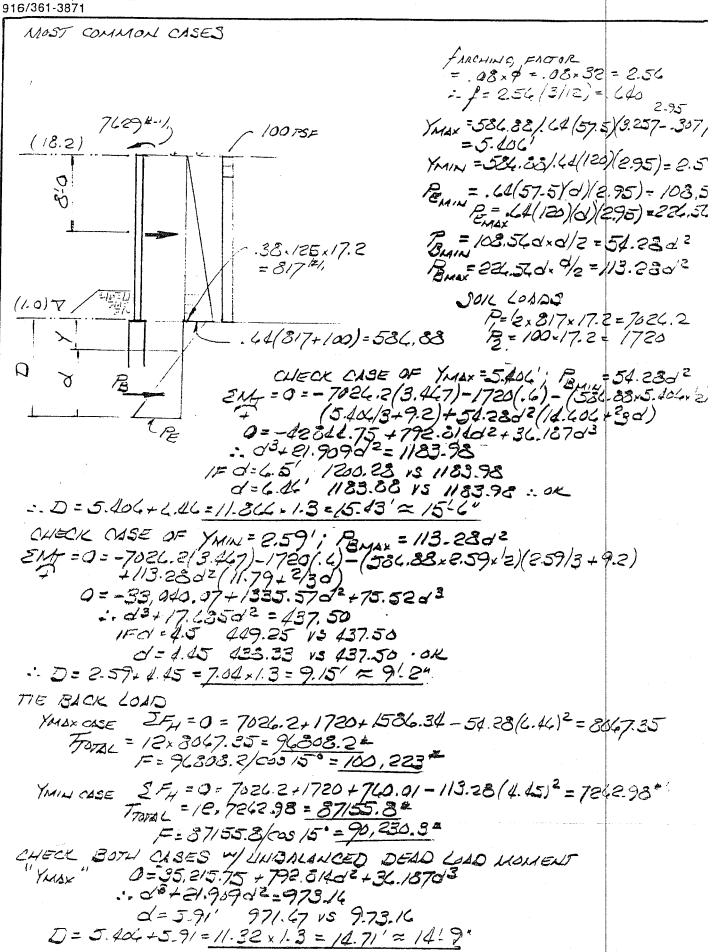
27

the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B Sacramento, CA 95827 916/361-3871 NIDAD RIVER/ NAMA CREEK FLODO ONTROL ARDJECT

SHEET NO. _____ OF ____ BY ____ DATE _____ JOB NO. _____

916/361-3871	
CASE#1	
THE BACK LOAD	
254=0=2979.2+3192.0+461-7+670.8-1125+1349.88+	48.50
-1074.04 = 6503.02=/1	
TTOTAL = 12×6503.62 = 78,036 # F=78,036/003.15° = 80,789#	
F=78,034/cos 15° = 80,789#	
MCANFILEVER = 47.5×83/6 + 32.05×7.33'+ 88-75×6.45'+ 263.5×4.	951
+ 277.5×3.02'+ 226.7×1.05=-7247.15#-11,	\sim
VCANTILEVER = 47.5×82/2+32.15+88.75+23.5+279.5+226.7=24	10.5#
POINT OF ZERO GHEAR	
V = 4503.02 - 2410.5 = 4092.52	
AT 7.0' V=4092.52-380 (4.2)-152 (4.2)/2-146.1-118.4=1	892.3
1892.8-84.7=532x+85.45x2/2 12.825x2+532x-1808,1=0 x=3.158	
12.325x2+532x-1808.1=0 x=3.158	
$M = 4092.52(7.352) - 320(7.353)^{2} - 152(4.2)(4.54)/2 - 152(5.153)^{2} $	s) ² /2
)-7217.15
CASE # ! NO SURCHARGE FROM DOZER, BUT ADD UNRALANCED DEAD LOAD MOMENT FROM 7 M= 7429.57* '	
UNBALANCED DEAD LOAD MOMENT FROM 7	OP.
P= 2979.2*, T2= 3192.0*, T3=461.7*, T2=670.3*, THEO=	1/25
"B" = 22.457a"	
$\frac{2M}{7} = 0 = +7629.57 + 2979.2(.53) - 3192(6.20) - 461-7(7.20) - 6$ $\frac{7}{7} + 1125(7.20) + 24.6576^2(^{2}_{3}d + 14.416)$	170.8/10.94
+ $+1125(7.2s) + 24.457d^{2}(^{2}d+14.4)$	
0=- 1311/1 / + 1/ 4320/3, 200- 1/0- 12	
$-d^3 + 21 - 424d^2 = 799.65$	
1= d = 5.4' 738.02 va 799.45	
$\frac{d^{3}+21-424d^{2}}{1=0} = 799.65$ $\frac{d^{3}+21-424d^{2}}{738.02} = 799.45$ $\frac{d^{2}}{4=5-42} = 794.44 v_{5} = 799.45$	
$:= Q = 5.43 + 5.22 = 10.45 \times 1.3' = 13.35' = 13-10''$	

the Phillips Group NAPA RIVER / NAPA CREEK SHEET NO. 5 OF A Structural Engineering Firm FLOOD CONTROL PREJECT BY _ DATE _ 10304 Placer Lane, Suite B JOB NO. Sacramento, CA 95827 916/361-3871 SEISMIC LOADS $K_{H} = -15 \varphi$ $K_{Y} = 0$ (Assumed) $\beta = 0$, $\delta = 0$, $\theta = 0$ SOIL PROPERTIES "DRIVING" SIDE BOTTOM OF WALL TO TOP OF WA Via = 125 Vg = 130 Vg = 67.5 \$=37° Kg = 25 Kp = 4.02 Kr = .33 RESISTING SIDE PROPERTIES VARY USE VM=115 Vg=120 V6=57.5 Ø=32° Kg=.37 Kp=3.2 DRIVING SIDE C,= 2(TAN 37°-.15) = 1.207 = 1.078 1+.15(TAN 37°) 1.1/3 $C_{2} = \frac{7AN 37^{\circ} - .15}{7AN 37^{\circ} (1 + .157AN 37^{\circ})} = \frac{.604}{.239} = .720$ a = TAN- (1.078+ (1.0782+4.604)2)/2 = 56.040 IC = 1- TAN 37° COT 56.04° = . 492/2.119 = .232 KA=K (B=0) K, =K KAE = KH / TANK = . 15/1-485= . 101 RESISTING SIDE (NEED TO FIND BOTH ACTIVE AND PASSIVE LOADS) C, = 2(TAN 32°-.15) = .950 = .869 $\frac{1}{1 + .15 TAN 32^{\circ}} = \frac{1}{1.094}$ $C_2 = \frac{7AN 32^{\circ} - .15}{7AN 32^{\circ} - .15} = \frac{475}{.683} = \frac{.495}{.683}$ $C_1 = \frac{7AN 32^{\circ} (1 + .157AN 32^{\circ})}{.683} = \frac{.683}{.683}$ $C_2 = \frac{7AN^{-1} (-369 + (.669^2 + 4.695)^2)}{.683} = \frac{.695}{.2} = \frac{.53.97^{\circ}}{.2}$ apassive = TAL- (-.369+ (.3692+ 4x-695)2)/2 = 86.82/ K= 1-TAN 32° COT 53.97° = .546/1.859 = .274 1+TAN 32° TAN 53.97° KA = KB = K = .294 KAE = KB /TRNK = .15/1.375 = .109 Kp = 1+ TAN 32° 007 26.821 = 2.234/.684=3.269 1-TAH 32° TAN 26-821 KDE = K, /TANIC = -15/TAN 26.821 = . 297

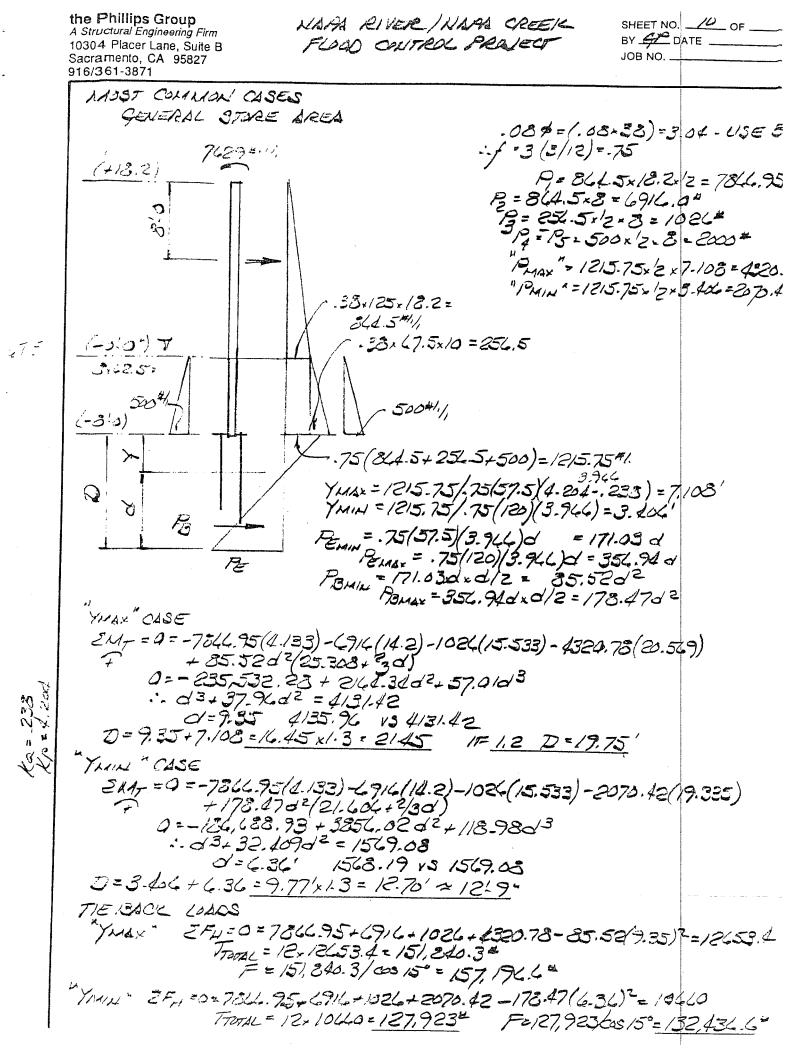

the Phillips Group NIAPA RIVER/NAPA CREEK SHEET NO. ____ OF ____ A Structural Engineering Firm FUDD CONTROL PROJECT BY APDATE _ 10304 Placer Lane, Suite B Sacramento, CA 95827 JOB NO. 916/361-3871 THE BACK WALL DESIGN TARCHING FACTOR SEISMIC LOADING = .03× \$= .08 32°= 2.56 7629 DEAD -f= 2.56(3/12)=.640 18.2 (=.15(14(.38'x150)=277" - = . 15 (3'x 3'x 150) = 203 #1, 15(14.36/12)150=26.92#1, .101x125 0 X17.2= 9 217.24 .232(125)×14.2 = 411.8 \$1, V 4.0 5x,10/x3=15 -252/(75)×3 1.0 =187.5 3.42.5 .64(411-8+47+187-5)=413-63 ## Yreax = 413.63/.64(57.5)(3.269-.109)=3.5 \mathbf{Q} NOTE: YANN = 413.63/-64/120) (3.269-. 107) = 1.704 PE = . (.d (57.5)(d)(3.16)= 116.29d PBMIN = 52,14 d 2 FErras = . 64(120)(d)(3.16) = 242.69d PBAMAX = 121-31012 CHECK CASE OF SOIL LODOS YMAX = 3.56 ' ; PBMIN = 58-14d 2 A=411.8x14.2x2=2923.78 SEISMIC LOAKS (WALL) PA = 277 #1. P = 2034, PWELL = 26.92×17.2 B= 111-8×3 = 1235.4 $R = 47 \times 3 \times 2 =$ 70.5 = 1/3. 4% 12= 187.5,3×12= 231.25 $\mathcal{E}M_{7}=0=+277(7.53)+203(5.5)-463(.6)$ 13-217.2×17.2× 2=1867.92 $P_2 = 1.52 \times 3 \times 12 = 2.28$ $P_3 = 3.52 \times 4/3, 63 \times 12 = 490.2$ -2923.78(1.467)-1235.4(7.7)-70.5(8.2) +1867.92(2.267)-2.28(8.2)+7629 PHZO = 187.5x3, 12 = 281.2: $O = -490.34(10.327) + 53.14d^{2}(23d+12.76)$ $O = -4694.99 + 38.76d^{2} + 741.866d^{2}$: d3+19.14d2=121.13 IF d= 2.5' 135.25 13 121-13 <u>D=3-56+25=6,06x1.3=7.9'~8-0</u> CASE OF YMIN = 1.704 7 PRMAX = 121-31 d2 P==413.63+1.704+2= 0=-4694.99+495.32(10/337)-352.41(9.768) = 352.41 + 121.3102 (10.904+230) 0=-3033.93+~1322.76d2+80.87d3 : d=+16.36d2 = 37.58 $I = d = 1.5 \quad 40.18 \quad v \le 37.58$ $D = 1.704 + 1.5 = 3.2 \cdot 1.3 = 4.16' = 4.27$ TIE BACK LOAD FOR YMAN $ZF_{4} = 0 = 277 + 203 + 4.3 + 2923.76 + 1235.4 + 70.5 + 12.7.92 + 493.34 + 2728 - 53.16(2.4)^{2} = 7.98.8^{-1}.$ T-372L= 7193.3x2= 86,386" F= 86,386/005/5"= 89433.4"

736.26

jur

the Phillips Group A Structural Engineering Firm NAPA RIVER / NAPA CREEK FLOOD CONTROL PROJECT SHEET NO. ____ OF ___ BY DATE _ 10304 Placer Lane, Suite B JOB NO. Sacramento, CA 95827 916/361-3871 SETSLAIC LODOING (CONT.) THE BACK LODD FOR YMAIN. 2 Fy = 0 = 277+203+463+2933.73+1235,4+70.5+1867.92+352.41+2.2 - 121.31(1.45)² =7150.2#1, Trotal = 7150.2×12 = 85,202.4# F=35,802.4/003.15° = 88,829#

the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B Sacramento, CA 95827 916/361-3871 MAPA RIVER/MAPA CREEK FLOOD CONTROL PROJECT SHEET NO. _____ OF _____ BY _____DATE ______ JOB NO. ______

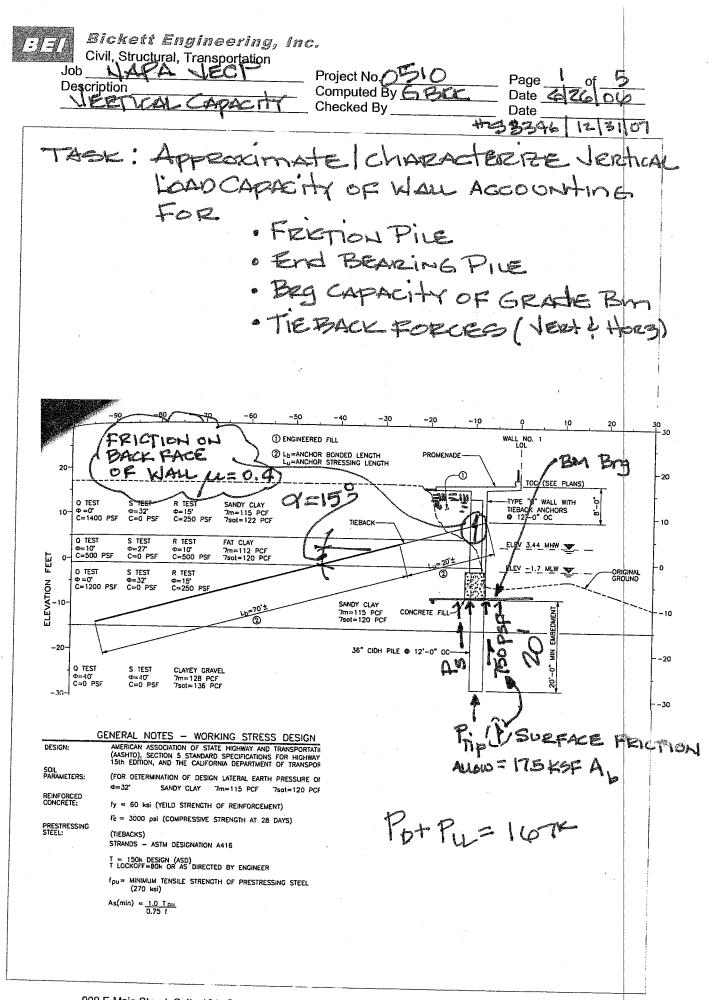

the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B

-

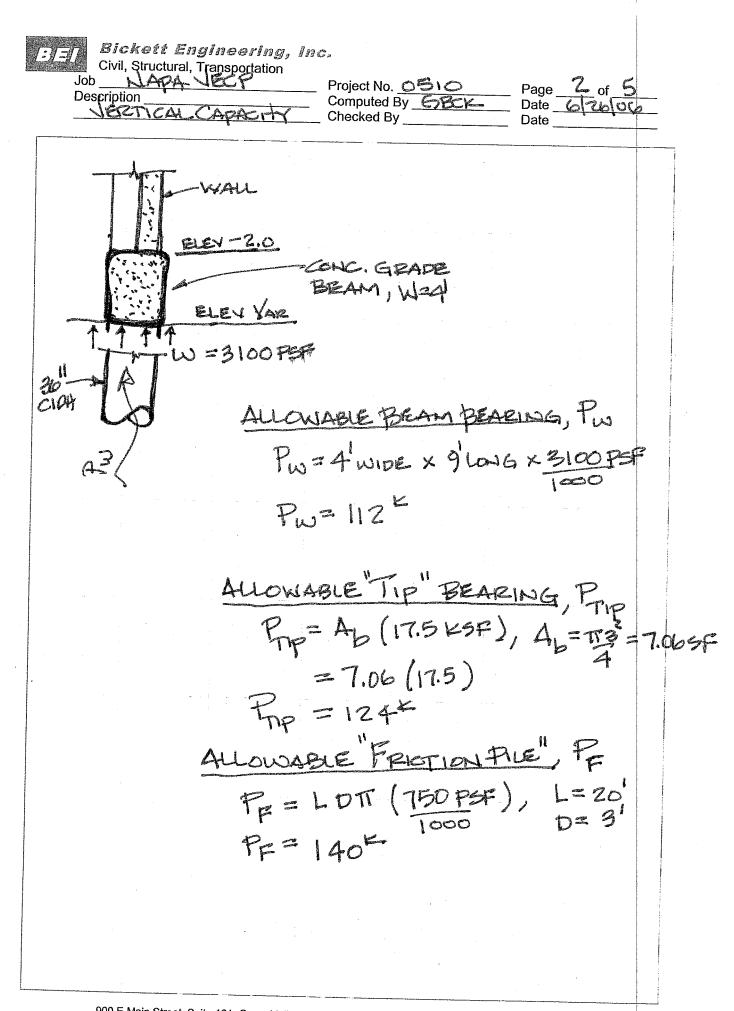
NAPA RIVER / NAPA CREEK

SHEET NO. ____OF ____ BY. ____ --

304 Placer Lane, Su cramento, CA _9582 5/361-3871	ite B FLOOD C 7	DHTPOL PROJECT	BY DATE JOB NO
بمحمدين استعام ويراستان فالمرجب المتأكم مطالبة بالمحمدات كالتاب	ASES (CONT.)		
LNEALAN	CED DEAD LODO MA	OMELT	
"Years"	0=25411.07+13	35.5702+75.5203	
1	: d3+ 17.635d2		
• • • •	d= 3.95 57	1.6 13 336.45	
	07+9.95= <u>6.54x</u>	1.3= 8.5' × 1.3 = 11.0:	T = //- /*
10 Years	254=0=+7026.2	2+1720+1586.24-5	1.28 (5.9) ² = 8434.
	T= 12×3434.5	4=101,238.5* 10915° = 104809.2	-
TO "YAGUL"	5 FUSO 2702 200	720 - 720 - 710 - 110	
	T= 12x7738.7	1720 + 760.01 - 113.23 16 = 92.365.14 1/cos 15 = 96.1414	, (J. 76) = - (J),
	F= 92865.	1/ 005 15 = 96,141	r
		/	
		1	
يەر بىر			······································


the Phillips Group A Structural Engineering Firm 10304 Placer Lane, Suite B Sacramento, CA 95827 916/361-3871 NAPA RIVER/NAPA CREEK FLOD CONTROL AROJECT

SHEET NO. _____ OF ____ BY _____ DATE _____ JOB NO. _____


SETSMIC LOADS AT GENERAL STORE AREA "RESISTING" SOIL PROPERTIES 'YM = 115 PCT, YGAT = 125 PCF, G = 27.5 PCF = 4 = 33° PROPERTIES FOR BOTH ACTIVE - 5 PASSINE" KLI = .15 G C = 21 TAN 33° - .15 = 1.2(3/1.117 = 1.13) 1 + .15 TAN 33° = .15 = .(31/.873 = .783 TAN 33° (14.15 TAN 33°) C = TAN 33° (14.15 TAN 57.78° = .508/2.24 = .227 C = 227 KAE = Kh / TAN K = .15/TAN 57.78° = .095 KP = 1+ TAN 33° TAN 24.50° = 2.710/.644 = 4.215 C = TAN 33° TAN 24.50° = .389

NAPA RIVER / HAPA CREEK the Phillips Group SHEET NO. 12 OF A Structural Engineering Firm BY _____ ØATE __ FLUSD CONTROL PROJECT 10304 Placer Lane, Suite B JOB NO. Sacramento, CA 95827 916/361-3871 SEISMIC LUND CASE (THIS CASE MAY NOT ACTUALLY OCCUR) GENERAL STORE .039 = (.03x38) = 3.04 - USE: -. f= = (3/12)= . 75 7429#-11, (+18.2) ·277#/, -101×125×24.2=330.78 -2034, σ -26.924/1 d) -232(125) × 16.2= $5 \times .10 \times 10 = 5.05$ 469.341,. 7 (+2'0) (0'-0") -232x475 ×10= 154.64 -(5'0) -12:0) .75(469.8+156.6+625)=938.55#/ YMAX=938-55/75(57.5)(4.215-227)=5.46' Q YMIN = 938.55/.75(120)(3.933)=2.65' PEMINE - 75 (57.5) (3.988) d = 171.98 d Parine = 25.99 d PEMANE = .75 (120) 3.928) d = 358.92 d Parine = 179.4. CPE SEISMIC LOADS P= 277 #1, P= 203 #1, P= = 26.92×26.2=705.3 #1, WALL SOIL LODDE P= 12×169.3×16.2=3305.38 15= 12x 330.78x 26.2=4833.22 F= 469.3×10 = 4698.0 R= 12×5.05×10= 25.25 B= = 156,6×10 = 783.0 P7YMAR = 12 × 5.44 × 938.55 = 25/2.24 P7YMAR = 12 × 2.415 × 938.55 = 1227.15 72 = 12x 425x10 = 3125 PHZ= 12x625x10 = 3125 $\sum_{i=1}^{n} \frac{1}{2} = 4277(7.58) + 203(5.5) - 705.3(13.1) - 3805.38(2.30) - 4698(13.2)$ = -783(14.367) - 4833.22(.73) - 25.25(11.53) + 7629 - 2562.24(20.0) $= -737.454.06 + 2034.52 d^{2} + 57.327 d^{3}$ $= -737.454.06 + 2034.52 d^{2} + 57.327 d^{3}$ 17= d= 8 2783.36 v3 2397.72 d=7.47 2397.21 vs 2397.72 -D= 5.46- 7.47 = 12.93 = 1.3 = 16.81 @ 16-10" (YMAX CASE) 0=-137,454.06+2562.24(20.02)-1227.15(19.072) +179.462(20.815+23d) 0=-109,562.22+3735.26d2+117,64d3 = d3+31.223d2=915.77 1=d=5 905.58 43915.77 d=5.03 917.23 43915.77 D= 2.62+ 5.03 = 7.65 × 1.3 = 9.95'= 10'-0 (YMIN CASE)

the Phillips Group KINTA RIVER / NAPA CREEK SHEET NO. 13 OF La A Structural Engineering Firm FLUDD CONTROL MELLECT BY CATE 10304 Placer Lane, Suite B Sacramento, CA 95827 JOB NO. 916/361-3871 GENERAL STORE, SEISMIC LODD TIE ZACKS FOR YMAX $\frac{2}{7} = 0 = 277 + 263 + 705.3 + 3205.32 + 4698.0 + 783 + 4333.22 + 25.25 + 2562.25 + 25662.25 + 2562.25 + 2562.25 + 2562.25 + 2562.25 + 2562.25 + 2562.2$ F=142,265/5"=147,65, FOR YMIN EFH=0=16687.09-2562.24+1227.15-179.46(5.03)2=10,8115+11 $T_{T3TAL} = 12 \times 10811.5 \times 129,738^{\#}$ $F = 129,738/cas15^{\circ} = 134.315^{\#}$

900 E Main Street, Suite 101, Grass Valley, CA 95945 Ofc: (530) 477-9960 Fax (530) 477-9960

Bickett Engineering, Inc. 1:1=1 Civil, Structural, Transportation Job HAPA. Project No. 0510 Computed By 6 BCC Page 🟅 Description Date (PACITY VERTICAL Checked By Date Ja=15° These = 150K Pru= 150 COS 15 = 145K PRI= 150 SIN 15" = 40" NERTICAL FILE "DOWNLIPAG" FORCE = PAV = 40K FRICTION ON BACKFACE OF WALL H= pul= 0.4 (PTH)= 0.4 (145") N= 60K N is ALWARD > Fry ; NEGLECT (FS= 60=1.5) * PER STRUCTURAL CALCULATIONS BY GARY Phillips; The Phillips GEOUP TATED 3/15/06 (32383,3131/08) TOTAL DEAD + LIVE = 132.6 + 34. = 166.6 SAY 167 KIPS

Bickett Engineering, Inc. :]=] Civil, Structural, Transportation Job Project No. 0510 Page 4 of 5 Date 6 Ziololo Description Computed By G BEE JERTICAL CAPACITY Checked By Date -040 COND " 1: INITIAL LOAD RESISTANCE (ILE) THE ILR FOR VERTICAL LOADS 19 THE CIDH PILES ACTING AS FRIGION PILES. AS PILE SETTLES THE TO GETTLEMENT, FILE SURFACE FRICTION PLUS BRAM BEARING SUPPORTS WALL. CAPACITY = PE + PW = 140 + 112 -= 252K >> Po+PiL=167K ACTIVATE ON PZ; REMAINING IS BIG PUS, W W= 167-140"= 750 PSF -(4'xq') NOT MUCH Brg Pressure DAD COND # 2: FRICTION REGISTANCE OVERCOME, (TIP BEARING + Bm Brg, W) = Prip + Bm Brg = 1124 + 124 = 240 K = 240 ×>> Po+ PU= 167 (240/167=14) ACTIVATE ALL PAP; remaining 15 Bm Bry," $\omega = \frac{167^{2} - 124^{2}}{(4^{1} \times 9^{1})} = 1200 \text{ PSF}$

Bickett Engineering, Inc. Civil, Structural, Transportation NAPA JECP Page 5 of 5 Job Project No. 0510 Description Computed By _ 6800 Date 62606 FETICAL CAPACITY Checked By_ Date LOAD CONDITION OCCURS -OAD COND AFTER FULL-TIP Brg is AchieDED THEN: FULFTIP Brg PLUS the SURFACE FRICTION RE-RESTABLISHES C-EOPSF Plus Bm Brg Trip + P= + Bm Brg = 112" + 124"+190"= 376" = 360+727 1614 DAD COUD # 4: BEAM BIZ CAPACITY (FAILURE) 000029 Prip+Pr + Box Brg = 124 + 140K = 264K 264 >>167 (B= 24)=15 CONCLUSION . No mother how you consider the PROPOSED WALL HAS MORE THAN A decuate VERTICAL (REAL) SUPPORT. WALL ACTS AS HOGE I"GROER AND THENEFORE LOAD DISTRIB. will occure (Appearlouse BATTED AT HHAL (8) = 8(24'-25') = 200' ' * Ser Lang 122222 - 1- 28-#58485 \$ AS= 8.7 in2 Very STIFF! ISBig =1 Z L8-#8/0016=8(0.79,13)=6.241N2 **8 BMS

Appendix E

Napa River H&H Memo For Record

MEMORANDUM FOR RECORD

SUBJECT: Napa River Hydrology, Computed Probability Flows

1. Scope

Expected probability flows for the Napa River near Napa gage (USGS # 11458000) and locations downstream are contained in the "Napa River /Napa Creek Flood Protection Project Final Supplemental General Design Memorandum, Appendix H, Napa River Basin Hydrology for the Supplemental General Design Memorandum, "dated October 1998. The Napa River at Napa gage has a drainage area of 218 square miles and is located 5 miles north of Napa at Oak Knoll Avenue. The original hydrology was done using expected probability. This memorandum provides a full range of computed probability flows for the Napa River near Napa gage derived from the median flow frequency curve. These frequencies are 50, 20, 10, 5, 2, 1, 0.5, 0.2, and 0.1 percent. These results will be used for FDA analysis and FEMA certification. This analysis updates the flow frequency curves at the Napa River at Napa gage and select downstream locations. Locations upstream of Oak Knoll Avenue are not included in this study. Figure 1 shows the location of the relevant gages and index points. Future condition floods were not simulated because rural land use and urbanization in the Napa River Basin are not expected to change dramatically (USACE, 1998).

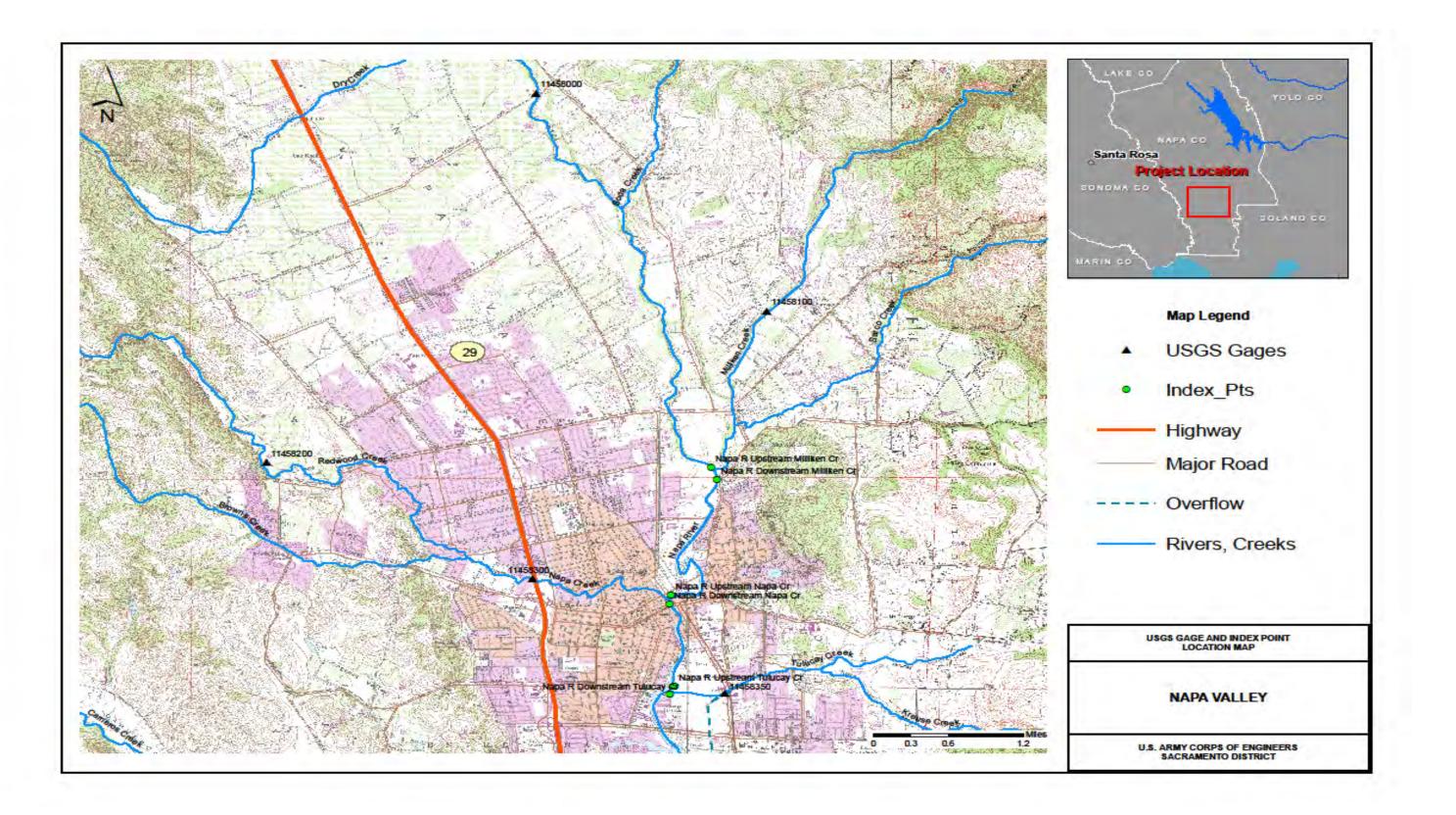


Figure 1 Study area location map showing important gages and index locations (USGS 1980).

2. Hydrologic Analysis

An unregulated peak flow frequency curve was constructed from unregulated peak flow data from USGS 11458000 Napa River near Napa (Oak Knoll) gage using the procedures in Bulletin 17B. As of Water Year 1997, 38 years (WY 1960-1997) of recorded data were available at USGS 11458000 and Conn Dam is the primary regulating influence on the flows at the Oak Knoll gage. The unregulated peak flows were obtained by routing and adding Conn Dam change in storage to the recorded flows at the Napa River near Napa gage (USACE, 1998). HEC-FFA was used to identify low outliers and the identified low outlier is from WY 1977. The period of record was extended from 38 years to 72 years by examining historical floods in the Napa River Basin and adjacent basins and by correlation with an upstream gage, Napa River at St Helena (USGS # 1145600), which has a 58 year period of record (WY 1940-1997) and a drainage area of 79 square miles. The adopted log statistics for the unregulated curve are: mean 3.989, standard deviation 0.329, and adopted skew of -0.8. HEC-REGFRQ (Regional Frequency Computation) was used in the correlation analysis.

A graphical curve was constructed for the regulated flows by fitting the curve through the regulated historical points. The present conditions curve is a combination of the regulated and unregulated curves. The unregulated and regulated curves for the Napa River near Napa (Oak Knoll) gage are shown in Figure 2 and the final present conditions curve is shown in Figure 3. The data used for the present study are from the 1998 GDM and are shown in Table 1 below.

				Tab	le 1				
		A	nnual Peak	Flows (cfs) Napa Riv	/er near Nap	a		
				(USGS 1	, ,				
WATER				LATED	WATER		UNREGULATED		LATED
YEAR	DATE		DATE	PEAK	YEAR	DATE		DATE	PEAK
1960	8 FEB		8 FEB	12300	1979	11 JAN		11 JAN	6310
1961	31 JAN		31 JAN	3350	1979	18 FEB		18 FEB	12500
1962	15 FEB		15 FEB	9090	1981	27 JAN		27 JAN	4780
1963	31 JAN	21200	31 JAN	20000	1982	4 JAN		4 JAN	20900
1964	20 JAN	6160	20 JAN	5260	1983	1 MAR	18800	1 MAR	18000
1965	5 JAN	19550	5 JAN	17000	1984	25 DEC	14270	25 DEC	13000
1966	5 JAN	13000	5 JAN	11100	1985	8 FEB	12000	8 FEB	10000
1967	21 JAN	26600	21 JAN	20000	1986	18 FEB	33600	18 FEB	31190
1968	29 JAN	10220	29 JAN	8620	1987	13 FEB	4880	13 FEB	4870
1969	13 JAN	11160	13 JAN	8760	1988	4 JAN	2520	4 JAN	2290
1970	24 JAN	15400	24 JAN	14700	1989	11 MAR	5080	11 MAR	4890
1971	4 DEC	13650	4 DEC	12200	1990	16 FEB	1940	16 FEB	1880
1972	27 DEC	1590	27 DEC	1430	1991	4 MAR	8990	4 MAR	8990
1973	16 JAN	18400	16 JAN	13900	1992	20 FEB	4820	20 FEB	4660
1974	30 MAR	10450	30 MAR	9730	1993	20 JAN	15700	20 JAN	13000
1975	22 MAR	11820	22 MAR	10800	1994	20 FEB	1730	20 FEB	1620
1976	1 MAR	335	1 MAR	321	1995	9 MAR	32560	9 MAR	32560
1977	16 MAR	100	16 MAR	54	1996	4 FEB	10960	4 FEB	11660
1978	16 JAN	17300	16 JAN	15300	1997	1 JAN	21480	1 JAN	23630

Flows with exceedance frequencies greater than 1 % chance exceedance are from the regulated curve. At about 1 % chance exceedance, the upstream regulation ceases to have an effect on the flows. Thus the flows at frequencies less than or equal to 1% chance exceedance are from the unregulated curve. None of the measured flows at the

Napa River near Napa gage reached the threshold value of 36,500 cfs (1%) where regulated flows equal unregulated flows. As a result all recorded gage data are considered to be regulated flows. Flows for all exceedance intervals are shown in Table 2 below.

Napa Rive	Table 2Napa River near NapaUSGS 11458000							
Exceedance Frequency per 100 Years	Flows (cfs)							
80	5,000							
50	9,900							
20	17,200							
10	22,200							
5.0	26,800							
2.0	32,600							
1.0	36,500							
0.5	39,600							
0.2	43,200							
0.1	45,600							

The Napa River flood hydrographs for each exceedance interval were computed by multiplying the existing Standard Project Flood (SPF) hydrographs by ratios determined from the Napa River frequency curves (USACE 1975, USACE 1998). The ratios were determined by dividing the given exceedance peak flow by the peak of the SPF. For example, the 1% chance exceedance flow is 36,500 cfs, which is 0.802 times the SPF of 45,500 cfs. The adopted Napa River 50-, 20-, 10-, 2-, 1-, 0.5-, 0.2-, and 0.1-percent chance exceedance ratios are: 0.218, 0.378, 0.488, 0.716, 0.802, 0.870, 0.949 and 1.002 respectively. The drainage areas of Soda, Milliken, Napa and Tulucay Creeks are: 15.5, 17.3, 14.9 and 12.6 sqare miles respectively. The flood hydrographs for the local creeks through the project area below Oak Knoll were obtained by ratios derived from the Napa Creek frequency curve. The adopted Napa Creek 50-, 20-, 10-, 2-, 1-, 0.5-, 0.2-, and 0.1percent chance exceedance ratios are: 0.380, 0.492, 0.562, 0.713, 0.775, 0.832, 0.922, 0.995, respectively. The frequency curve for Napa Creek at Napa River is shown in Figure 4. The original curve was constructed using data from the Napa Creek at Napa gage (USGS# 11458300) and values estimated by correlation with Redwood Creek near Napa gage (USGS# 11458200). This frequency curve was extended from the original graphical curve in the 1998 GDM using regression and graphical methods. Linear regression was used on the upper end of the data to get an approximate trend then the curve is extended graphically. The Napa Creek ratios were used for local concurrent flows from Soda Creek, Milliken Creek and the local flow into the Napa River. An HMS model of Tulucay Creek was used to determine peak flows in that basin (see Sept 1 Addendum).

Two HEC-1 models are used in this study: a rainfall runoff model for Soda, Milliken and Napa Creeks and a routing model for the main stem of the Napa River. The rainfall runoff model uses Kinematic wave unit hydrographs with a 0.75-inch initial loss and a constant loss rate of 0.1 inches per hour. The precipitation pattern is that of the Standard Project Flood (SPF). The SPF for the Napa River Valley is the December 1964 storm over Laytonville, California, artificially centered over the Napa River Basin with wet ground conditions (initial loss of 0.2 inches and final loss rate of 0.1 inches per hour) as was done in USACE 1998 and USACE 1975. The routing model uses the Modified Puls method and routing parameters are the same as in the 1998 GDM (USACE 1998 and USACE 1975).

3. Recent Data

Peak flow data from the Napa River near Napa gage from water years 1998 through 2006 are shown in Table 3, below. The data appear to be randomly distributed. There is not enough evidence at this time to justify revising the flow frequency curves at the Napa River near Napa gage.

	Table 3 Recent Peak Flows Napa River near Napa										
Water Year	Water Year Date Flow Water Year Date Flow										
1998	Feb. 03 19,800 2003 Dec. 16 19,10										
1999	Feb. 09	9,030	2004	Feb. 18	12,200						
2000	Feb. 14	7,140	2005	Mar. 22	6,090						
2001	2001 Mar. 05 4,320 2006 Dec. 31 29,600										
2002	Jan. 02	9,810									

4. Results

Peak flows in the Napa River with concurrent flows in Milliken, Napa and Tulucay Creeks are shown in Tables 4, 5 and 6. Tables 7, 8 and 9 show the peak flows in Milliken, Napa and Tulucay Creeks with the concurrent flows in the Napa River. Soda Creek is not included in this analysis. These tables follow the same format as the 1998 GDM and can be used to estimate concurrent Napa River flow for nonuniform storms over the Napa River Basin. For example, if a 10 year flood strikes the Napa River Basin and a 100 year flood strikes the Napa Creek Basin, then the concurrent flow downstream of Napa Creek is estimated to be 23,710 cfs (19,430 + 4,280 = 23,710). The tables are for the 50-, 20-, 10-, 2-, 1-, 0.5-, 0.2- and 0.1-percent chance exceedance floods and reflect existing conditions. For example, Table 4 shows that the 1% chance exceedance floods in the Napa River upstream of Milliken Creek is 37,500 cfs and the concurrent flows in Milliken Creek and in the Napa River downstream of Milliken Creek at the time of the peak upstream are 1,570 cfs and 39,400 cfs, respectively.

For the Napa River upstream of Napa Creek shown in Table 5, the 1% chance exceedance flow is 40,100 cfs and the concurrent flows in Napa Creek and in Napa River downstream of Napa Creek (at the time of the peak upstream) are 2,600 cfs and 42,700 cfs, respectively.

In the Napa River above Tulucay Creek, shown in Table 6, the 1% chance exceedance flow is 42,400 cfs, while the concurrent flows in Tulucay Creek and in Napa River below Tulucay Creek are 1660 cfs and 44,400 cfs, respectively

Peak flows in Milliken, Napa, and Tulucay Creek are shown in Tables 7, 8, and 9. These tables follow the same format as in the 1998 GDM. For example, in Table 7, Milliken Creek at the Napa River, the 1% chance exceedance peak flow is 4,900 cfs and the concurrent flows in the Napa River upstream and downstream of Milliken Creek are 27,000 cfs and 32,700 cfs, respectively.

In Napa Creek, at the Napa River, shown in Table 8, the 1% chance exceedance peak flow is 4,280 cfs and the concurrent flows in the Napa River upstream and downstream are 31,700 cfs and 36,000 cfs, respectively.

In Tulucay Creek at the Napa River, shown in Table 9, the 1% chance exceedance peak flow is 4530 cfs and the concurrent flows in the Napa River upstream and downstream are 33,100 cfs and 38,400 cfs, respectively. The index location "Local above Tulucay Creek" refers to a small creek that enters the Napa River approximately ½ mile upstream from the mouth of Tulucay Creek. Figure 5 contains peak flow frequency curves for the Napa River upstream of Milliken, Napa and Tulucay Creeks.

	Table 4										
	Pε	eak Flows	in the Nap	ia River U	pstream o	f Milliken C	Creek				
with Concurrent Flows in Milliken Creek (Existing Conditions). Flows in cfs											
Location	2-year	5-year	10-year	50-year	100-year	200-year	500-year	1000-year	SPF		
Napa River											
upstream of											
Milliken Creek											
(peak flow)											
	10,420	17,640	22,750	33,430	37,470	40,730	44,540	47,160	47,080		
Milliken Creek at											
Mouth											
(concurrent flow)	730	690	840	1,300	1,570	1,800	2,390	2,880	2,920		
Local above											
Milliken Creek											
(concurrent flow)	170	200	220	270	300	320	360	390	390		
Napa River											
downstream of											
Milliken Creek											
(concurrent flow)	11,320	18,520	23,810	35,010	39,350	42,850	47,300	50,430	50,400		
Values were detern	nined from H	HEC-1 ouput	t on 02 Nov 1	2007.							

				Table 5						
	Pε	eak Flows	in the Nap	ba River U	pstream o	f Napa Cr	eek			
with Concurrent Flows in Napa Creek (Existing Conditions). Flows in cfs.										
Location	Location 2-year 5-year 10-year 50-year 100-year 200-year 500-year 1000-year SPF									
Napa River										
upstream of Napa										
Creek										
(peak flow)	11,630	18,810	24,040	35,600	40,100	43,620	48,300	51,810	51,800	
Napa Creek at										
mouth										
(concurrent flow)	1,310	1,670	1,770	2,410	2,620	2,690	2,960	3,330	3,360	
Napa River										
downstream of										
Napa Creek										
(concurrent flow)	12,940	20,480	25,810	38,010	42,720	46,310	51,260	55,140	55,160	
Values were determi	ned from HE	C-1 model	output on O	2 Nov 2007.						

CESPK-ED-D

Subject: Napa River Hydrology, Computed Probability Flows

			Та	ble 6					
	Pea	k flows in tl	he Napa Riv	ver, upstrea	m of Tuluca	ay Creek			
with concurrent flows in Tulucay Creek (existing conditions). Flows in cfs.									
Location	2-year	5-year	10-year	50-year	100-year	200-year	500-year	1000-year	
Napa River									
upstream of									
Tulucay Creek									
(peak flow)	12,900	20,270	25,650	37,610	42,410	46,110	51,060	54,770	
Tulucay Creek at									
mouth									
(concurrent flow)	510	710	970	1,300	1,660	1,890	2,180	2,400	
Local above									
Tulucay Creek									
(concurrent flow)	170	190	210	260	300	320	350	380	
Napa River									
Downstream of									
Tulucay Creek									
(concurrent flow)	13,580	21,170	26,830	39,170	44,370	48,310	53,590	57,550	
Values were dete	ermined fror	n HMS and	HEC-1 mo	del outputs	on 30 Aug	2010.			

				Table 7		L.					
		. =			liken Creel						
W	with Concurrent Flows in the Napa River (Existing Conditions). Flows in cfs.										
Location	2-year	5-year	10-year	50-year	100-year	200-year	500-year	1000-year	SPF		
Napa River											
upstream of											
Milliken Creek											
(concurrent flow)	8,190	13,070	16,200	23,710	26,950	29,370	32,470	34,660	34,630		
Milliken Creek at											
Mouth											
(peak flow)	1,730	2,390	2,890	4,220	4,910	5,610	7,010	8,390	8,490		
Local above											
Milliken Creek											
(concurrent flow)	430	550	630	800	870	930	1,030	1,110	1,110		
Napa River											
downstream of											
Milliken Creek											
(concurrent flow)	10,360	16,000	19,730	28,730	32,730	35,910	40,510	44,160	44,230		
Values were detern	nined from H	HEC-1 outpu	t on 02 Nov	2007.							

				Table 8						
			Peak f	lows in Nap	oa Creek					
with concurrent flows in Napa River (existing conditions). Flows in cfs.										
Location	2-year 5-year 10-year 50-year 100-year 200-year 500-year 1000-year SPF									
Napa River										
upstream of Napa										
Creek										
(concurrent flow)	10,280	15,910	19,430	28,170	31,660	34,960	39,610	42,780	42,850	
Napa Creek at										
mouth										
(peak flow)	2,120	2,720	3,110	3,950	4,280	4,580	5,090	5,500	5,530	
Napa River										
downstream of										
Napa Creek										
(concurrent flow)	12,400	18,630	22,540	32,110	35,950	39,540	44,700	48,280	48,370	
Values were determ	nined from H	HEC-1 mode	el output or	6 Nov 200	7.					

			Та	able 9						
		P	eak flows i	n Tulucay (Creek					
w	with concurrent flows in the Napa River (existing conditions). Flows in cfs.									
Location	2-year	5-year	10-year	50-year	100-year	200-year	500-year	1000-year		
Napa River										
upstream of										
Tulucay Creek										
(concurrent flow)	11,720	17,760	21,010	29,360	33,130	36,600	41,600	45,580		
Tulucay Creek at										
mouth (peak										
flow)	1,080	1,890	2,880	3,890	4,530	5,160	6,000	6,660		
Local above										
Tulucay Creek										
(concurrent flow)	360	460	520	660	720	770	850	920		
Napa River										
Downstream of										
Tulucay Creek										
(concurrent flow)										
	13,160	20,110	24,410	33,920	38,370	42,530	48,450	53,160		
Values were dete	rmined from	h HMS and	HEC-1 mod	del outputs	on 30 Aug	2010.				

5. Conclusions

A full range of computed probability flows has been developed for the Napa River near Napa (Oak Knoll) gage. Flow hydrographs at the Napa River near Napa Gage were routed from Oak Knoll Avenue (location of Napa River near Napa gage) to Soda, Milliken, Napa and Tulucay Creeks using HEC-1. Flows in Soda, Milliken and Napa Creeks were routed to the Napa River using the HEC-1 rainfall runoff model. There is not enough evidence at this time to justify revising the flow frequency curves at the Oak Knoll gage. The routed flow hydrographs can be used for flood damage analysis (FDA) and risk-based analysis (RBA) for FEMA certification.

6. References:

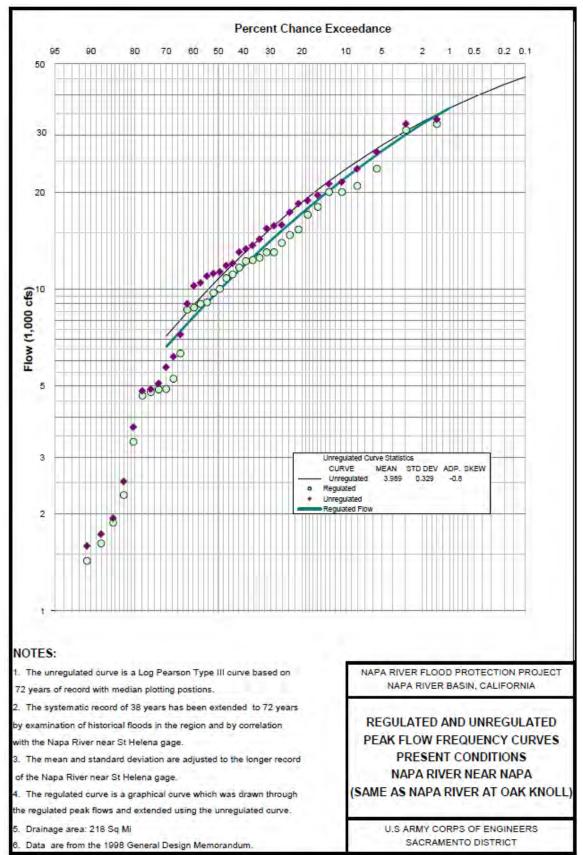
1. U.S. Army Corps of Engineers, Sacramento District, "Napa River/Napa Creek Flood Protection Project, Final Supplemental General Design Memorandum Volume II Appendix H: Napa River Basin Hydrology for the Supplemental General Design Memorandum," October 1998.

2. U.S. Army Corps of Engineers, the Hydrologic Engineering Center, HEC-FFA Flood Frequency Analysis, version 3.1, February 1995.

3. U.S. Army Corps of Engineers, the Hydrologic Engineering Center, HEC-REGFRQ Regional Frequency Computation, version dated September 8, 1989.

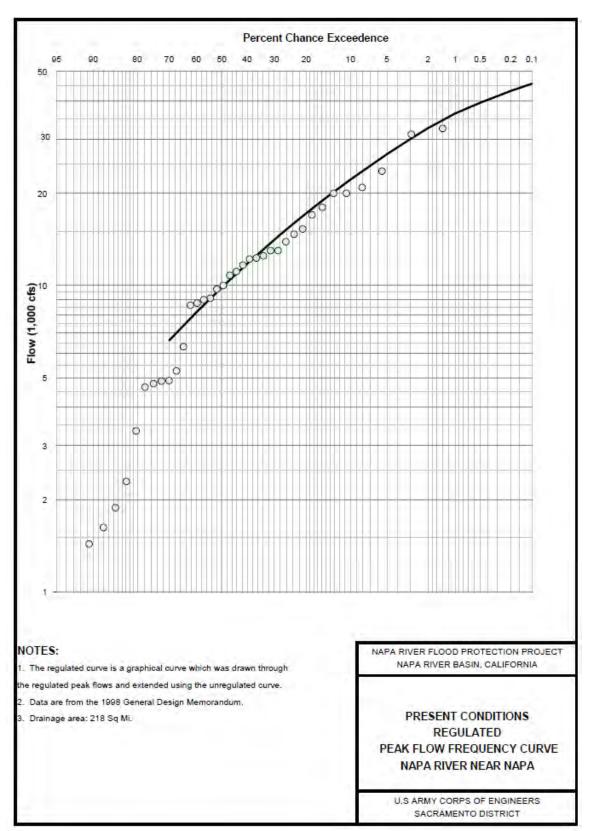
4. U.S. Geological Survey, <u>http://waterdata.usgs.gov/ca/nwis</u>, National Water Information System Web Interface, Daily Streamflow for California (accessed September 24, 2007).

5. U.S. Army Corps of Engineers, San Francisco District, "Final General Design Memorandum and Environmental Impact Statement," Napa River Flood Control Project, Napa County, California, September 1975.

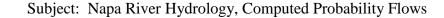

6. U.S. Army Corps of Engineers, the Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package, version 4.1, September 1990.

7. U.S. Army Corps of Engineers, Sacramento District, Memorandum for Record: Napa Creek Hydrologic and Hydraulic Analysis of Historic Events, September 8, 2006.

8. U.S. Geological Survey, "Guidelines for Determining Flood Flow Frequency: Bulletin 17 B of the Hydrologic Subcommittee," revised September 1981.


9. U.S. Geological Survey and State of California Department of Water Resources, Napa 7.5 Minute Topographic Quadrangle: 1:24,000, dated 1951, photorevised 1980.

William Curry Hydrologist CESPK-ED-DW



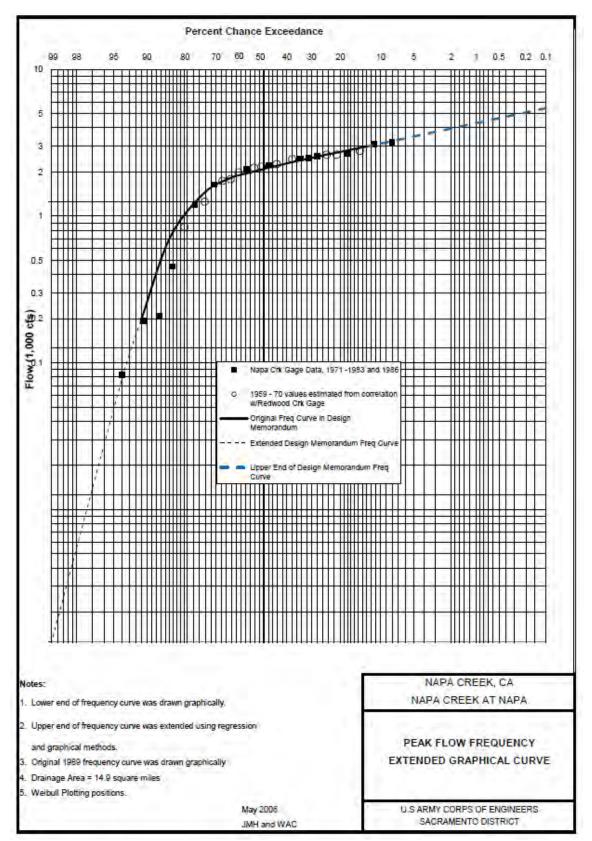
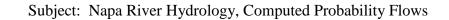

CESPK-ED-D Subject: Napa River Hydrology, Computed Probability Flows

Figure 2. Unregulated and Regulated Flow Frequency Curves for the Napa River near Napa (Oak Knoll) Gage (USGS 11458000) present conditions.



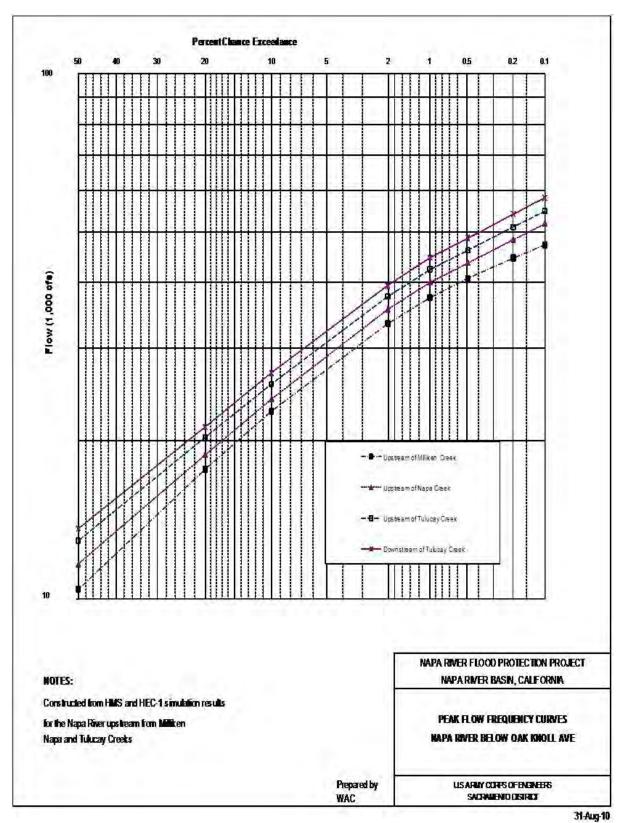

Figure 3. Present Conditions Regulated Peak Flow Frequency Curve for the Napa River near Napa Gage.

Figure 4. Napa Creek at Napa River Peak Flow Frequency Curve adapted from the "Napa River/Napa Creek Final Supplemental General Design Memorandum, Appendix H, Hydrology Office Report" (This curve was determined by graphical methods.) (USACE 1998)

Figure 5. Frequency Curves for the Napa River Upstream of Milliken, Napa and Tulucay Creeks

January 12, 2010 Addendum

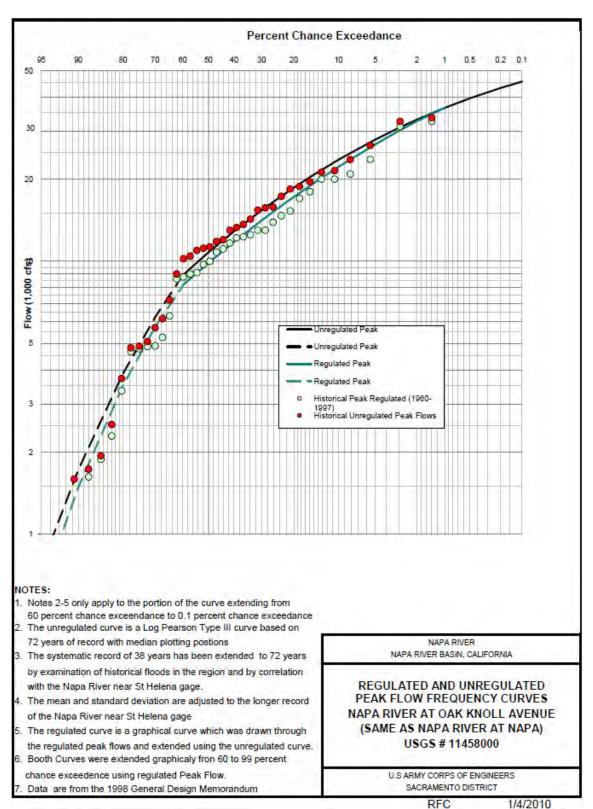
Scope of Addendum

Additional work was requested by the Hydraulic Design Section in FY 2009 to prepare the Economic Evaluation of the Project and the Limited Reevaluation Report. These requests included 1) verification of the methods for computing the flow frequency curves and description of the lower end of the curves from 60% to 99.99% probability; and 2) obtaining flows at different frequencies for Risk Based Analysis. This addendum to the November 2007 Napa River Hydrology, Computed Probability Flows Memorandum for Record, was completed in January 12, 2010. The methods for computing the mean flow frequency curves were checked and verified. Additional work was done to describe the lower end of the curves for flows from 0.999 to 0.600 exceedance probabilities for use in the risk analysis for the project's economic evaluation. In addition, flows were needed at different frequencies for greater definition of the frequency curves used for the risk analysis. These flows were estimated by extending the frequency curves, graphically based on the heavily regulated flows of the Napa River near Napa gage and interpolating between the flow frequency values in this report. A brief write-up and the present conditions Flow frequency Curves are added as an addendum to this memo.

Frequency Data Check and Tables Expanded.

Flows used in previous reports cited used expected probability and computed probably frequency curves. The scope of the first request was to make sure the flows used in the new risk based analysis reflected mean flows and computed frequencies at their required exceedance probability at each of the five locations sited in the request. The locations are: upstream of Milliken, Napa and Tulucay Creeks and downstream of Milliken and Tulucay Creeks. It was determined that the flow and exceedance values found in the Napa River Hydrology, Computed Probability Flows Memorandum, dated November 21, 2007 were the correct values to use for Risk Analysis.

Additional work was done to describe the lower end of the curves for flows from 0.999 to 0.600 exceedance probabilities for use in the risk analysis for the project's economic evaluation. In addition to this, additional flows were needed at different frequencies for greater definition of the frequency curves used for the risk analysis. These flows were estimated by extending the frequency curves, graphically based the heavily regulated flows of Napa River near Napa gage and interpolating between this report's flow frequency values.


Table 10 lists the unregulated computed probability curve, and the regulated graphical frequency curve and their probabilities as plotted in Figure 6.

-	Table 10 Napa River near Napa USGS 11458000								
Exceedance Probability	Unregulated Flow (cfs)	Regulated Flow (cfs)							
0.990	112	75							
0.980	257	188							
0.950	763	618							
0.900	1,720	1,480							
0.800	3,870	3,500							
0.700	6,240	5,740							
0.600	8,900	8,130							
0.500	10,800	9,860							
0.400	12,900	11,800							
0.300	15,400	14,100							
0.250	16,900	15,500							
0.200	18,600	17,200							
0.150	20,700	19,300							
0.100	23,600	22,200							
0.050	27,900	26,800							
0.030	30,900	30,100							
0.020	33,100	32,600							
0.010	36,500	36,500							
0.005	39,600	39,600							
0.004	40,500	40,500							
0.002	43,200	43,200							
0.001	45,900	45,600							
Notes: 1. Unregulated f	low reflects the	removal of							

Conn Dam (Hennessey Reservoir) the only reservoir that would significantly reduce peak flow in the Napa River at Napa.

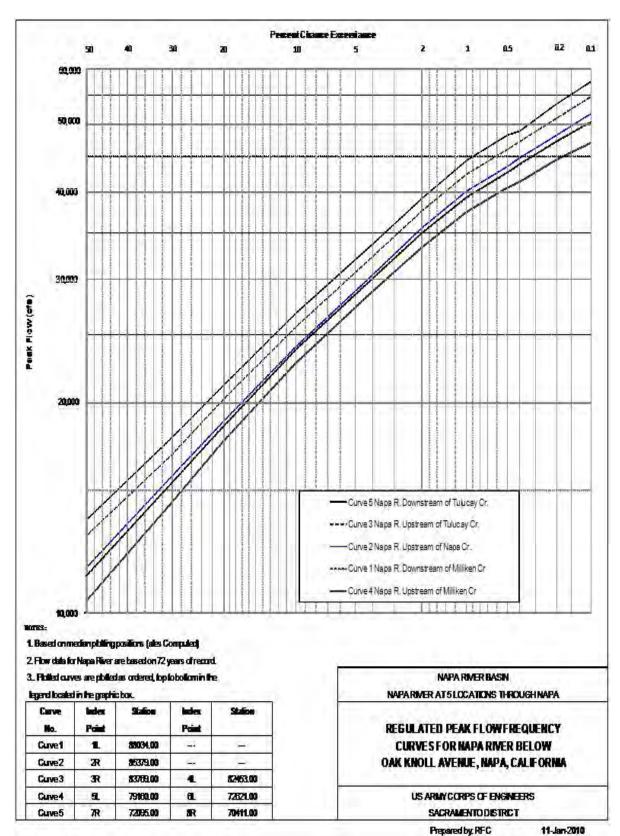
2. It was assumed that antecedent conditions would fill and cause Conn Dam to be spilling for events equal to or greater than the 1% flood.

3. Curves plotted in Figure 6 of this addendum.

Figure 6. Re-plotted Figure2 frequency curves for the unregulated and regulated flow for the Napa River near Napa (Oak Knoll) Gage (USGS 11458000) extending the curves from 0.60 to 0.99 exceedance frequency. The LPIII analysis and extension of the period of record pertain only to the portion of the unregulated curve extending from 60 to 0.1 percent chance exceedance.

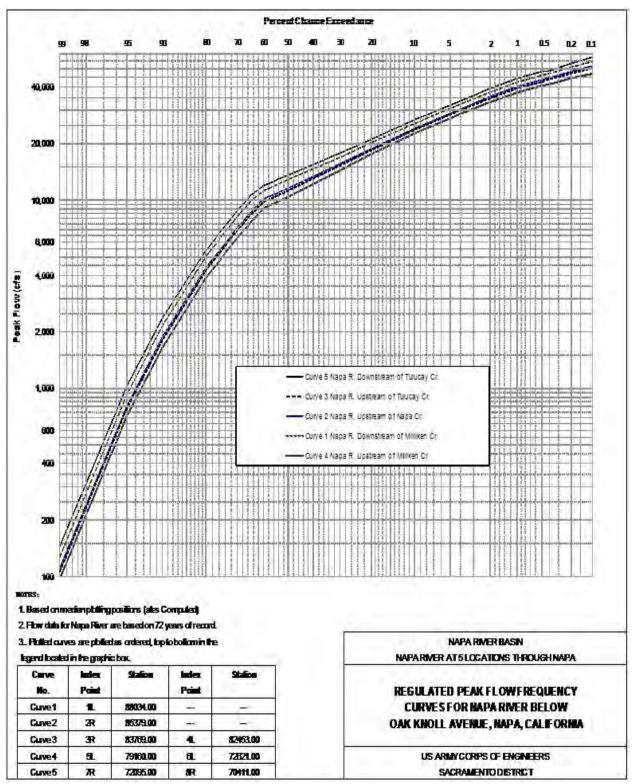
The second request was to compute additional flood flows for risk analysis based on the shaded flows and probabilities found in Table 11. Shaded data came from the 2007 Memorandum. Curves requested were not ordered in any particular manner so that data is also annotated by station name and location based on tables in the 2007 memo and the hydraulic design section's station numbering system. The frequency curves were drawn and plotted in Figures 6 and 7. Estimated flow values were obtained for frequencies of 0.3, 0.4, 0.005, and 0.004 exceedance probabilities and added to Table 10. Exceedance probability of 0.005 was added because of California's new mandate to know the 0.5% flood peak (200 year) flood.

The legends in those figures name the curves in their plotting order. Figure 7 is Figure 5 replotted, Frequency Curves for the Napa River Upstream of Milliken, Napa and Tulucay Creeks, downstream of Milliken Creek and downstream of Tulucay Creek. Figure 8 is the same as Figure 7 which includes all locations found in Figure 5 and expands the Exceedance Probability axis scale from 0.99 to 0.001 probabilities.


	Table 11									
	N D'	Exceedance Pr		11 .						
	Napa Riv	ver Below Napa R								
		(Napa River at N	vapa, California	1)						
			Discharge (cfs)							
Exceedance Probability	Curve 4 Napa River upstream of Milliken Cr. Table 4	Curve1 Napa River Downstream of Milliken Cr.	Curve 2 Napa River upstream of Napa Cr Table 5	Curve 3 Napa River Upstream of Tulucay Cr	Curve 5 Napa River downstream of Tulucay Cr Table 6					
0.999	70	70 80 85 90								
0.990	98	98 107 111 127								
0.950	714	714 783 810 930								
0.900	1,660	1,660 1,819 1,880 2,162								
0.800	3,840	4,210	4,360	5,010	5411					
0.700	6,290	6,900	7,140	8,200	8811					
0.650	7,610	8,340	8,630	9,910	10663					
0.600	9,100	9,830	10,180	11,250	11990					
0.500	10,420	11,300	11,600	12,900	13580					
0.300	14,400	15,380	15,700	16,870	17828					
0.200	17640	18,520	18,810	20,270	21170					
0.100	22750	23,810	24,040	25,650	26830					
0.040	28,850	30,100	30,500	32,370	33741					
0.020	33430	35,010	35,600	37,610	39170					
0.010	37470	39,350	40,100	42,410	44370					
0.005	40,640	42,700	43,600	46,100	48310					
0.004	41,400	43,900	44,800	47,300	48891					
0.002	44540	47,300	48,300	51,060	53590					
0.001	47160	50,430	51,810	54,770	57550					
Index Point	1L	2R	3R	5L	7R					
Station	88034.00 85379.00 83769.00 79160.00 72095.00									
Index Point			4L	6L	8R					
Station			82453.00	72621.00	70411.00					

Note:

1. Curve numbers, shaded flows and probabilities, index points, and station locations were provided by the hydraulic Design Section.


2. Locations and Table numbers at the head of the flow columns indicate source Tables in the November 21, 2007 Memorandum for record above this addendum.

3. Flows and probabilities can be found in the same Tables.

CESPK-ED-D Subject: Napa River Hydrology, Computed Probability Flows

Figure 7: Figure 5 re-plotted, Frequency Curves for the Napa River Upstream of Milliken, Napa and Tulucay Creeks and downstream of Tulucay and Milliken Creeks.

Figure 8 Figure 5 re-plotted Frequency Curves for the Napa River Upstream of Milliken, Napa and Tulucay Creeks and downstream of Tulucay and Milliken Creeks with the Exceedance probability axis scaled from 0.99 to 0.001 probabilities.

September 1, 2010 Addendum

In 2007 an HMS model of Tulucay Creek was obtained from the Napa County Resource Conservation District. This model produced a 100 year (1% probability) peak flow of 4,530 cfs and was adopted by the CORPS for use with Tulucay Creek. The model uses SCS Unit Hydrograph as the transform method and the SCS Curve number (typically in the 70s) as loss method on all sub-basins. The outlet point of the model is Soscal Avenue Bridge which is near the USGS gage (#11458350) at Tulucay Creek and about 0.4 miles east of the Napa River. Maximum n- year 24 hour precipitation values were obtained using the Gumbel Extrapolation method from NOAA Atlas 2 for the 20-, 0.5-, 0.2-, and 0.1-% probability events. The precipitation values are as follows: 4.17, 7.39, 8.17 and 8.76 inches for the 20-, 0.5-, 0.2-, and 0.1-% probability storms. The 50-, 20-, 10-, 2-, 1-, 0.5-, 0.2-, and 0.1-% probability peak flows produced by the HMS model are as follows: 1,080, 1,890, 2,880, 3,890, 4,530, 5,160, 6,000, and 6,660 cfs. Ratios were calculated by dividing the newly created peak flows for Tulucay Creek by the peaks flows for Tulucay Creek produced by the HEC-1 model used for the GDM and original Memorandum. The ratios for the 50 -, 20-, 10-, 2-, 1-, 0.5-, 0.2-, and 0.1-% probability peak flows are 3.20, 3.34, 3.82, 3.05, 2.94, 2.86, 2.61 and 2.41 respectively. The hydrographs from the original HEC-1 model for Tulucay Creek were multiplied by the ratios above and were added to the local flows above Tulucay Creek, generated by taking the difference between the original Tulucay Creek (HEC-1) flows and the original Tulucay+Locals (HEC-1) flows. The new flood series, Tulucay+Locals, was then read into the downstream routing model where it was used in the creation of the hydrographs for the Napa River below Tulucay Creek. Tables 6 and 9 were reproduced and replaced in the text and appropriate changes were made to the text itself. The 1% chance peak flow in the Napa River upstream of Tulucay Creek is 42,410 cfs and the concurrent flow downstream of Tulucay Creek is 44,370 cfs. At the time of the 1 % probability peak flow of 4,530 cfs in Tulucay Creek, the concurrent flow in the Napa River is 38,370 cfs (see Tables 6 and 9).

Additional References

- 1. U.S. Army Corps of Engineers, The Hydrologic Engineering Center, HEC-HMS Hydrologic Modeling System, Version 3.1.0 Build 1206, dated December 2006.
- 2. U.S. Army Corps of Engineers, Sacramento District, Memorandum for Record: Tulucay Creek Hydrology Review, July 6, 2006.
- National Atmospheric and Oceanic Administration, Hydrometeorological Design Center, NOAA Atlas 2, Precipitation Frequency Atlas of the Western United States: Volume XI-California dated 1973.

Appendix F

District Quality Control Document

and

Independent Technical Review

		Napa River, Hattt Bldg to 1st Street- District Qualit	y Control		
	Reviewer	Yvonne Palmer PE			
	Designer	Justin Knight			
Cmt No.	Section	Comment	Review Date	Response	Backcheck Date
1	Title	Change Title to reflect correct project	11/18/2020	Concur	11/20/2020
2	2.1	Added "." after Mr in paragragh.	11/18/2020	Concur	11/20/2020
3	2.3	Changed 70's to 70s.	11/18/2020	Concur	11/20/2020
4	4.3.2	Add information on H&H from the OMRR&R	11/18/2020	Concur	11/20/2020
5	5.3.1	Comment references levees, not floodwall - change	11/18/2020	Concur	11/20/2020
6	5.3.2	Appears the fence comment is from another project.	11/18/2020	Concur	11/20/2020
7	5.3.1	Add information about vegetation in the riprap. This is shown as an encroachment in the report but should be under vegetation.	11/18/2020	Concur	11/20/2020
8	5.4.1	Add that vegetation was noted in the riprap at the toe of the floodwall	11/18/2020	Concur	11/20/2020
9	6.1.3	add that vegetation was noted in the riprap at the toe of the floodwall and should be removed as necessary to prevent trees	11/18/2020	Concur	11/20/2020
10	6.3	The next PI should be at 5 years from the levee screening to take place in 2021.	11/18/2020	Concur	11/20/2020
11	Inspection Report	Make changes per the attached pdf.	11/18/2020	Concur (Delonnoy)	11/20/2020

ITR Comments, addressed 18 December

5 comments O A 🔻 🕶	PAGE 17 1 v
PAGE 9 1 ~ ^	Betejmc Dec 9
Betejmc Dec 9 While it maybe considered in the upstream there are other upstream projects such as the Dry BY-pass and the Napa creek Culverst ect.	Move sentence up to connect Napa River g4eddyrg 3:23 PM Moved.
g4eddyrg 3:21 PM Modified sentence to clarify location.	PAGE 23 1 v
PAGE 13 1 ∨ ■ I3etejmc Dec 9 connect line below with Public Sponsor here.	As a general note. Design review should include a statement indicating the design parameters utilized remain and are consistent with todays. Design parameters were reevaluated and results demonstrate no concerns with design.
g4eddyrg 3:22 PM Combined the two sections	g4eddyrg 3:23 PM Added statement indicating the design was reviewed and meets current criteria.
PAGE 14 1 ✓ Image: Second system 1 Image: Se	